請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/19558
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 楊烽正(Feng-Cheng Yang) | |
dc.contributor.author | Kang-Yi Wei | en |
dc.contributor.author | 魏綱毅 | zh_TW |
dc.date.accessioned | 2021-06-08T02:05:25Z | - |
dc.date.copyright | 2016-03-08 | |
dc.date.issued | 2016 | |
dc.date.submitted | 2016-02-05 | |
dc.identifier.citation | Adriaen, M., et al. (2003).' An agent based metaheuristic for the traveling tournament
problem.' Citeser. Anagnostopoulos, A., et al. (2006). 'A simulated annealing approach to the traveling tournament problem.' Journal of Scheduling 9(2): 177-193. Bao, R. (2009). 'Time relaxed round robin tournament and the NBA scheduling problem.' Cleveland State University. Bean, J. C. and J. R. Birge (1980). 'Reducing travelling costs and player fatigue in the national basketball association.' Interfaces 10(3): 98-102. Chen, P.-C., et al. (2007). 'An ant based hyper-heuristic for the travelling tournament problem.' Computational Intelligence in Scheduling, 2007. SCIS'07. IEEE Choubey, N. S. (2010). 'A Novel Encoding Scheme for Traveling Tournament Problem using Genetic Algorithm.' IJCA Special Issue on Evolutionary Computation 2(7): 79-82. Costa, D. (1995). 'An evolutionary tabu search algorithm and the NHL scheduling problem.' Infor-Information Systems and Operational Research 33(3): 161-178. Della Croce, F. and D. Oliveri (2006). 'Scheduling the Italian football league: an ILP-based approach.' Computers & Operations Research 33(7): 1963-1974. Easton, K., et al. (2001). 'The traveling tournament problem description and benchmarks.' Principles and Practice of Constraint Programming—CP 2001, Springer. Holland, J. H. (1975). 'Adaptation in natural and artificial systems: An introductory analysis with applications to biology, control, and artificial intelligence.' U Michigan Press. Kendall, G., et al. (2010). 'Scheduling in sports: An annotated bibliography.' Computers & Operations Research 37(1): 1-19. Nemhauser, G. L. and M. A. Trick (1998). 'Scheduling a major college basketball conference.' Operations Research 46(1): 1-8. Rasmussen, R. V. and M. A. Trick (2008). 'Round robin scheduling - a survey.' European Journal of Operational Research 188(3): 617-636. 53 Ribeiro, C. C. and S. Urrutia (2007). 'Scheduling the Brazilian soccer tournament with fairness and broadcast objectives.' Practice and Theory of Automated Timetabling VI, Springer: 147-157. 石大維(2013),「以多目標與限制最佳化觀點求解競賽旅程問題」,國立臺灣師範 大學資訊工程研究所碩士論文。 張振卿(2009),「職業運動賽程表最佳系統以最短路徑輸出量為主」,僑光科技大 學工程科技研究所碩士論文。 | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/19558 | - |
dc.description.abstract | 美國職業籃球聯賽賽事排程問題是一特定的運動排程問題。求解目的是在
聯賽的賽制規範下,考量賽事的基本資料和限制條件安排出一合理的賽程。求 解目標是在滿足主要限制條件的情形下,減少球隊移動總距離,且減少次要限 制條件違反量。本研究將官方歷年的賽程資訊製作成標竿問題,並研擬遺傳演 算求解法進行求解並與官方賽程比較優劣。求解法的基因編碼採用賽事排序的 編碼格式。因應編碼方式,研擬專用的初始解產生法,盡量避免同球隊的賽事 排在相鄰位置。此法能降低解碼後的賽程賽日長度,避免產生過多不可行的解。 此外,為了有效地改善總球隊移動距離,求解法將賽事間的移動距離當作賽事 成本考量,並設計一啟發式突變機制去改善單場賽事成本最高的球隊的賽程。 完整定義本賽程問題的數學模式外,同時依據研擬的遺傳演算求解法開發一套 求解本問題的軟體系統。實例測試時使用2012-2013、2013-2014、和2014-2015 三個標竿問題進行求解並與官方的賽程統計數據比較優劣。結果顯示本遺傳演 算求解法能有效地改善各問題的球隊移動總距離,且兩項賽程指標:球隊連續 二日出賽次數加總和球隊五日內出賽四場次數加總的統計量也都能減少。 | zh_TW |
dc.description.abstract | NBA Scheduling Problem is a particular game scheduling problem. The purpose
of the problem is to generate a reasonable schedule by following basic information and restrictions from the league. The goal is to reduce Traveling Length Total by satisfying all hard constraints, and also decrease the statistic of soft constraints. This work construct NBA benchmarks from recent official information, then use genetic algorithm to solve it, finally, compare the results to official schedule. Encoding scheme uses game sequencing as format. Due to this format, this work develop a method to generate initial populations to avoid arranging same game on near position. The method reduce the number of infeasible solutions which have excessive season length after decoding scheme. Besides, to reduce traveling distance, the algorithm use distance between two games as game cost, and design a heuristic mutation method to improve the team schedule which has highest game cost. After define mathematical functions of the problem, we develop a genetic algorithm-based software to test three benchmarks: 2012-2013, 2013-2014, and 2014-2015. Moreover, this work compare the results with official schedule. The results show that this algorithm can not only reduce traveling distance effectively, but also decrease the statistic of two soft constraints: Back-to-back Games Count Total and Four-games-in-five Count Total. | en |
dc.description.provenance | Made available in DSpace on 2021-06-08T02:05:25Z (GMT). No. of bitstreams: 1 ntu-105-R02546034-1.pdf: 2905675 bytes, checksum: 191938eacc3af9476789930769c9e5ba (MD5) Previous issue date: 2016 | en |
dc.description.tableofcontents | 誌謝 ............................................................................................................................... I
摘要.............................................................................................................................. II ABSTRACT ................................................................................................................III 目錄............................................................................................................................ IV 表目錄.......................................................................................................................VII 圖目錄......................................................................................................................VIII 1. 緒論.......................................................................................................................1 1.1 研究背景...................................................................................................1 1.2 研究目的...................................................................................................2 1.3 研究方法...................................................................................................3 2. 文獻探討...............................................................................................................4 2.1 運動排程問題...........................................................................................4 競賽旅程問題...............................................................................................6 時間寬放問題...............................................................................................7 2.2 遺傳演算法...............................................................................................8 3. 美國職業籃球聯賽賽事排程問題及其遺傳演算求解法.........................10 3.1 美國職業籃球聯賽賽事排程問題定義.................................................10 V 問題背景 .....................................................................................................10 問題定義.....................................................................................................13 球隊賽程擷取程序.....................................................................................15 移動距離計算程序.....................................................................................16 問題的限制條件.........................................................................................16 標竿問題.....................................................................................................18 小結.............................................................................................................20 3.2 美國職業籃球聯賽賽事排程問題的遺傳演算求解法.........................21 染色體編碼法.............................................................................................21 染色體解碼法.............................................................................................21 問題求解的目標函數.................................................................................24 遺傳演算法的初始解產生.........................................................................24 遺傳演算法的交配演算.............................................................................26 遺傳演算法的突變演算.............................................................................28 賽事成本計算程序.....................................................................................31 染色體的篩選法.........................................................................................32 小結.............................................................................................................32 4. 遺傳演算求解系統及測試範例.........................................................................33 4.1 遺傳演算法求解系統.............................................................................33 VI 4.2 測試範例及成效驗證.............................................................................38 小結.............................................................................................................49 5. 結論與未來研究建議.........................................................................................50 5.1 結論.........................................................................................................50 5.2 未來研究建議.........................................................................................50 參考文獻.....................................................................................................................52 附錄一.........................................................................................................................54 附錄二.......................................................................................................................113 | |
dc.language.iso | zh-TW | |
dc.title | 職業籃球聯賽賽事排程問題及遺傳演算法求解法 | zh_TW |
dc.title | Genetic Algorithm for Game Scheduling Problem of
NBA | en |
dc.type | Thesis | |
dc.date.schoolyear | 104-1 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 黃奎隆(Kwei-Long Huang),徐旭昇(Chiuh-Cheng Chyu),胡黃德(Huang-Der Hu) | |
dc.subject.keyword | 運動排程,遺傳演算法,美國職業籃球聯賽, | zh_TW |
dc.subject.keyword | Sport Scheduling,Genetic Algorithm,National Basketball Association, | en |
dc.relation.page | 113 | |
dc.rights.note | 未授權 | |
dc.date.accepted | 2016-02-05 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 工業工程學研究所 | zh_TW |
顯示於系所單位: | 工業工程學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-105-1.pdf 目前未授權公開取用 | 2.84 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。