請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/19556
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 施明哲 | |
dc.contributor.author | Hung-An Yang | en |
dc.contributor.author | 楊弘安 | zh_TW |
dc.date.accessioned | 2021-06-08T02:05:18Z | - |
dc.date.copyright | 2016-03-08 | |
dc.date.issued | 2016 | |
dc.date.submitted | 2016-02-04 | |
dc.identifier.citation | Ariizumi, T., Murase, K., Sun, T.P., and Steber, C.M. (2008). Proteolysis-independent downregulation of DELLA repression in Arabidopsis by the gibberellin receptor GIBBERELLIN INSENSITIVE DWARF1. Plant Cell 20, 2447-2459.
Asano, T., Hakata, M., Nakamura, H., Aoki, N., Komatsu, S., Ichikawa, H., Hirochika, H., and Ohsugi, R. (2011). Functional characterisation of OsCPK21, a calcium-dependent protein kinase that confers salt tolerance in rice. Plant Mol Biol 75, 179-191. Ayano, M., Kani, T., Kojima, M., Sakakibara, H., Kitaoka, T., Kuroha, T., Angeles-Shim, R.B., Kitano, H., Nagai, K., and Ashikari, M. (2014). Gibberellin biosynthesis and signal transduction is essential for internode elongation in deepwater rice. Plant Cell Environ 37, 2313-2324. Bérénice, R., Jean, R., Anne, S., and Alain, P. (1991). Anaerobic Stress Induces the Transcription and Translation of Sucrose Synthase in Rice. Plant Physiol 95, 669-674. Bailey-Serres, J., and Voesenek, L.A. (2008). Flooding stress: acclimations and genetic diversity. Annu Rev Plant Biol 59, 313-339. Bailey-Serres, J., Fukao, T., Ronald, P., Ismail, A., Heuer, S., and Mackill, D. (2010). Submergence Tolerant Rice: SUB1’s Journey from Landrace to Modern Cultivar. Rice 3, 138-147. Bailey-Serres, J., Fukao, T., Gibbs, D.J., Holdsworth, M.J., Lee, S.C., Licausi, F., Perata, P., Voesenek, L.A., and van Dongen, J.T. (2012). Making sense of low oxygen sensing. Trends Plant Sci 17, 129-138. Banti, V., Giuntoli, B., Gonzali, S., Loreti, E., Magneschi, L., Novi, G., Paparelli, E., Parlanti, S., Pucciariello, C., Santaniello, A., and Perata, P. (2013). Low oxygen response mechanisms in green organisms. Int J Mol Sci 14, 4734-4761. Banuelos, M.A., Garciadeblas, B., Cubero, B., and Rodriguez-Navarro, A. (2002). Inventory and functional characterization of the HAK potassium transporters of rice. Plant Physiol 130, 784-795. Bender, K.W., and Snedden, W.A. (2013). Calmodulin-related proteins step out from the shadow of their namesake. Plant Physiol 163, 486-495. Chang, R., Jang, C.J., Branco-Price, C., Nghiem, P., and Bailey-Serres, J. (2012). Transient MPK6 activation in response to oxygen deprivation and reoxygenation is mediated by mitochondria and aids seedling survival in Arabidopsis. Plant Mol Biol 78, 109-122. Chen, G., Hu, Q., Luo, L., Yang, T., Zhang, S., Hu, Y., Yu, L., and Xu, G. (2015). Rice potassium transporter OsHAK1 is essential for maintaining potassium-mediated growth and functions in salt tolerance over low and high potassium concentration ranges. Plant Cell Environ 38, 2747-2765. Chin, D., and Means, A.R. (2000 ). Calmodulin: a prototypical calcium sensor. Trends Cell Biol. 10, 322-328. Chung, H.J., and Ferl, R.J. (1999). Arabidopsis alcohol dehydrogenase expression in both shoots and roots is conditioned by root growth environment. Plant Physiol 121, 429-436. Diédhiou, C.J., and Golldack, D. (2006). Salt-dependent regulation of chloride channel transcripts in rice. Plant Science 170, 793-800. Dortje Golldack, F.Q., Christine B. Michalowski, Uma R. Kamasani and, and Bohnert, H.J. (2003). Salinity stress-tolerant and -sensitive rice (Oryza sativa L.) regulate AKT1-type potassium channel transcripts differently. Plant Mol Biol 51, 71–81. Finatto, T., de Oliveira, A.C., Chaparro, C., da Maia, L.C., Farias, D.R., Woyann, L.G., Mistura, C.C., Soares-Bresolin, A.P., Llauro, C., Panaud, O., and Picault, N. (2015). Abiotic stress and genome dynamics: specific genes and transposable elements response to iron excess in rice. Rice (N Y) 8, 13. Fukao, T., and Bailey-Serres, J. (2008). Submergence tolerance conferred by Sub1A is mediated by SLR1 and SLRL1 restriction of gibberellin responses in rice. Proc Natl Acad Sci U S A 105, 16814-16819. Fukao, T., Xu, K., Ronald, P.C., and Bailey-Serres, J. (2006). A variable cluster of ethylene response factor-like genes regulates metabolic and developmental acclimation responses to submergence in rice. Plant Cell 18, 2021-2034. Geigenberger, P. (2003). Response of plant metabolism to too little oxygen. Curr Opin in Plant Biol 6, 247-256. Gibbs, D.J., Lee, S.C., Isa, N.M., Gramuglia, S., Fukao, T., Bassel, G.W., Correia, C.S., Corbineau, F., Theodoulou, F.L., Bailey-Serres, J., and Holdsworth, M.J. (2011). Homeostatic response to hypoxia is regulated by the N-end rule pathway in plants. Nature 479, 415-418. Gibbs, J.,and Greenway, H. (2003). Review: Mechanisms of anoxia tolerance in plants. I. Growth, survival and anaerobic catabolism. Funct. Plant Bio 30, 1 - 47. Golldack, D., Li, C., Mohan, H., and Probst, N. (2013). Gibberellins and abscisic acid signal crosstalk: living and developing under unfavorable conditions. Plant Cell Rep 32, 1007-1016. Hattori, Y., Nagai, K., Furukawa, S., Song, X.J., Kawano, R., Sakakibara, H., Wu, J., Matsumoto, T., Yoshimura, A., Kitano, H., Matsuoka, M., Mori, H., and Ashikari, M. (2009). The ethylene response factors SNORKEL1 and SNORKEL2 allow rice to adapt to deep water. Nature 460, 1026-1030. Hirabayashi, Y., Mahendran, R., Koirala, S., Konoshima, L., Yamazaki, D., Watanabe, S., Kim, H., and Kanae, S. (2013). Global flood risk under climate change. Nature Climate Change 3, 816-821. Hsu, F.C., Chou, M.Y., Chou, S.J., Li, Y.R., Peng, H.P., and Shih, M.C. (2013). Submergence confers immunity mediated by the WRKY22 transcription factor in Arabidopsis. Plant Cell 25, 2699-2713. Huang, S., Colmer, T.D., and Millar, A.H. (2008). Does anoxia tolerance involve altering the energy currency towards PPi? Trends Plant Sci 13, 221-227. IPCC. (2012). Managing the risks of extreme events and disasters to advance climate change adaption. Iqbal, N., Trivellini, A., Masood, A., Ferrante, A., and Khan, N.A. (2013). Current understanding on ethylene signaling in plants: the influence of nutrient availability. Plant Physiol Biochem 73, 128-138. Ismond, K.P. (2003). Enhanced Low Oxygen Survival in Arabidopsis through Increased Metabolic Flux in the Fermentative Pathway. Plant Physiol 132, 1292-1302. Itoh, H. (2002). The Gibberellin Signaling Pathway Is Regulated by the Appearance and Disappearance of SLENDER RICE1 in Nuclei. The Plant Cell Online 14, 57-70. Iwai, T., Miyasaka, A., Seo, S., and Ohashi, Y. (2006). Contribution of Ethylene Biosynthesis for Resistance to Blast Fungus Infection in Young Rice Plants. Plant Physiology 142, 1202-1215. Ju, C., and Chang, C. (2015). Mechanistic Insights in Ethylene Perception and Signal Transduction. Plant Physiol 169, 85-95. Jung, K.H., Seo, Y.S., Walia, H., Cao, P., Fukao, T., Canlas, P.E., Amonpant, F., Bailey-Serres, J., and Ronald, P.C. (2010). The submergence tolerance regulator Sub1A mediates stress-responsive expression of AP2/ERF transcription factors. Plant Physiol 152, 1674-1692. Kavitha, P.G., Miller, A.J., Mathew, M.K., and Maathuis, F.J. (2012). Rice cultivars with differing salt tolerance contain similar cation channels in their root cells. J Exp Bot 63, 3289-3296. Kudahettige, N.P., Pucciariello, C., Parlanti, S., Alpi, A., and Perata, P. (2011). Regulatory interplay of the Sub1A and CIPK15 pathways in the regulation of alpha-amylase production in flooded rice plants. Plant Biol (Stuttg) 13, 611-619. Kursteiner, O., Dupuis, I., and Kuhlemeier, C. (2003). The pyruvate decarboxylase1 gene of Arabidopsis is required during anoxia but not other environmental stresses. Plant Physiol 132, 968-978. Lasanthi-Kudahettige, R., Magneschi, L., Loreti, E., Gonzali, S., Licausi, F., Novi, G., Beretta, O., Vitulli, F., Alpi, A., and Perata, P. (2007). Transcript profiling of the anoxic rice coleoptile. Plant Physiol 144, 218-231. Lata, C., and Prasad, M. (2011). Role of DREBs in regulation of abiotic stress responses in plants. J Exp Bot 62, 4731-4748. Lee, Y., and Kende, H. (2002). Expression of alpha-expansin and expansin-like genes in deepwater rice. Plant Physiol 130, 1396-1405. Lee, Y., Choi, D., and Kende, H. (2001). Expansins: ever-expanding numbers and functions. Curr Opin Plant Biol. 4, 527-532. Licausi, F., Ohme-Takagi, M., and Perata, P. (2013). APETALA2/Ethylene Responsive Factor (AP2/ERF) transcription factors: mediators of stress responses and developmental programs. New Phytol 199, 639-649. Licausi, F., Kosmacz, M., Weits, D.A., Giuntoli, B., Giorgi, F.M., Voesenek, L.A., Perata, P., and van Dongen, J.T. (2011). Oxygen sensing in plants is mediated by an N-end rule pathway for protein destabilization. Nature 479, 419-422. Lin, Z., Zhong, S., and Grierson, D. (2009). Recent advances in ethylene research. J Exp Bot 60, 3311-3336. Liu, Y., Xu, Y., Xiao, J., Ma, Q., Li, D., Xue, Z., and Chong, K. (2011). OsDOG, a gibberellin-induced A20/AN1 zinc-finger protein, negatively regulates gibberellin-mediated cell elongation in rice. J Plant Physiol 168, 1098-1105. Lo, S.F., Yang, S.Y., Chen, K.T., Hsing, Y.I., Zeevaart, J.A., Chen, L.J., and Yu, S.M. (2008). A novel class of gibberellin 2-oxidases control semidwarfism, tillering, and root development in rice. Plant Cell 20, 2603-2618. Lokdarshi, A., Conner, W.C., McClintock, C., Li, T., and Roberts, D. (2015). Arabidopsis CML38, a calcium sensor that localizes to ribonucleoprotein complexes under hypoxia stress. Plant Physiol. 170, 1046-1059 Ma, B., He, S.J., Duan, K.X., Yin, C.C., Chen, H., Yang, C., Xiong, Q., Song, Q.X., Lu, X., Chen, H.W., Zhang, W.K., Lu, T.G., Chen, S.Y., and Zhang, J.S. (2013). Identification of rice ethylene-response mutants and characterization of MHZ7/OsEIN2 in distinct ethylene response and yield trait regulation. Mol Plant 6, 1830-1848. McQueen-Mason, S., and Cosgrove, D. (1995). Expansin Mode of Action on Cell Walls (Analysis of Wall Hydrolysis, Stress Relaxation, and Binding). Plant Physiol 107, 87-100. Mendiondo, G.M., Gibbs, D.J., Szurman-Zubrzycka, M., Korn, A., Marquez, J., Szarejko, I., Maluszynski, M., King, J., Axcell, B., Smart, K., Corbineau, F., and Holdsworth, M.J. (2015). Enhanced waterlogging tolerance in barley by manipulation of expression of the N-end rule pathway E3 ligase PROTEOLYSIS6. Plant Biotech Journal.14, 40-50 Mertens, E. (1993). ATP versus pyrophosphate: glycolysis revisited in parasitic protists. Parasitology Today 9, 122-126. Meyer, E.H., Tomaz, T., Carroll, A.J., Estavillo, G., Delannoy, E., Tanz, S.K., Small, I.D., Pogson, B.J., and Millar, A.H. (2009). Remodeled respiration in ndufs4 with low phosphorylation efficiency suppresses Arabidopsis germination and growth and alters control of metabolism at night. Plant Physiol 151, 603-619. Narsai, R., and Whelan, J. (2013). How unique is the low oxygen response? An analysis of the anaerobic response during germination and comparison with abiotic stress in rice and Arabidopsis. Front Plant Sci 4, 349. Nuruzzaman, M., Sharoni, A.M., and Kikuchi, S. (2013). Roles of NAC transcription factors in the regulation of biotic and abiotic stress responses in plants. Front Microbiol 4, 248. Peng, H.P., Chan, C.S., Shih, M.C., and Yang, S.F. (2001). Signaling events in the hypoxic induction of alcohol dehydrogenase gene in Arabidopsis. Plant Physiol 126 742-749. Puntarulo, S., and Cederbaum, A. (1988). Effect of oxygen concentration on microsomal oxidation of ethanol and generation of oxygen radicals. Biochem Journal 251, 787-794. Qin, X., Liu, J.H., Zhao, W.S., Chen, X.J., Guo, Z.J., and Peng, Y.L. (2013). Gibberellin 20-oxidase gene OsGA20ox3 regulates plant stature and disease development in rice. Mol Plant Microbe Interact 26, 227-239. Ranty, B., Aldon, D., and Galaud, J.P. (2006). Plant Calmodulins and Calmodulin-Related Proteins. Plant Signal Behav. 1, 96-104. Reddy Ch, S., Babu, A.P., Swamy, B.P., Kaladhar, K., and Sarla, N. (2009). ISSR markers based on GA and AG repeats reveal genetic relationship among rice varieties tolerant to drought, flood, or salinity. J Zhejiang Univ Sci B 10, 133-141. Ricard, B., Rivoal, J., and Pradet, A. (1989). Rice cytosolic glyceraldehyde 3-phosphate dehydrogenase contains two subunits differentially regulated by anaerobiosis. Plant Mol Biol 12, 131-139. Ross, C.A., Liu, Y., and Shen, Q.J. (2007). The WRKY Gene Family in Rice (Oryza sativa). J of Integra Plant Biol 49, 827–842. Rushton, P.J., Somssich, I.E., Ringler, P., and Shen, Q.J. (2010). WRKY transcription factors. Trends Plant Sci 15, 247-258. Saika, H., Okamoto, M., Miyoshi, K., Kushiro, T., Shinoda, S., Jikumaru, Y., Fujimoto, M., Arikawa, T., Takahashi, H., Ando, M., Arimura, S., Miyao, A., Hirochika, H., Kamiya, Y., Tsutsumi, N., Nambara, E., and Nakazono, M. (2007). Ethylene promotes submergence-induced expression of OsABA8ox1, a gene that encodes ABA 8'-hydroxylase in rice. Plant Cell Physiol 48, 287-298. Santaniello, A., Loreti, E., Gonzali, S., Novi, G., and Perata, P. (2014). A reassessment of the role of sucrose synthase in the hypoxic sucrose-ethanol transition in Arabidopsis. Plant Cell Environ 37, 2294-2302. Sasidharan, R., and Mustroph, A. (2011). Plant oxygen sensing is mediated by the N-end rule pathway: a milestone in plant anaerobiosis. Plant cell 23, 4173-4183. Sauter, M. (1997). Differential expression of a CAK (cdc2-activating kinase)-like protein kinase, cyclins and cdc2 genes from rice during the cell cycle and in response to gibberellin. Plant J. 11, 181-190. Schmitz, A.J., Folsom, J.J., Jikamaru, Y., Ronald, P., and Walia, H. (2013). SUB1A-mediated submergence tolerance response in rice involves differential regulation of the brassinosteroid pathway. New Phytol 198, 1060-1070. Shylaraj, K., Sasidharan, N., and Sreekumaran, V. (2006). VTL 6: a semi-tall, non-lodging, and high yielding rice (Oryza sativa L.) variety for the coastal saline zones of Kerala. J of Tropical Agr. 44, 48–51. Singh, N., Dang, T.T., Vergara, G.V., Pandey, D.M., Sanchez, D., Neeraja, C.N., Septiningsih, E.M., Mendioro, M., Tecson-Mendoza, E.M., Ismail, A.M., Mackill, D.J., and Heuer, S. (2010). Molecular marker survey and expression analyses of the rice submergence-tolerance gene SUB1A. Theor Appl Genet 121, 1441-1453. Singh, S., Mackill, D.J., and Ismail, A.M. (2011). Tolerance of longer-term partial stagnant flooding is independent of the SUB1 locus in rice. Field Crops Res 121, 311-323. Steffens, B. (2014). The role of ethylene and ROS in salinity, heavy metal, and flooding responses in rice. Front Plant Sci 5, 685. Sun, T.P. (2011). The molecular mechanism and evolution of the GA-GID1-DELLA signaling module in plants. Curr Biol 21, R338-345. Takahashi, H., Saika, H., Matsumura, H., Nagamura, Y., Tsutsumi, N., Nishizawa, N.K., and Nakazono, M. (2011). Cell division and cell elongation in the coleoptile of rice alcohol dehydrogenase 1-deficient mutant are reduced under complete submergence. Ann Bot 108, 253-261. Tamang, B.G., and Fukao, T. (2015). Plant Adaptation to Multiple Stresses during Submergence and Following Desubmergence. Int J Mol Sci 16, 30164-30180. Tran, L.S., Nakashima, K., Sakuma, Y., Simpson, S.D., Fujita, Y., Maruyama, K., Fujita, M., Seki, M., Shinozaki, K., and Yamaguchi-Shinozaki, K. (2004). Isolation and functional analysis of Arabidopsis stress-inducible NAC transcription factors that bind to a drought-responsive cis-element in the early responsive to dehydration stress 1 promoter. Plant Cell 16, 2481-2498. van der, K., Jagoueix, S., and Kende, H. (1997 ). Expression of an ortholog of replication protein A1 (RPA1) is induced by gibberellin in deepwater rice. Proc Natl Acad Sci U S A 94, 9979-9983. van der, K., and Kende, H. (1995 ). Identification of a gibberellin-induced gene in deepwater rice using differential display of mRNA. Plant Mol Biol 28, 589-592. Voesenek, L.A., and Bailey-Serres, J. (2015). Flood adaptive traits and processes: an overview. New Phytol 206, 57-73. Weits, D.A., Giuntoli, B., Kosmacz, M., Parlanti, S., Hubberten, H.M., Riegler, H., Hoefgen, R., Perata, P., van Dongen, J.T., and Licausi, F. (2014). Plant cysteine oxidases control the oxygen-dependent branch of the N-end-rule pathway. Nat Commun 5, 3425. Wu, Y.L. (2014). Transcriptional Profiling of the Downstream Genes of Sub1A-1 in Rice under Submergence. Master thesis. Xu, K., and Mackill, D.J. (1996). A major locus for submergence tolerance mapped on rice chromosome 9 Mol Breeding 2, 219-224. Xu, K., Xu, X., Fukao, T., Canlas, P., Maghirang-Rodriguez, R., Heuer, S., Ismail, A.M., Bailey-Serres, J., Ronald, P.C., and Mackill, D.J. (2006). Sub1A is an ethylene-response-factor-like gene that confers submergence tolerance to rice. Nature 442, 705-708. Yang, Y., Kwon, H.B., Peng, H.P., and Shih, M.C. (1993). Stress responses and metabolic regulation of glyceraldehyde-3-phosphate dehydrogenase genes in Arabidopsis. Plant Physiol 101, 209-216. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/19556 | - |
dc.description.abstract | SUB1A-1為第七群乙烯反應轉錄因子(ethylene response transcription factor, ERF)的成員之一,其基因表現會在淹水時被大量誘導,在水稻的抗淹水逆境中扮演了重要角色。根據過去的文獻指出,帶有SUB1A-1的水稻品系可以忍受長時間的淹水逆境。FR13A與Pokkali皆帶有SUB1A-1基因,因而能耐受淹水逆境,IR29帶有SUB1A-2,並無法耐受淹水。然而,都帶有SUB1A-1基因的FR13A與Pokkali在淹水時卻有截然不同的表現型,FR13A在淹水時,SUB1A-1的表現量會被大量誘導,使其停止生長以利節省能量。Pokkali的SUB1A-1的表現量在淹水時僅被些微誘導,植株會繼續生長,有趣的是Pokkali中低量表現的SUB1A-1仍具有功效,受到SUB1A-1所調控的醣解作用相關基因在Pokkali中也有被大量誘導表現,更重要的是ATP的相對含量,在Pokkali及FR13A都有較IR29高的含量。這些水稻品系特性對於淹水耐受反應的不同,讓我們進一步使用基因微陣列(microarray)去分析各個基因在不同淹水時間點的表現,試圖找出可能調控早期淹水耐受的基因、SUB1A-1所調控的下游基因以及在Pokkali中表現有別於其他兩個品系的基因。我們發現,早期受淹水誘導表現的53個基因中,我們發現了四個轉錄因子與及和鈣離子及MAPK訊息傳導相關的基因;在晚期受淹水誘導的74個基因中,我們發現了被歸類到此群的基因多與醣代謝相關,值得一提的是,我們在這群基因中也發現了這兩個同樣也為第七族的乙烯反應轉錄因子ERF66與ERF67,這與我們實驗室先前的發現結果相符。我們進一步以基因槍轉殖的方式將基因短暫表現於水稻的癒傷組織加引印證,我們發現,ERF66與ERF67受到SUB1A-1的正向調控,此外,ERF66與ERF67可能受到N端法則(N-end rule)所調控,所以,我們推測ERF66、ERF67可能在缺氧穩定後對SUB1A-1有抑制性的回饋機制,微調SUB1A-1對淹水的調控。
另外一方面,在Pokkali中所受淹水誘導表現較高的基因與離子通道、DNA的複製、Expansin及生長有關。而這些基因中,在深水稻曾被報導過會受GA所誘導表現,因此,我們檢查了三種水稻品系中GA代謝相關的基因,結果顯示,使GA從活化態轉換非活化態的基因在Pokkali中有較低的表現,因此我們推測在淹水時,Pokkali中有較多量的GA促使其在淹水時能繼續生長,以利從表層水中得到氧氣。 | zh_TW |
dc.description.abstract | Abstract
Rice SUB1A-1 (SUBMERGENCE1A-1), a member of group-Vll ethylene response transcription factor (ERF-Vll), is up-regulated during submergence, and it plays an important role in flooding tolerance among rice cultivars. The cultivars that contain the SUB1A-1 allele, including FR13A and Pokkali, display flooding-tolerant phenotype. In contrast, IR29 cultivar, which possesses SUB1A-2 allele, shows flooding-intolerant phenotype. In addition, FR13A and Pokkali both contain SUB1A-1 but display significantly different induction patterns and phenotypes under submergence. During submergence, FR13A stays quiescent to conserve energy and its SUB1A-1 transcription is highly induced. On the contrary, Pokkali continues to grow under submergence, but its SUB1A-1 induction level is much lower than that of FR13A. The genes under SUB1A-1 control are mainly involved in glycolytic pathway, which are also highly induced in Pokkali. Moreover, the ATP level is higher in FR13A and Pokkali than IR29 under submergence. Accordingly these materials provided us a good starting point to look for early hypoxia-tolerant genes, downstream genes of SUB1A-1 and specific hypoxia responsive genes in Pokkali. To characterize the tolerance related genes that respond to early and late hypoxia, we applied genome-wide transcriptomic analysis to FR13A, IR29 and Pokkali under submergence. We identified 53 genes that might be involved in the early flooding tolerance. Four transcription factors and genes related to calcium signaling and MAPK pathways were found in this category. On the other hand, 74 genes that might be under SUB1A-1 control in late hypoxia were identified. The genes were mainly related to carbohydrate metabolism. Interestingly, two ERF transcription factors, ERF66 and ERF67, which are potential targets of the N-end rule regulation, were identified in this group. We further used transient assays to validate the regulation in callus. Our results suggested that SUB1A-1 positively regulated ERF66 and ERF67. In addition, ERF66 and ERF67 might follow the N-end rule to modulate SUB1A-1 expression. This regulatory mechanism may fine-tune hypoxia response in rice. On the other hand, the hypoxia responsive genes that were induced higher in Pokkali were associated with ion channel, DNA replication, expansin and growth regulation. Most of them are GA responsive genes and were similarly expressed in deepwater rice under submergence. In addition, the genes encoding enzymes that catalyze the active form GA to inactive form were expressed at lower levels in Pokkali. We proposed that the GA level might be higher in Pokkali which allowed it to continue growing under submergence and get oxygen from water surface. | en |
dc.description.provenance | Made available in DSpace on 2021-06-08T02:05:18Z (GMT). No. of bitstreams: 1 ntu-105-R02b42006-1.pdf: 5103355 bytes, checksum: 6f85d9472541a1c52579ad6534a9e74f (MD5) Previous issue date: 2016 | en |
dc.description.tableofcontents | TABLE OF CONTENTS
口試委員會審定書………………………………………………………………………………....ii 誌謝………………………………………………………………………………………………... iii 中文摘要…………………………………………………………………………………………… iv 英文摘要………………………………………………………………………………………….....v List of tables……………………………………………………………………………….............. .vii List of figures……………………………………………………………………………………… ix CHAPTER I………………………………………………………………………………………… Introduction…………...………………………………………………….................……….....1-9 Material and Methods………………………………………………………………………. 10-14 Results and discussion……………………………………………………………………… 15-33 Figures……………………………………………………………………………………… 34-59 Tables………………………………………………………………………………………. .60-66 CHAPTER 2………………………………………………………………………………………. Introduction……………………………………………………………………………………. 67 Material and methods……………………………………………………………………….. 69-73 Results and discussion……………………………………………………………………... ..74-81 Figures……………………………………………………………………………………….82-91 Tables…………………………………………………………………………………………... 92 Reference………………………………………………………………………………………. 93 | |
dc.language.iso | en | |
dc.title | 從三種水稻品系轉錄體分析探討抗淹水逆境之調控機制 | zh_TW |
dc.title | Genome-wide transcriptomic profiles reveal comprehensive insights into flooding-tolerant responses in 3 rice cultivars | en |
dc.type | Thesis | |
dc.date.schoolyear | 104-1 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 葉開溫,張英峰,許富鈞 | |
dc.subject.keyword | FR13A,IR29,Pokkali,淹水耐受性,激勃素反應, | zh_TW |
dc.subject.keyword | FR13A,IR29,Pokkali,submergence tolerance,GA response, | en |
dc.relation.page | 99 | |
dc.rights.note | 未授權 | |
dc.date.accepted | 2016-02-06 | |
dc.contributor.author-college | 生命科學院 | zh_TW |
dc.contributor.author-dept | 植物科學研究所 | zh_TW |
顯示於系所單位: | 植物科學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-105-1.pdf 目前未授權公開取用 | 4.98 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。