Please use this identifier to cite or link to this item:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/19549Full metadata record
| ???org.dspace.app.webui.jsptag.ItemTag.dcfield??? | Value | Language |
|---|---|---|
| dc.contributor.advisor | 林敬哲(Jing-Jer Lin) | |
| dc.contributor.author | Long-Yuan Chen | en |
| dc.contributor.author | 陳龍源 | zh_TW |
| dc.date.accessioned | 2021-06-08T02:04:52Z | - |
| dc.date.copyright | 2016-02-24 | |
| dc.date.issued | 2016 | |
| dc.date.submitted | 2016-02-14 | |
| dc.identifier.citation | Alonso, A., Sasin, J., Bottini, N., Friedberg, I., Friedberg, I., Osterman, A., Godzik, A.,
Hunter, T., Dixon, J., and Mustelin, T. (2004). Protein Tyrosine Phosphatases in the Human Genome. Cell, 117, 699-711. Arena, S., Benvenuti, S., and Bardelli, A. (2005). Genetic analysis of the kinome and phosphatome in cancer. Cell Mol Life Sci, 62, 2092-2099. Conner, S. H., Kular, G., Peggie, M., Shepherd, S., Schuttelkopf, A. W., Cohen, P., and Van Aalten, D. M. (2006). TAK1-binding protein 1 is a pseudophosphatase. Biochem J, 399, 427-434. Cravatt, B. F., Wright, A. T., and Kozarich, J. W. (2008). Activity-based protein profiling: from enzyme chemistry to proteomic chemistry. Annu Rev Biochem, 77, 383-414. Denu, J. M., and Dixon, J. E. (1998). Protein tyrosine phosphatases: mechanisms of catalysis and regulation. Curr Opin Chem Biol, 2, 633-641. Dove, A. (1999). Proteomics: translating genomics into products? Nat Biotechnol, 17, 233-236. Evans, M. J., and Cravatt, B. F. (2006). Mechanism-based profiling of enzyme families. Chem Rev, 106, 3279-3301. Friedmann, E., Marrian, D. H., and Simon-Reuss, I. (1949). Antimitotic action of maleimide and related substances. Br J Pharmacol Chemother, 4, 105-108. Giacinti, C., and Giordano, A. (2006). RB and cell cycle progression. Oncogene, 25, 5220-5227. Greenbaum, D., Medzihradszky, K. F., Burlingame, A., and Bogyo, M. (2000). Epoxide electrophiles as activity-dependent cysteine protease profiling and discovery tools. Chem Biol, 7, 569-581. Gregory, J. D. (1955). The Stability of N-Ethylmaleimide and its Reaction with Sulfhydryl Groups. J Am Chem Soc, 77, 3922-3923. Guan, K. L., and Dixon, J. E. (1991). Evidence for protein-tyrosine-phosphatase catalysis proceeding via a cysteine-phosphate intermediate. J Biol Chem, 266, 17026-17030. Gushwa, N. N., Kang, S., Chen, J., and Taunton, J. (2012). Selective targeting of distinct active site nucleophiles by irreversible SRC-family kinase inhibitors. J Am Chem Soc, 134, 20214-20217. Hanks, S. K., and Hunter, T. (1995). Protein kinases 6. The eukaryotic protein kinase superfamily: kinase (catalytic) domain structure and classification. FASEB J, 9, 576- 596. Huang, C. Y., and Tan, T. H. (2012). DUSPs, to MAP kinases and beyond. Cell Biosci, 2, 24. Huang, Y.-Y., Kuo, C.-C., Chu, C.-Y., Huang, Y.-H., Hu, Y.-L., Lin, J.-J., and Lo, L.-C. (2010). Development of activity-based probes with tunable specificity for protein tyrosine phosphatase subfamilies. Tetrahedron, 66, 4521-4529. Hunter, T. (1995). Protein kinases and phosphatases: The Yin and Yang of protein phosphorylation and signaling. Cell, 80, 225-236. Huyer, G., Liu, S., Kelly, J., Moffat, J., Payette, P., Kennedy, B., Tsaprailis, G., Gresser, M. J., and Ramachandran, C. (1997). Mechanism of inhibition of protein- tyrosine phosphatases by vanadate and pervanadate. J Biol Chem, 272, 843-851. Huyer, G., Liu, S., Kelly, J., Moffat, J., Payette, P., Kennedy, B., Tsaprailis, G., Gresser, M. J., and Ramachandran, C. (1997). Mechanism of inhibition of protein- tyrosine phosphatases by vanadate and pervanadate. J Biol Chem, 272, 843-851. Jeffery, D. A., and Bogyo, M. (2003). Chemical proteomics and its application to drug discovery. Curr Opin Biotechnol, 14, 87-95. Kalesh, K. A., Tan, L. P., Lu, K., Gao, L., Wang, J., and Yao, S. Q. (2010). Peptide- based activity-based probes (ABPs) for target-specific profiling of protein tyrosine phosphatases (PTPs). Chem Commun (Camb), 46, 589-591. Kumar, S., Zhou, B., Liang, F., Wang, W. Q., Huang, Z., and Zhang, Z. Y. (2004). Activity-based probes for protein tyrosine phosphatases. Proc Natl Acad Sci U S A, 101, 7943-7948. Link, A. J., Eng, J., Schieltz, D. M., Carmack, E., Mize, G. J., Morris, D. R., Garvik, B. M., and Yates, J. R., 3rd. (1999). Direct analysis of protein complexes using mass spectrometry. Nat Biotechnol, 17, 676-682. Liu, S., Zhou, B., Yang, H., He, Y., Jiang, Z. X., Kumar, S., Wu, L., and Zhang, Z. Y. (2008). Aryl vinyl sulfonates and sulfones as active site-directed and mechanism- based probes for protein tyrosine phosphatases. J Am Chem Soc, 130, 8251-8260. Liu, Y., Patricelli, M. P., and Cravatt, B. F. (1999). Activity-based protein profiling: the serine hydrolases. Proc Natl Acad Sci U S A, 96, 14694-14699. Lo, L.C., Pang, T.L., Kuo, C.H., Chiang, Y.L., Wang, H.Y., and Lin, J.J. (2002). Design and synthesis of class-selective activity probes for protein tyrosine phosphatases. J Proteome Res 1, 35-40. Marti, F., Krause, A., Post, N. H., Lyddane, C., Dupont, B., Sadelain, M., and King, P. D. (2001). Negative-Feedback Regulation of CD28 Costimulation by a Novel Mitogen-Activated Protein Kinase Phosphatase, MKP6. J Immunol, 166, 197-206. Mustelin, T., Vang, T., and Bottini, N. (2005). Protein tyrosine phosphatases and the immune response. Nat Rev Immunol, 5, 43-57. Pal, P. K., Wechter, W. J., and Colman, R. F. (1975). Affinity labeling of the inhibitory DPNH site of bovine liver glutamate dehydrogenase by 5'- fluorosulfonylbenzoyl adenosine. J Biol Chem, 250, 8140-8147. Patterson, K. I., Brummer, T., O'Brien, P. M., and Daly, R. J. (2009). Dual-specificity phosphatases: critical regulators with diverse cellular targets. Biochem J, 418, 475-489. Rayapureddi, J. P., Kattamuri, C., Steinmetz, B. D., Frankfort, B. J., Ostrin, E. J., Mardon, G., and Hegde, R. S. (2003). Eyes absent represents a class of protein tyrosine phosphatases. Nature, 426, 295-298. Rostovtsev, V. V., Green, L. G., Fokin, V. V., and Sharpless, K. B. (2002). A stepwise huisgen cycloaddition process: copper(I)-catalyzed regioselective 'ligation' of azides and terminal alkynes. Angew Chem Int Ed Engl, 41, 2596-2599. Rubin, C. S., and Rosen, O. M. (1975). Protein Phosphorylation. Annual Review of Biochemistry, 44, 831-887. Sakurai, H., Miyoshi, H., Mizukami, J., and Sugita, T. (2000). Phosphorylation- dependent activation of TAK1 mitogen-activated protein kinase kinase kinase by TAB1. FEBS Lett, 474, 141-145. Speers, A. E., Adam, G. C., and Cravatt, B. F. (2003). Activity-based protein profiling in vivo using a copper(i)-catalyzed azide-alkyne [3 + 2] cycloaddition. J Am Chem Soc, 125, 4686-4687. Speers, A. E., and Cravatt, B. F. (2004). Profiling enzyme activities in vivo using click chemistry methods. Chem Biol, 11, 535-546. Tornoe, C. W., Christensen, C., and Meldal, M. (2002). Peptidotriazoles on solid phase: [1,2,3]-triazoles by regiospecific copper(i)-catalyzed 1,3-dipolar cycloadditions of terminal alkynes to azides. J Org Chem, 67, 3057-3064. Van Hoof, D., Munoz, J., Braam, S. R., Pinkse, M. W., Linding, R., Heck, A. J., Mummery, C. L., and Krijgsveld, J. (2009). Phosphorylation dynamics during early differentiation of human embryonic stem cells. Cell Stem Cell, 5, 214-226. Washburn, M. P., Wolters, D., and Yates, J. R., 3rd. (2001). Large-scale analysis of the yeast proteome by multidimensional protein identification technology. Nat Biotechnol, 19, 242-247. Whisstock, J., Skinner, R., and Lesk, A. M. (1998). An atlas of serpin conformations. Trends Biochem Sci, 23, 63-67. Worrell, B. T., Malik, J. A., and Fokin, V. V. (2013). Direct evidence of a dinuclear copper intermediate in Cu(I)-catalyzed azide-alkyne cycloadditions. Science, 340,457-460. Yang, C. Y., Li, J. P., Chiu, L. L., Lan, J. L., Chen, D. Y., Chuang, H. C., Huang, C. Y., and Tan, T. H. (2014). Dual-specificity phosphatase 14 (DUSP14/MKP6) negatively regulates TCR signaling by inhibiting TAB1 activation. J Immunol, 192, 1547-1557. Young, K. H. (1998). Yeast two-hybrid: so many interactions, (in) so little time. Biol Reprod, 58, 302-311. Zhang, Z. Y., Wang, Y., and Dixon, J. E. (1994). Dissecting the catalytic mechanism of protein-tyrosine phosphatases. Proc Natl Acad Sci U S A, 91, 1624-1627. Zhang, Z.-Y., Wang, Y., Wu, L., Fauman, E. B., Stuckey, J. A., Schubert, H. L., Saper, M. A., and Dixon, J. E. (1994). The Cys(X)5Arg Catalytic Motif in Phosphoester Hydrolysis. Biochemistry, 33, 15266-15270. Zhu, X., Kim, J. L., Newcomb, J. R., Rose, P. E., Stover, D. R., Toledo, L. M., Zhao, H., and Morgenstern, K. A. (1999). Structural analysis of the lymphocyte-specific kinase Lck in complex with non-selective and Src family selective kinase inhibitors. Structure, 7, 651-6 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/19549 | - |
| dc.description.abstract | 蛋白質酪胺酸磷酸為細胞裡一種常見的蛋白質轉譯後修飾,此修飾為一種動態平衡的化學反應,主要是由蛋白質酪胺酸激酶以及蛋白質酪胺酸磷酸水解酶所調控。蛋白質酪胺酸磷酸水解酶為細胞中一種重要的酵素族群,主要是催化蛋白質中磷酸化酪胺酸其磷酸根的水解,調控許多生理反應,例如細胞的複製或是分化等。傳統上研究細胞裡酪胺酸磷酸水解酶的含量以及變化可以藉由質譜儀的幫助進行分析,但是此方式無法精準地反映出酵素的活性變化為何,因此較不利於研究的發展。為了解決這個問題,以活性為基礎的化學探針可做為一有效的分析工具,提供研究蛋白質酪胺酸磷酸水解酶其活性的分析平台。針對酪胺酸磷酸水解酶此酵素族群,我們以馬來醯亞胺、馬來酸以及延胡索酸做為化學探針的辨識端,去探討這些化學探針對於酪胺酸磷酸水解酶的標定反應。首先,我們以一種酪胺酸磷酸水解酶做為模式並進行標定實驗探討,我們發現以馬來酸為辨識端的化學探針對於酪胺酸磷酸水解酶的標定能力較強,因此以此結構進行後續的實驗,我們發現此結構可進入酵素的活化位與其催化性胺基酸形成共價鍵結,而此結構也可標定到不同類型的酪胺酸磷酸水解酶;在專一性的部分,以馬來酸為辨識端的化學探針除了會標定酪胺酸磷酸水解酶以外,還是會標定到其他非酪胺酸磷酸水解酶的酵素,因此該結構仍具有非專一性標定的問題存在。
此外,實驗室先前已經成功發展出以mchanism-based為基礎並可專一地標定酪胺酸磷酸水解酶的活性化學探針,而本篇的另一個研究部分主要是以此化學探針做為一分析工具去分析細胞裡雙專一性磷酸水解酶的活性,以此建立一個能分析雙專一性磷酸水解酶活性的平台。在本研究中,我們以DUSP14做為一個模式,於不同的生物體系統下過度表現此酵素,使用活性化學探針並且搭配免疫沉澱分析法,我們成功地將DUSP14從複雜的蛋白質體中分離出來,同時也可以直接地偵測並分析此酵素的活性狀態。 | zh_TW |
| dc.description.abstract | Protein tyrosine phosphorylation is a common post-translational modification of proteins. It is a dynamic, reversible process which is regulated by protein tyrosine kinases (PTK) and protein tyrosine phosphatases (PTPs). PTP is an important enzyme family that regulates tyrosine phosphorylation status in cells. Although the protein levels of PTPs can be determined by mass spectrometry, the analysis cannot precisely profile the functional state of PTPs in living cells. To overcome the hurdle, activity-based protein profiling (ABPP) was introduced as a tool to profile PTP activities. Here, we have synthesized a series of maleimide-related probes using maleimide, maleate, and, fumarate as the recognition moiety. We evaluate the labeling efficiency and specificity of these probes using purified PTPs. We found the maleate-based chemical probes reacted with the catalytic residue of tyrosine phosphatse and labeled different tyrosine phosphatases. However, since these probes also labeled other non-PTPs, the specificities of these probes have to be further improved.
In addition, we have also used a 2-fluoromethyl phosphotyrosine (2-FMPT), which was developed previously in our lab, to establish an activity measuring system for dual-specific phosphatase (DUSP). Using DUSP14 as the model, we found the activity of DUSP14 can be detected directly in cell lysates through combination of activity probe-labeling and immunoprecipitation using a specific antibody against DUSP14. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-08T02:04:52Z (GMT). No. of bitstreams: 1 ntu-105-R02442022-1.pdf: 1590295 bytes, checksum: 23124b7193d2bf9dd25c38aa8aadc4bc (MD5) Previous issue date: 2016 | en |
| dc.description.tableofcontents | 目錄
目錄................................................................................................ I 圖表目錄 ............................................................................................II 中文摘要 ........................................................................................... III Abstract............................................................................................IV 緒論..................................................................................................1 Chapter 1. Development of maleic acid-based chemical probes for the analysis of protein tyrosine phosphatase 導論 ................................................................................................ 8 材料與方法....................................................................................... 10 實驗結果 ....................................................................................................18 討論 .................................................................................................... 23 Chapter 2. Establish the assay platform for dual-specificity phosphatase (DUSPs) 導論 .................................................................................................... 39 材料與方法 ..................................................................................................... 41 實驗結果 ..................................................................................................... 47 討論 .................................................................................................... 49 參考文獻 .................................................................................................... 61 | |
| dc.language.iso | zh-TW | |
| dc.title | 利用化學探針分析蛋白質酪胺酸磷酸水解酶 | zh_TW |
| dc.title | Application of chemical probes for the analysis of protein tyrosine phosphatase | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 104-1 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 羅禮強(Lee-Chiang Lo),林照雄(Chao-Hsiung Lin) | |
| dc.subject.keyword | 蛋白質酪胺酸磷酸水解?,活性化學探針,馬來醯亞胺,馬來酸,延胡索酸,雙專一性磷酸水解?, | zh_TW |
| dc.subject.keyword | protein tyrosine phosphatase,activity-based chemical probe,maleimide,maleate,fumarate,dual-specific phosphatase, | en |
| dc.relation.page | 65 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2016-02-15 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 生物化學暨分子生物學研究所 | zh_TW |
| Appears in Collections: | 生物化學暨分子生物學科研究所 | |
Files in This Item:
| File | Size | Format | |
|---|---|---|---|
| ntu-105-1.pdf Restricted Access | 1.55 MB | Adobe PDF |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
