請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/19531
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 余忠仁 | |
dc.contributor.author | Jung-Yien Chien | en |
dc.contributor.author | 簡榮彥 | zh_TW |
dc.date.accessioned | 2021-06-08T02:03:51Z | - |
dc.date.copyright | 2016-08-26 | |
dc.date.issued | 2016 | |
dc.date.submitted | 2016-03-21 | |
dc.identifier.citation | Five-year follow-up of a controlled trial of five 6-month regimens of chemotherapy for pulmonary tuberculosis. Hong Kong Chest Service/British Medical Research Council. Am Rev Respir Dis. 1987 Dec;136(6):1339-42.
Abuali M M, Katariwala R, LaBombardi V J. A comparison of the Sensititre(R) MYCOTB panel and the agar proportion method for the susceptibility testing of Mycobacterium tuberculosis. Eur J Clin Microbiol Infect Dis. 2012 May;31(5):835-9. Acar J F, Goldstein F W. Trends in bacterial resistance to fluoroquinolones. Clin Infect Dis. 1997 Jan;24 Suppl 1:S67-73. Achtman M. Evolution, population structure, and phylogeography of genetically monomorphic bacterial pathogens. Annu Rev Microbiol. 2008 62:53-70. Achtman M, Morelli G, Zhu P, Wirth T, Diehl I, Kusecek B, Vogler A J, Wagner D M, Allender C J, Easterday W R, Chenal-Francisque V, Worsham P, Thomson N R, Parkhill J, Lindler L E, Carniel E, Keim P. Microevolution and history of the plague bacillus, Yersinia pestis. Proc Natl Acad Sci U S A. 2004 Dec 21;101(51):17837-42. Achtman M, Zurth K, Morelli G, Torrea G, Guiyoule A, Carniel E. Yersinia pestis, the cause of plague, is a recently emerged clone of Yersinia pseudotuberculosis. Proc Natl Acad Sci U S A. 1999 Nov 23;96(24):14043-8. Adam H J, Hoban D J, Gin A S, Zhanel G G. Association between fluoroquinolone usage and a dramatic rise in ciprofloxacin-resistant Streptococcus pneumoniae in Canada, 1997-2006. Int J Antimicrob Agents. 2009 Jul;34(1):82-5. Allix-Beguec C, Harmsen D, Weniger T, Supply P, Niemann S. Evaluation and strategy for use of MIRU-VNTRplus, a multifunctional database for online analysis of genotyping data and phylogenetic identification of Mycobacterium tuberculosis complex isolates. J Clin Microbiol. 2008 Aug;46(8):2692-9. Althomsons S P, Cegielski J P. Impact of second-line drug resistance on tuberculosis treatment outcomes in the United States: MDR-TB is bad enough. Int J Tuberc Lung Dis. 2012 Oct;16(10):1331-4. Andersson A F, Banfield J F. Virus population dynamics and acquired virus resistance in natural microbial communities. Science. 2008 May 23;320(5879):1047-50. Angeby K A, Jureen P, Giske C G, Chryssanthou E, Sturegard E, Nordvall M, Johansson A G, Werngren J, Kahlmeter G, Hoffner S E, Schon T. Wild-type MIC distributions of four fluoroquinolones active against Mycobacterium tuberculosis in relation to current critical concentrations and available pharmacokinetic and pharmacodynamic data. J Antimicrob Chemother. 2010 May;65(5):946-52. Baker L, Brown T, Maiden M C, Drobniewski F. Silent nucleotide polymorphisms and a phylogeny for Mycobacterium tuberculosis. Emerg Infect Dis. 2004 Sep;10(9):1568-77. Banerjee A, Dubnau E, Quemard A, Balasubramanian V, Um K S, Wilson T, Collins D, de Lisle G, Jacobs W R, Jr. inhA, a gene encoding a target for isoniazid and ethionamide in Mycobacterium tuberculosis. Science. 1994 Jan 14;263(5144):227-30. Bang D, Andersen P H, Andersen A B, Thomsen V O. Isoniazid-resistant tuberculosis in Denmark: mutations, transmission and treatment outcome. J Infect. 2010 Jun;60(6):452-7. Basit A, Ahmad N, Khan A H, Javaid A, Syed Sulaiman S A, Afridi A K, Adnan A S, Haq I, Shah S S, Ahadi A, Ahmad I. Predictors of two months culture conversion in multidrug-resistant tuberculosis: findings from a retrospective cohort study. PLoS One. 2014 9(4):e93206. Bass J B, Jr., Farer L S, Hopewell P C, O'Brien R, Jacobs R F, Ruben F, Snider D E, Jr., Thornton G. Treatment of tuberculosis and tuberculosis infection in adults and children. American Thoracic Society and The Centers for Disease Control and Prevention. Am J Respir Crit Care Med. 1994 May;149(5):1359-74. Bastos M L, Hussain H, Weyer K, Garcia-Garcia L, Leimane V, Leung C C, Narita M, Pena J M, Ponce-de-Leon A, Seung K J, Shean K, Sifuentes-Osornio J, Van der Walt M, Van der Werf T S, Yew W W, Menzies D, Collaborative Group for Meta-analysis of Individual Patient Data in M-T. Treatment outcomes of patients with multidrug-resistant and extensively drug-resistant tuberculosis according to drug susceptibility testing to first- and second-line drugs: an individual patient data meta-analysis. Clin Infect Dis. 2014 Nov 15;59(10):1364-74. Becerra M C, Freeman J, Bayona J, Shin S S, Kim J Y, Furin J J, Werner B, Sloutsky A, Timperi R, Wilson M E, Pagano M, Farmer P E. Using treatment failure under effective directly observed short-course chemotherapy programs to identify patients with multidrug-resistant tuberculosis. Int J Tuberc Lung Dis. 2000 Feb;4(2):108-14. Berning S E. The role of fluoroquinolones in tuberculosis today. Drugs. 2001 61(1):9-18. Blumberg H M, Burman W J, Chaisson R E, Daley C L, Etkind S C, Friedman L N, Fujiwara P, Grzemska M, Hopewell P C, Iseman M D, Jasmer R M, Koppaka V, Menzies R I, O'Brien R J, Reves R R, Reichman L B, Simone P M, Starke J R, Vernon A A, American Thoracic Society C f D C, Prevention, the Infectious Diseases S. American Thoracic Society/Centers for Disease Control and Prevention/Infectious Diseases Society of America: treatment of tuberculosis. Am J Respir Crit Care Med. 2003 Feb 15;167(4):603-62. Bodmer T, Zurcher G, Imboden P, Telenti A. Mutation position and type of substitution in the beta-subunit of the RNA polymerase influence in-vitro activity of rifamycins in rifampicin-resistant Mycobacterium tuberculosis. J Antimicrob Chemother. 1995 Feb;35(2):345-8. Bottger E C. Drug-resistant tuberculosis. Lancet. 2001 Apr 21;357(9264):1288-9. Bottger E C. The ins and outs of Mycobacterium tuberculosis drug susceptibility testing. Clin Microbiol Infect. 2011 Aug;17(8):1128-34. Bottger E C, Springer B. Tuberculosis: drug resistance, fitness, and strategies for global control. Eur J Pediatr. 2008 Feb;167(2):141-8. Braibant M, Gilot P, Content J. The ATP binding cassette (ABC) transport systems of Mycobacterium tuberculosis. FEMS Microbiol Rev. 2000 Oct;24(4):449-67. Brenwald N P, Gill M J, Wise R. Prevalence of a putative efflux mechanism among fluoroquinolone-resistant clinical isolates of Streptococcus pneumoniae. Antimicrob Agents Chemother. 1998 Aug;42(8):2032-5. Brosch R, Gordon S V, Marmiesse M, Brodin P, Buchrieser C, Eiglmeier K, Garnier T, Gutierrez C, Hewinson G, Kremer K, Parsons L M, Pym A S, Samper S, van Soolingen D, Cole S T. A new evolutionary scenario for the Mycobacterium tuberculosis complex. Proc Natl Acad Sci U S A. 2002 Mar 19;99(6):3684-9. Brudey K, Driscoll J R, Rigouts L, Prodinger W M, Gori A, Al-Hajoj S A, Allix C, Aristimuno L, Arora J, Baumanis V, Binder L, Cafrune P, Cataldi A, Cheong S, Diel R, Ellermeier C, Evans J T, Fauville-Dufaux M, Ferdinand S, Garcia de Viedma D, Garzelli C, Gazzola L, Gomes H M, Guttierez M C, Hawkey P M, van Helden P D, Kadival G V, Kreiswirth B N, Kremer K, Kubin M, Kulkarni S P, Liens B, Lillebaek T, Ho M L, Martin C, Martin C, Mokrousov I, Narvskaia O, Ngeow Y F, Naumann L, Niemann S, Parwati I, Rahim Z, Rasolofo-Razanamparany V, Rasolonavalona T, Rossetti M L, Rusch-Gerdes S, Sajduda A, Samper S, Shemyakin I G, Singh U B, Somoskovi A, Skuce R A, van Soolingen D, Streicher E M, Suffys P N, Tortoli E, Tracevska T, Vincent V, Victor T C, Warren R M, Yap S F, Zaman K, Portaels F, Rastogi N, Sola C. Mycobacterium tuberculosis complex genetic diversity: mining the fourth international spoligotyping database (SpolDB4) for classification, population genetics and epidemiology. BMC Microbiol. 2006 6:23. Burman W J, Goldberg S, Johnson J L, Muzanye G, Engle M, Mosher A W, Choudhri S, Daley C L, Munsiff S S, Zhao Z, Vernon A, Chaisson R E. Moxifloxacin versus ethambutol in the first 2 months of treatment for pulmonary tuberculosis. Am J Respir Crit Care Med. 2006 Aug 1;174(3):331-8. Cabello F C. Heavy use of prophylactic antibiotics in aquaculture: a growing problem for human and animal health and for the environment. Environ Microbiol. 2006 Jul;8(7):1137-44. Campbell P J, Morlock G P, Sikes R D, Dalton T L, Metchock B, Starks A M, Hooks D P, Cowan L S, Plikaytis B B, Posey J E. Molecular detection of mutations associated with first- and second-line drug resistance compared with conventional drug susceptibility testing of Mycobacterium tuberculosis. Antimicrob Agents Chemother. 2011 May;55(5):2032-41. Canetti G, Froman S, Grosset J, Hauduroy P, Langerova M, Mahler H T, Meissner G, Mitchison D A, Sula L. Mycobacteria: Laboratory Methods for Testing Drug Sensitivity and Resistance. Bull World Health Organ. 1963 29:565-78. Cattamanchi A, Dantes R B, Metcalfe J Z, Jarlsberg L G, Grinsdale J, Kawamura L M, Osmond D, Hopewell P C, Nahid P. Clinical characteristics and treatment outcomes of patients with isoniazid-monoresistant tuberculosis. Clin Infect Dis. 2009 Jan 15;48(2):179-85. Cavusoglu C, Karaca-Derici Y, Bilgic A. In-vitro activity of rifabutin against rifampicin-resistant Mycobacterium tuberculosis isolates with known rpoB mutations. Clin Microbiol Infect. 2004 Jul;10(7):662-5. Cegielski J P, Dalton T, Yagui M, Wattanaamornkiet W, Volchenkov G V, Via L E, Van Der Walt M, Tupasi T, Smith S E, Odendaal R, Leimane V, Kvasnovsky C, Kuznetsova T, Kurbatova E, Kummik T, Kuksa L, Kliiman K, Kiryanova E V, Kim H, Kim C K, Kazennyy B Y, Jou R, Huang W L, Ershova J, Erokhin V V, Diem L, Contreras C, Cho S N, Chernousova L N, Chen M P, Caoili J C, Bayona J, Akksilp S, Global Preserving Effective T B T S I. Extensive drug resistance acquired during treatment of multidrug-resistant tuberculosis. Clin Infect Dis. 2014 Oct 15;59(8):1049-63. Centers for Disease Control and Prevention. Notice to readers: revised definition of extensively drug-resistant tuberculosis. MMWR Morb Mortal Wkly Rep 2006 55:1176. Chacon L, Lainez M, Rosales E, Mercado M, Caminero J A. Evolution in the resistance of Mycobacterium tuberculosis to anti-tuberculosis drugs in Nicaragua. Int J Tuberc Lung Dis. 2009 Jan;13(1):62-7. Chan R C, Hui M, Chan E W, Au T K, Chin M L, Yip C K, AuYeang C K, Yeung C Y, Kam K M, Yip P C, Cheng A F. Genetic and phenotypic characterization of drug-resistant Mycobacterium tuberculosis isolates in Hong Kong. J Antimicrob Chemother. 2007 May;59(5):866-73. Chang T M, Lu P L, Li H H, Chang C Y, Chen T C, Chang L L. Characterization of fluoroquinolone resistance mechanisms and their correlation with the degree of resistance to clinically used fluoroquinolones among Escherichia coli isolates. J Chemother. 2007 Oct;19(5):488-94. Chiang C Y, Enarson D A, Yu M C, Bai K J, Huang R M, Hsu C J, Suo J, Lin T P. Outcome of pulmonary multidrug-resistant tuberculosis: a 6-yr follow-up study. Eur Respir J. 2006 Nov;28(5):980-5. Chiang C Y, Hsu C J, Huang R M, Lin T P, Luh K T. Antituberculosis drug resistance among retreatment tuberculosis patients in a referral center in Taipei. J Formos Med Assoc. 2004 Jun;103(6):411-5. Chien H P, Yu M C, Ong T F, Lin T P, Luh K T. In vitro activity of rifabutin and rifampin against clinical isolates of Mycobacterium tuberculosis in Taiwan. J Formos Med Assoc. 2000 May;99(5):408-11. Chien J Y, Chen Y T, Shu C C, Lee J J, Wang J Y, Yu C J, Yang P C. Outcome correlation of smear-positivity for acid-fast bacilli at the fifth month of treatment in non-multidrug-resistant TB. Chest. 2013 Jun;143(6):1725-32. Chien J Y, Chen Y T, Wu S G, Lee J J, Wang J Y, Yu C J. Treatment outcome of patients with isoniazid mono-resistant tuberculosis. Clin Microbiol Infect. 2015 Jan;21(1):59-68. Chien J Y, Lai C C, Sheng W H, Yu C J, Hsueh P R. Pulmonary infection and colonization with nontuberculous mycobacteria, taiwan, 2000-2012. Emerg Infect Dis. 2014 Aug;20(8):1382-5. Chien J Y, Lai C C, Tan C K, Chien S T, Yu C J, Hsueh P R. Decline in rates of acquired multidrug-resistant tuberculosis after implementation of the directly observed therapy, short course (DOTS) and DOTS-Plus programmes in Taiwan. J Antimicrob Chemother. 2013 Aug;68(8):1910-6. China Tuberculosis Control C. The effect of tuberculosis control in China. Lancet. 2004 Jul 31-Aug 6;364(9432):417-22. CLSI (2011). Susceptibility Testing of Mycobacteria, Nocardiae, and other aerobic Actinomycetes; Approved Standard-Second Edition. CLSI document M24-A2. Wayne, PA, Clinical and Laboratory Standards Institute. CLSI (2011). Susceptibility testing of mycobacteria, nocardiae, and other aerobic actinomycetes; Approved standard, CLSI Document M24-A2., Clinical and Laboratory Standards Institute. Cole S T, Brosch R, Parkhill J, Garnier T, Churcher C, Harris D, Gordon S V, Eiglmeier K, Gas S, Barry C E, 3rd, Tekaia F, Badcock K, Basham D, Brown D, Chillingworth T, Connor R, Davies R, Devlin K, Feltwell T, Gentles S, Hamlin N, Holroyd S, Hornsby T, Jagels K, Krogh A, McLean J, Moule S, Murphy L, Oliver K, Osborne J, Quail M A, Rajandream M A, Rogers J, Rutter S, Seeger K, Skelton J, Squares R, Squares S, Sulston J E, Taylor K, Whitehead S, Barrell B G. Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature. 1998 Jun 11;393(6685):537-44. Collins C H, Uttley A H. In-vitro susceptibility of mycobacteria to ciprofloxacin. J Antimicrob Chemother. 1985 Nov;16(5):575-80. Comas I, Borrell S, Roetzer A, Rose G, Malla B, Kato-Maeda M, Galagan J, Niemann S, Gagneux S. Whole-genome sequencing of rifampicin-resistant Mycobacterium tuberculosis strains identifies compensatory mutations in RNA polymerase genes. Nat Genet. 2012 Jan;44(1):106-10. Cox H S, Sibilia K, Feuerriegel S, Kalon S, Polonsky J, Khamraev A K, Rusch-Gerdes S, Mills C, Niemann S. Emergence of extensive drug resistance during treatment for multidrug-resistant tuberculosis. N Engl J Med. 2008 Nov 27;359(22):2398-400. Crowle A J, Elkins N, May M H. Effectiveness of ofloxacin against Mycobacterium tuberculosis and Mycobacterium avium, and rifampin against M. tuberculosis in cultured human macrophages. Am Rev Respir Dis. 1988 May;137(5):1141-6. Cui Y, Li Y, Gorge O, Platonov M E, Yan Y, Guo Z, Pourcel C, Dentovskaya S V, Balakhonov S V, Wang X, Song Y, Anisimov A P, Vergnaud G, Yang R. Insight into microevolution of Yersinia pestis by clustered regularly interspaced short palindromic repeats. PLoS One. 2008 3(7):e2652. da Silva P E, Von Groll A, Martin A, Palomino J C. Efflux as a mechanism for drug resistance in Mycobacterium tuberculosis. FEMS Immunol Med Microbiol. 2011 Oct;63(1):1-9. Daley C L, Horsburgh C R, Jr. Editorial commentary: Treatment for multidrug-resistant tuberculosis: it's worse than we thought! Clin Infect Dis. 2014 Oct 15;59(8):1064-5. Dalhoff A. Comparative in vitro and in vivo activity of the C-8 methoxy quinolone moxifloxacin and the C-8 chlorine quinolone BAY y 3118. Clin Infect Dis. 2001 Mar 15;32 Suppl 1:S16-22. Dalton T, Cegielski P, Akksilp S, Asencios L, Campos Caoili J, Cho S N, Erokhin V V, Ershova J, Gler M T, Kazennyy B Y, Kim H J, Kliiman K, Kurbatova E, Kvasnovsky C, Leimane V, van der Walt M, Via L E, Volchenkov G V, Yagui M A, Kang H, Global P I, Akksilp R, Sitti W, Wattanaamornkiet W, Andreevskaya S N, Chernousova L N, Demikhova O V, Larionova E E, Smirnova T G, Vasilieva I A, Vorobyeva A V, Barry C E, 3rd, Cai Y, Shamputa I C, Bayona J, Contreras C, Bonilla C, Jave O, Brand J, Lancaster J, Odendaal R, Chen M P, Diem L, Metchock B, Tan K, Taylor A, Wolfgang M, Cho E, Eum S Y, Kwak H K, Lee J, Lee J, Min S, Degtyareva I, Nemtsova E S, Khorosheva T, Kyryanova E V, Egos G, Perez M T, Tupasi T, Hwang S H, Kim C K, Kim S Y, Lee H J, Kuksa L, Norvaisha I, Skenders G, Sture I, Kummik T, Kuznetsova T, Somova T, Levina K, Pariona G, Yale G, Suarez C, Valencia E, Viiklepp P. Prevalence of and risk factors for resistance to second-line drugs in people with multidrug-resistant tuberculosis in eight countries: a prospective cohort study. Lancet. 2012 Oct 20;380(9851):1406-17. De Rossi E, Arrigo P, Bellinzoni M, Silva P A, Martin C, Ainsa J A, Guglierame P, Riccardi G. The multidrug transporters belonging to major facilitator superfamily in Mycobacterium tuberculosis. Mol Med. 2002 Nov;8(11):714-24. De Rossi E, Branzoni M, Cantoni R, Milano A, Riccardi G, Ciferri O. mmr, a Mycobacterium tuberculosis gene conferring resistance to small cationic dyes and inhibitors. J Bacteriol. 1998 Nov;180(22):6068-71. Demangel C, Stinear T P, Cole S T. Buruli ulcer: reductive evolution enhances pathogenicity of Mycobacterium ulcerans. Nat Rev Microbiol. 2009 Jan;7(1):50-60. Devasia R A, Blackman A, Gebretsadik T, Griffin M, Shintani A, May C, Smith T, Hooper N, Maruri F, Warkentin J, Mitchel E, Sterling T R. Fluoroquinolone resistance in Mycobacterium tuberculosis: the effect of duration and timing of fluoroquinolone exposure. Am J Respir Crit Care Med. 2009 Aug 15;180(4):365-70. Devasia R A, Blackman A, May C, Eden S, Smith T, Hooper N, Maruri F, Stratton C, Shintani A, Sterling T R. Fluoroquinolone resistance in Mycobacterium tuberculosis: an assessment of MGIT 960, MODS and nitrate reductase assay and fluoroquinolone cross-resistance. J Antimicrob Chemother. 2009 Jun;63(6):1173-8. Dong Y, Xu C, Zhao X, Domagala J, Drlica K. Fluoroquinolone action against mycobacteria: effects of C-8 substituents on growth, survival, and resistance. Antimicrob Agents Chemother. 1998 Nov;42(11):2978-84. Dooley K E, Golub J, Goes F S, Merz W G, Sterling T R. Empiric treatment of community-acquired pneumonia with fluoroquinolones, and delays in the treatment of tuberculosis. Clin Infect Dis. 2002 Jun 15;34(12):1607-12. Durmaz R, Zozio T, Gunal S, Allix C, Fauville-Dufaux M, Rastogi N. Population-based molecular epidemiological study of tuberculosis in Malatya, Turkey. J Clin Microbiol. 2007 Dec;45(12):4027-35. Ershova J V, Kurbatova E V, Moonan P K, Cegielski J P. Acquired resistance to second-line drugs among persons with tuberculosis in the United States. Clin Infect Dis. 2012 Aug 31. Espinal M A, Kim S J, Suarez P G, Kam K M, Khomenko A G, Migliori G B, Baez J, Kochi A, Dye C, Raviglione M C. Standard short-course chemotherapy for drug-resistant tuberculosis: treatment outcomes in 6 countries. JAMA. 2000 May 17;283(19):2537-45. Espinal M A, Laserson K, Camacho M, Fusheng Z, Kim S J, Tlali R E, Smith I, Suarez P, Antunes M L, George A G, Martin-Casabona N, Simelane P, Weyer K, Binkin N, Raviglione M C. Determinants of drug-resistant tuberculosis: analysis of 11 countries. Int J Tuberc Lung Dis. 2001 Oct;5(10):887-93. Eurosurveillance editorial t. WHO revised definitions and reporting framework for tuberculosis. Euro Surveill. 2013 18(16):20455. Falzon D, Gandhi N, Migliori G B, Sotgiu G, Cox H, Holtz T H, Hollm-Delgado M G, Keshavjee S, Deriemer K, Centis R, D'Ambrosio L, Lange C, Bauer M, Menzies D. Resistance to fluoroquinolones and second-line injectable drugs: impact on MDR-TB outcomes. Eur Respir J. 2012 Oct 25. Falzon D, Gandhi N, Migliori G B, Sotgiu G, Cox H S, Holtz T H, Hollm-Delgado M G, Keshavjee S, DeRiemer K, Centis R, D'Ambrosio L, Lange C G, Bauer M, Menzies D, Collaborative Group for Meta-Analysis of Individual Patient Data in M-T. Resistance to fluoroquinolones and second-line injectable drugs: impact on multidrug-resistant TB outcomes. Eur Respir J. 2013 Jul;42(1):156-68. Falzon D, Jaramillo E, Schunemann H J, Arentz M, Bauer M, Bayona J, Blanc L, Caminero J A, Daley C L, Duncombe C, Fitzpatrick C, Gebhard A, Getahun H, Henkens M, Holtz T H, Keravec J, Keshavjee S, Khan A J, Kulier R, Leimane V, Lienhardt C, Lu C, Mariandyshev A, Migliori G B, Mirzayev F, Mitnick C D, Nunn P, Nwagboniwe G, Oxlade O, Palmero D, Pavlinac P, Quelapio M I, Raviglione M C, Rich M L, Royce S, Rusch-Gerdes S, Salakaia A, Sarin R, Sculier D, Varaine F, Vitoria M, Walson J L, Wares F, Weyer K, White R A, Zignol M. WHO guidelines for the programmatic management of drug-resistant tuberculosis: 2011 update. Eur Respir J. 2011 Sep;38(3):516-28. Farhat M R, Mitnick C D, Franke M F, Kaur D, Sloutsky A, Murray M, Jacobson K R. Concordance of Mycobacterium tuberculosis fluoroquinolone resistance testing: implications for treatment. Int J Tuberc Lung Dis. 2015 Mar;19(3):339-41. Fitton A. The quinolones. An overview of their pharmacology. Clin Pharmacokinet. 1992 22 Suppl 1:1-11. Gagneux S, Burgos M V, DeRiemer K, Encisco A, Munoz S, Hopewell P C, Small P M, Pym A S. Impact of bacterial genetics on the transmission of isoniazid-resistant Mycobacterium tuberculosis. PLoS Pathog. 2006 Jun;2(6):e61. Gagneux S, Long C D, Small P M, Van T, Schoolnik G K, Bohannan B J. The competitive cost of antibiotic resistance in Mycobacterium tuberculosis. Science. 2006 Jun 30;312(5782):1944-6. Gallini A, Degris E, Desplas M, Bourrel R, Archambaud M, Montastruc J L, Lapeyre-Mestre M, Sommet A. Influence of fluoroquinolone consumption in inpatients and outpatients on ciprofloxacin-resistant Escherichia coli in a university hospital. J Antimicrob Chemother. 2010 Dec;65(12):2650-7. Gardy J L, Johnston J C, Ho Sui S J, Cook V J, Shah L, Brodkin E, Rempel S, Moore R, Zhao Y, Holt R, Varhol R, Birol I, Lem M, Sharma M K, Elwood K, Jones S J, Brinkman F S, Brunham R C, Tang P. Whole-genome sequencing and social-network analysis of a tuberculosis outbreak. N Engl J Med. 2011 Feb 24;364(8):730-9. Gay J D, DeYoung D R, Roberts G D. In vitro activities of norfloxacin and ciprofloxacin against Mycobacterium tuberculosis, M. avium complex, M. chelonei, M. fortuitum, and M. kansasii. Antimicrob Agents Chemother. 1984 Jul;26(1):94-6. Gillespie S H, Basu S, Dickens A L, O'Sullivan D M, McHugh T D. Effect of subinhibitory concentrations of ciprofloxacin on Mycobacterium fortuitum mutation rates. J Antimicrob Chemother. 2005 Aug;56(2):344-8. Gillespie S H, Crook A M, McHugh T D, Mendel C M, Meredith S K, Murray S R, Pappas F, Phillips P P, Nunn A J, Consortium R E. Four-month moxifloxacin-based regimens for drug-sensitive tuberculosis. N Engl J Med. 2014 Oct 23;371(17):1577-87. Gillespie S H, Kennedy N. Fluoroquinolones: a new treatment for tuberculosis? Int J Tuberc Lung Dis. 1998 Apr;2(4):265-71. Ginsburg A S, Grosset J H, Bishai W R. Fluoroquinolones, tuberculosis, and resistance. Lancet Infect Dis. 2003 Jul;3(7):432-42. Ginsburg A S, Hooper N, Parrish N, Dooley K E, Dorman S E, Booth J, Diener-West M, Merz W G, Bishai W R, Sterling T R. Fluoroquinolone resistance in patients with newly diagnosed tuberculosis. Clin Infect Dis. 2003 Dec 1;37(11):1448-52. Ginsburg A S, Woolwine S C, Hooper N, Benjamin W H, Jr., Bishai W R, Dorman S E, Sterling T R. The rapid development of fluoroquinolone resistance in M. tuberculosis. N Engl J Med. 2003 Nov 13;349(20):1977-8. Goble M, Iseman M D, Madsen L A, Waite D, Ackerson L, Horsburgh C R, Jr. Treatment of 171 patients with pulmonary tuberculosis resistant to isoniazid and rifampin. N Engl J Med. 1993 Feb 25;328(8):527-32. Gollnick N S, Mitchell R M, Baumgart M, Janagama H K, Sreevatsan S, Schukken Y H. Survival of Mycobacterium avium subsp. paratuberculosis in bovine monocyte-derived macrophages is not affected by host infection status but depends on the infecting bacterial genotype. Vet Immunol Immunopathol. 2007 Dec 15;120(3-4):93-105. Gordon S V, Heym B, Parkhill J, Barrell B, Cole S T. New insertion sequences and a novel repeated sequence in the genome of Mycobacterium tuberculosis H37Rv. Microbiology. 1999 Apr;145 ( Pt 4):881-92. Gosling R D, Uiso L O, Sam N E, Bongard E, Kanduma E G, Nyindo M, Morris R W, Gillespie S H. The bactericidal activity of moxifloxacin in patients with pulmonary tuberculosis. Am J Respir Crit Care Med. 2003 Dec 1;168(11):1342-5. Goyet S, Vlieghe E, Lim K, van Griensven J, Borand L, Thong P, Rammaert B, Marcy O, Tarantola A. Fluoroquinolone resistance and Mycobacterium tuberculosis: CAP guidelines play an important role. Int J Tuberc Lung Dis. 2014 May;18(5):628-30. Griffith D E, Aksamit T, Brown-Elliott B A, Catanzaro A, Daley C, Gordin F, Holland S M, Horsburgh R, Huitt G, Iademarco M F, Iseman M, Olivier K, Ruoss S, von Reyn C F, Wallace R J, Jr., Winthrop K, Subcommittee A T S M D, American Thoracic S, Infectious Disease Society of A. An official ATS/IDSA statement: diagnosis, treatment, and prevention of nontuberculous mycobacterial diseases. Am J Respir Crit Care Med. 2007 Feb 15;175(4):367-416. Grissa I, Vergnaud G, Pourcel C. CRISPRcompar: a website to compare clustered regularly interspaced short palindromic repeats. Nucleic Acids Res. 2008 Jul 1;36(Web Server issue):W145-8. Grossman R F, Hsueh P R, Gillespie S H, Blasi F. Community-acquired pneumonia and tuberculosis: differential diagnosis and the use of fluoroquinolones. Int J Infect Dis. 2014 Jan;18:14-21. Han L L, Sloutsky A, Canales R, Naroditskaya V, Shin S S, Seung K J, Timperi R, Becerra M C. Acquisition of drug resistance in multidrug-resistant Mycobacterium tuberculosis during directly observed empiric retreatment with standardized regimens. Int J Tuberc Lung Dis. 2005 Jul;9(7):818-21. Hawkey P M. Mechanisms of quinolone action and microbial response. J Antimicrob Chemother. 2003 May;51 Suppl 1:29-35. Hegde S S, Vetting M W, Roderick S L, Mitchenall L A, Maxwell A, Takiff H E, Blanchard J S. A fluoroquinolone resistance protein from Mycobacterium tuberculosis that mimics DNA. Science. 2005 Jun 3;308(5727):1480-3. Hillemann D, Richter E, Rusch-Gerdes S. Use of the BACTEC Mycobacteria Growth Indicator Tube 960 automated system for recovery of Mycobacteria from 9,558 extrapulmonary specimens, including urine samples. J Clin Microbiol. 2006 Nov;44(11):4014-7. Ho J, Jelfs P, Sintchenko V. Fluoroquinolone resistance in non-multidrug-resistant tuberculosis-a surveillance study in New South Wales, Australia, and a review of global resistance rates. Int J Infect Dis. 2014 Sep;26:149-53. Holt K E, Parkhill J, Mazzoni C J, Roumagnac P, Weill F X, Goodhead I, Rance R, Baker S, Maskell D J, Wain J, Dolecek C, Achtman M, Dougan G. High-throughput sequencing provides insights into genome variation and evolution in Salmonella Typhi. Nat Genet. 2008 Aug;40(8):987-93. Hooper D C. Emerging mechanisms of fluoroquinolone resistance. Emerg Infect Dis. 2001 Mar-Apr;7(2):337-41. Hoopes A J, Kammerer J S, Harrington T A, Ijaz K, Armstrong L R. Isoniazid-monoresistant tuberculosis in the United States, 1993 to 2003. Arch Intern Med. 2008 Oct 13;168(18):1984-92. Huang S F, Su W J, Dou H Y, Feng J Y, Lee Y C, Huang R M, Lin C H, Hwang J J, Lee J J, Yu M C. Association of Mycobacterium tuberculosis genotypes and clinical and epidemiological features - a multi-center study in Taiwan. Infect Genet Evol. 2012 Jan;12(1):28-37. Huang T S, Kunin C M, Shin-Jung Lee S, Chen Y S, Tu H Z, Liu Y C. Trends in fluoroquinolone resistance of Mycobacterium tuberculosis complex in a Taiwanese medical centre: 1995-2003. J Antimicrob Chemother. 2005 Dec;56(6):1058-62. Huyen M N, Cobelens F G, Buu T N, Lan N T, Dung N H, Kremer K, Tiemersma E W, van Soolingen D. Epidemiology of isoniazid resistance mutations and their effect on tuberculosis treatment outcomes. Antimicrob Agents Chemother. 2013 Aug;57(8):3620-7. Jabeen K, Shakoor S, Hasan R. Fluoroquinolone-resistant tuberculosis: implications in settings with weak healthcare systems. Int J Infect Dis. 2015 Mar;32:118-23. Jacobs M R. Activity of quinolones against mycobacteria. Drugs. 1995 49 Suppl 2:67-75. Jacobson K R, Tierney D B, Jeon C Y, Mitnick C D, Murray M B. Treatment outcomes among patients with extensively drug-resistant tuberculosis: systematic review and meta-analysis. Clin Infect Dis. 2010 Jul 1;51(1):6-14. Jindani A, Harrison T S, Nunn A J, Phillips P P, Churchyard G J, Charalambous S, Hatherill M, Geldenhuys H, McIlleron H M, Zvada S P, Mungofa S, Shah N A, Zizhou S, Magweta L, Shepherd J, Nyirenda S, van Dijk J H, Clouting H E, Coleman D, Bateson A L, McHugh T D, Butcher P D, Mitchison D A, Team R T. High-dose rifapentine with moxifloxacin for pulmonary tuberculosis. N Engl J Med. 2014 Oct 23;371(17):1599-608. Jo K W, Lee S D, Kim W S, Kim D S, Shim T S. Treatment outcomes and moxifloxacin susceptibility in ofloxacin-resistant multidrug-resistant tuberculosis. Int J Tuberc Lung Dis. 2014 Jan;18(1):39-43. Johansson A, Farlow J, Larsson P, Dukerich M, Chambers E, Bystrom M, Fox J, Chu M, Forsman M, Sjostedt A, Keim P. Worldwide genetic relationships among Francisella tularensis isolates determined by multiple-locus variable-number tandem repeat analysis. J Bacteriol. 2004 Sep;186(17):5808-18. Johnston J C, Shahidi N C, Sadatsafavi M, Fitzgerald J M. Treatment outcomes of multidrug-resistant tuberculosis: a systematic review and meta-analysis. PLoS One. 2009 4(9):e6914. Jou R, Chiang C Y, Huang W L. Distribution of the Beijing family genotypes of Mycobacterium tuberculosis in Taiwan. J Clin Microbiol. 2005 Jan;43(1):95-100. Jugheli L, Bzekalava N, de Rijk P, Fissette K, Portaels F, Rigouts L. High level of cross-resistance between kanamycin, amikacin, and capreomycin among Mycobacterium tuberculosis isolates from Georgia and a close relation with mutations in the rrs gene. Antimicrob Agents Chemother. 2009 Dec;53(12):5064-8. Just P M. Overview of the fluoroquinolone antibiotics. Pharmacotherapy. 1993 Mar-Apr;13(2 Pt 2):4S-17S. Kam K M, Yip C W, Cheung T L, Tang H S, Leung O C, Chan M Y. Stepwise decrease in moxifloxacin susceptibility amongst clinical isolates of multidrug-resistant Mycobacterium tuberculosis: correlation with ofloxacin susceptibility. Microb Drug Resist. 2006 Spring;12(1):7-11. Kambli P, Ajbani K, Sadani M, Nikam C, Shetty A, Udwadia Z, Rodwell T C, Catanzaro A, Rodrigues C. Correlating Minimum Inhibitory Concentrations of ofloxacin and moxifloxacin with gyrA mutations using the genotype MTBDRsl assay. Tuberculosis (Edinb). 2015 Mar;95(2):137-41. Kamerbeek J, Schouls L, Kolk A, van Agterveld M, van Soolingen D, Kuijper S, Bunschoten A, Molhuizen H, Shaw R, Goyal M, van Embden J. Simultaneous detection and strain differentiation of Mycobacterium tuberculosis for diagnosis and epidemiology. J Clin Microbiol. 1997 Apr;35(4):907-14. Karumbi J, Garner P. Directly observed therapy for treating tuberculosis. Cochrane Database Syst Rev. 2015 5:Cd003343. Keim P, Price L B, Klevytska A M, Smith K L, Schupp J M, Okinaka R, Jackson P J, Hugh-Jones M E. Multiple-locus variable-number tandem repeat analysis reveals genetic relationships within Bacillus anthracis. J Bacteriol. 2000 May;182(10):2928-36. Kim S J. Drug-susceptibility testing in tuberculosis: methods and reliability of results. Eur Respir J. 2005 Mar;25(3):564-9. Kim Y H, Suh G Y, Chung M P, Kim H, Kwon O J, Lim S Y, Lim S Y, Koh W J. Treatment of isoniazid-resistant pulmonary tuberculosis. BMC Infect Dis. 2008 8:6. King D E, Malone R, Lilley S H. New classification and update on the quinolone antibiotics. Am Fam Physician. 2000 May 1;61(9):2741-8. Klevytska A M, Price L B, Schupp J M, Worsham P L, Wong J, Keim P. Identification and characterization of variable-number tandem repeats in the Yersinia pestis genome. J Clin Microbiol. 2001 Sep;39(9):3179-85. Klyachko K A, Neyfakh A A. Paradoxical enhancement of the activity of a bacterial multidrug transporter caused by substitutions of a conserved residue. J Bacteriol. 1998 Jun;180(11):2817-21. Kocagoz T, Hackbarth C J, Unsal I, Rosenberg E Y, Nikaido H, Chambers H F. Gyrase mutations in laboratory-selected, fluoroquinolone-resistant mutants of Mycobacterium tuberculosis H37Ra. Antimicrob Agents Chemother. 1996 Aug;40(8):1768-74. Lai C C, Hsueh P R. Diseases caused by nontuberculous mycobacteria in Asia. Future Microbiol. 2014 Jan;9(1):93-106. Lai C C, Tan C K, Huang Y T, Chou C H, Hung C C, Yang P C, Luh K T, Hsueh P R. Extensively drug-resistant Mycobacterium tuberculosis during a trend of decreasing drug resistance from 2000 through 2006 at a Medical Center in Taiwan. Clin Infect Dis. 2008 Oct 1;47(7):e57-63. Lalloo U G. Short-course Bangladesh regimen for multidrug-resistant tuberculosis: a step in the right direction? Int J Tuberc Lung Dis. 2014 Oct;18(10):1137-8. Lambregts-van Weezenbeek C S, Veen J. Control of drug-resi | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/19531 | - |
dc.description.abstract | 結核病(tuberculosis, TB),是台灣地區人數最多的法定傳染性疾病,也是威脅全球的重大公衛問題。其中,抗藥性結核病的治療,包括單一抗藥結核病(mono resistant tuberculosis)、多重抗藥性結核病(multidrug-resistant tuberculosis, MDR-TB,指同時對isoniazid 和rifampicin抗藥之結核病)、廣泛抗藥性結核病(extensively drug resistant tuberculosis, XDR-TB,指對任一種fluoroquinolone,及任何一種注射型第二線抗結核藥物具抗藥性的MDR-TB) 及 超級抗藥性結核病(extremely drug resistant tuberculosis, XXDR-TB,亦稱為 totally drug resistant tuberculosis全抗藥型結核病)的防治更是棘手的問題。
了解抗藥性結核病的發生機轉、危險因子及有效之防治策略是一個十分重要的議題。結核菌的複雜抗藥機轉,病患不當的服用藥物,醫療照護機構不適當之處方及療程,導致藥物不足篩選出抗藥性結核菌株,加上實驗室診斷抗藥性結核病的延遲,抗藥性結核病的治療效果不彰,增加抗藥性病菌群聚傳播的機會,可能是抗藥性結核病不易控制的原因。 針對改善病人服藥順從性,世界衛生組織大力推薦的直接觀察治療法(directly observed therapy strategy, DOTS)是全世界防治結核的重要策略。然而,許多研究仍未證實DOTS策略具有顯著的益處。台灣疾病管制署則於2006年4月開始推動全國性DOTS計畫,更於2007年5月成立「MDR-TB醫療照護體系」,建立五個MDR-TB團隊,針對MDR-TB患者,進行分區集中治療照護並實施進階DOTS策略(DOTS-Plus),期待有效控制台灣的MDR-TB疫情。 Isoniazid單一抗藥結核病是台灣地區人數最多的抗藥性結核病,但治療策略尚無共識。MDR-TB的治療預後不佳,台灣推動集中治療及DOTS-Plus策略的效果如何,仍待評估。Fluoroquinolones是治療MDR-TB最重要的藥物之一,但我們對於其抗藥基因突變及新一代fluoroquinolones,如moxifloxacin,於治療上之角色所知有限。因此,我們將分三個部份進行研究設計與分析: 在研究的第一個部份,我們將針對isoniazid單一抗藥結核病患,整合台灣北中南東多中心,進行治療策略分析。於2004 to 2011年間,共收集395名於臺大醫院、臺大雲林分院、衛生福利部胸腔病院、慈濟醫院接受治療的isoniazid單一抗藥結核病患者進行研究。 在研究的第二個部份,針對MDR-TB進行研究,分為兩個部分進行:(1)針對台灣地區MDR-TB、XDR-TB及XXDR-TB的相關危險因子及盛行率進行流行病學及防治成效研究。(2) 評估使用薄膜微陣列技術(BluePoint MycoID plus kit),搭配液態培養基系統(BACTEC Mycobacterium Growth Indicator Tube, MGIT),快速鑑定包括MDR-TB在內的抗藥性結核病的準確性。 在研究的第三個部份,針對fluoroquinolones抗藥結核病,將分為四個部分進行:(1)分析南臺灣fluoroquinolones抗藥MDR-TB的流行病學及防治成效。(2)分析北台灣及南台灣,fluoroquinolones抗藥及二線藥抗藥結核病之流行病學及防治成效。(3)探討基因體變異對ofloxacin/moxifloxacin抗藥程度的影響。(4)最後一部分,將探討新一代moxifloxacin抗藥程度及fluoroquinolones抗藥基因變異,對使用moxifloxacin治療ofloxacin抗藥MDR-TB之影響 第一個部份的研究發現:於isoniazid單一抗藥結核病,全程使用isoniazid和未使用isoniazid的治療處方,有相似的治療成功率(分別為83.1% 及 83.0%, P=1.000)。然而,中斷使用rifampin的患者較全程使用rifampin的患者有較高的不良預後發生率(分別為37.0% 及 14.3%, P<0.001)。若於中斷使用rifampin的患者使用新一代 fluoroquinolone,則可以顯著降低不良預後發生率(分別為60.0% 及 12.5%, P=0.003)。多變數存活分析也證實,中斷使用rifampin(hazard ratio=1.91)是不良預後的獨立危險因子。 第二個部份的研究發現: (1)從2004年到2011年,在全面實施DOTS及DOTS-Plus 治療計畫後,南臺灣地區isoniazid、rifampicin抗藥及MDR-TB/XDR-TB發生率顯著的減少。我們發現,獲得性MDR-TB的比率下降,是造成MDR-TB的比率持續下降的主因,然而,原發性MDR-TB的比率並未顯著下降。 (2)藉由收集950個MGIT陽性臨床檢體,我們發現,相較於傳統使用subculture的方法鑑定MGIT陽性培養管,採用薄膜微陣列技術的BluePoint MycoID plus kit有較佳的敏感度,能較準確的鑑定出非結核分枝桿菌(92.9% v.s. 96.3%, respectively; P=0.001)。同時,BluePoint MycoID plus kit鑑定出rifampicin及isoniazid抗藥MTB的敏感度分別可達100%及82.6%。然而,因為死菌的干擾,對於結核菌的鑑定,雖然BluePoint MycoID plus kit較subculture有較高的敏感度,但特異性較差。 在第三個部份的研究發現: (1)從2007年DOTS-Plus計劃的執行後,原發性(P=0.019)與續發性(P=0.047) fluoroquinolones抗藥MDR-TB的發生率與XDR-TB(P=0.055)的發生率都顯著下降,兩者皆和DOTS-Plus計劃的執行涵蓋率呈現顯著的負相關。 (2)在2004至2011年期間,即使含fluoroquinolones及其他二線藥的處方逐漸增加,fluoroquinolones及其他二線藥抗藥結核病的發生率仍逐年降低。 (3)在55株ofloxacin抗藥,56株ofloxacin敏感之MDR-TB菌株進行gyrA及gyrB基因全區段定序發現:出現gyrA基因 D94G/D94N突變及gyrB基因 G512R突變和ofloxacin 及moxifloxacin 抗藥有強烈關聯。然而,部分fluoroquinolones敏感的East-Asian (Beijing) 及 Indo-Oceanic 基因型菌株,亦帶有這些突變。因此,若在East-Asian (Beijing) 及 Indo-Oceanic 基因型菌株盛行的地區,運用分子檢測技術偵測fluoroquinolones抗藥的特異度會較差,需要特別加以注意。除此之外,我們進一步發現gyrA基因D94G、D94N突變 及 gyrB G512R基因突變和高度moxifloxacin抗藥有相當大的相關,相反的,gyrA基因D94A突變,反而經常導致低度moxifloxacin抗藥。進一步運用全基因體定序及藥物輸出幫浦基因變異分析,我們發現,ofloxacin抗藥及敏感菌株間,efflux pump 基因變異的分布顯著不同,暗示efflux pump相關基因的突變,可能和ofloxacin抗藥相關,但仍需進一步進行確認。 (4) 2006年4月到2013年12月間,我們從衛生福利部胸腔病院,篩選81位罹患ofloxacin抗藥MDR-TB患進行研究。以傳統瓊酯比例法發現的ofloxacin抗藥MDR-TB,69.1%仍然是moxifloxacin敏感或低度抗藥(minimum inhibition concentration, MIC≤2.0 mg/L)。在moxifloxacin敏感及低度抗藥的患者,使用moxifloxacin治療,能顯著縮短培養陰轉所需要的時間,但在MIC>2.0 mg/L的高度抗藥患者,moxifloxacin治療無法提高治療成功率及縮短培養陰轉所需要的時間。 持續使用rifampicin是成功治療isoniazid單一抗藥結核病的關鍵,面對無法忍受rifampicin的患者,應使用替代藥物,如新一代fluoroquinolones,以改善預後,是否使用rifabutin取代rifampicin 能達到更佳的效果,還須加以研究。我們也發現,採用DOTS及DOTS-Plus治療計畫,能有效降低fluoroquinolones抗藥結核病,MDR-TB, XDR-TB及XXDR-TB的發生率。同時,我們發現雖然對二線藥的暴露可能會增加對這些藥物抗藥的風險,然而,藉由持續進行治療處方的監測及檢討,搭配執行DOTS/DOTS-plus計畫,確保適當用藥及治療療程,仍可以有效預防二線藥抗藥的產生和減少XDR-TB的風險。 最後,我們發現特定gyrA/gyrB基因突變和ofloxacin及moxifloxacin抗藥有強烈關聯,可以做為設計快速分子檢定的標的,但此一標的在East-Asian (Beijing) 及 Indo-Oceanic 基因型菌株盛行的地區,診斷的特異度會較差,需要加以注意。我們更發現,以傳統瓊酯比例法發現的ofloxacin抗藥MDR-TB,高達69.1%仍然是moxifloxacin敏感或低度抗藥的患者,給予moxifloxacin治療,仍有助於改善治療預後,因此,建議在進行moxifloxacin抗藥檢驗時,應同時檢驗低濃度(0.5 mg/L)及高濃度(2.0 mg/L)抗藥,於判斷是否給予moxifloxacin治療時,可以使用MIC≤2.0 mg/L當作參考的切點。 總之,我們的系列研究發現,rifampicin在isoniazid單一抗藥結核病的治療上具有舉足輕重的角色。證實DOTS及DOTS-Plus治療計畫確實能降低抗藥性結核病的發生率,建議未來台灣公共衛生政策的擬定上,應持續加以落實。在治療MDR-TB時,建議未來實驗室,能提供新一代fluoroquinolones,如moxifloxacin的最小抑菌濃度及抗藥相關突變的分子檢測,做為臨床醫師處方藥物的重要參考,以達到良好的治療效果,避免進一步的抗藥發生。期待經過大家的努力,未來的台灣,不再是一個抗藥性結核病盛行的國家。 | zh_TW |
dc.description.abstract | Infection caused by Mycobacterium tuberculosis (MTB) continues to be a major public health burden worldwide. Drug resistance rates are one of the most important aspects in the national tuberculosis (TB) control program, especially multidrug-resistant (MDR), which is defined as TB that is resistant to isoniazid and rifampin, fluoroquinolone resistant MDR-TB and extensively drug-resistant (XDR) TB, an MDR-TB isolate that is resistant to any fluoroquinolone and any injectable SLDs (capreomycin, kanamycin, or amikacin).
Isoniazid (INH) mono-resistance is the most common first-line drug resistance in TB, but its treatment outcome remains unclear. In the first part of study, we identified 395 INH mono-resistant TB from four hospitals in Taiwan during January 2004 to October 2011. The treatment success rate was similar in patients with high-level and low-level INH resistant TB and among those taking anti-TB treatment with and without INH. Patients without rifampicin interruption had lower risk of unfavorable outcome and supplementation with a new-generation fluoroquinolone improved treatment success. The presence of cavitary lesions was significantly associated with a higher relapse rate and extended treatment of 7-9, 10-12, and >12 months had less relapse than six-month treatment. Multivariate Cox proportional hazards analysis revealed that co-morbidity with cancer and rifampicin interruption were independent factors associated with unfavorable outcomes. We found treatment throughout with rifampicin and extended treatment for cavitary disease are crucial for improving outcomes in patients with INH mono-resistant TB. In the second part of study, we investigated the impact of the Directly-Observed- Therapy-Strategy (DOTS) and DOTS-Plus strategies on resistance profiles among tuberculosis. We performed a retrospective analysis of resistance profiles among isolates of MTB obtained from 2160 consecutive patients with culture-confirmed pulmonary TB during 2005 to 2011 at chest hospital in southern Taiwan. Trend analysis revealed that the rates of acquired MDR-TB were significantly lower after implementation of the DOTS and DOTS-Plus programs (P<0.01). The rates of resistance to rifampicin, isoniazid, ofloxacin, moxifloxacin, levofloxacin, and para-aminosalicylic acid also significantly decreased during the study period. However, the rates of primary MDR-TB remained stable (P =0.11). Multivariate logistic regression analysis showed that age ranging from 45 to 64 years, positive acid-fast stain results at the initiation of treatment, and treatment without DOTS were independent risk factors associated with acquired MDR-TB. We further conducted a study to investigate the resistance of second-line drugs (SLDs) among 6,035 non-duplicated MTB isolates from 2004 to 2011 at National Taiwan University Hospital and Chest hospital. There was a significant decrease (all P-values <0.01) in the prevalence of isolates that were resistant to fluoroquinolons, injectable SLDs, and orally administered SLDs, and MDR and XDR isolates over time. There was a significant increase in the coverage rate of DOTS/DOTS-Plus programs and that of administering appropriate first-line and second-line regimens (all P <0.01). The decline in prevalence of resistance to SLDs was negatively correlated with the rise in rates of administering appropriate regimens as well as the DOTS/DOTS-Plus programs, but not with the increase in usage of second-line regimens, indicating the implementation of DOTS/DOTS-Plus programs with appropriate regimens was effective at preventing SLD-resistant and XDR-TB. Fluoroquinolones (FQs) are used as second-line drugs for the treatment of TB and exert their bactericidal effects by inhibiting mycobacterial DNA gyrase activity, which prevents bacterial DNA from unwinding and replicating. Moxifloxacin (MFX), a fourth-generation fluoroquinolone, has been shown to have better activity against MTB than ofloxacin (OFX) and is recommended by the World Health Organization (WHO) for the treatment of MDR-TB. Unfortunately, the widespread use of fluoroquinolone to treat bacterial infections has led to the emergence of fluoroquinolone-resistant MDR-TB and XDR-TB, thereby complicating patient care. In the third part of study, we evaluated the association between level of resistance to OFX and MFX and mutations of the entire gyrA and gyrB genes in MTB isolates. A total of 111 isolates were categorized into OFX-susceptible (minimum inhibitory concentrations, MIC<=2 mg/L), low- (MIC 4-8 mg/L) and high-level (MIC>=16 mg/L) OFX-resistant isolates, and MFX-susceptible (MIC<=0.5 mg/L), low- (MIC 1-2 mg/L) and high-level (MIC>=4 mg/L) MFX-resistant isolates. Resistance-associated mutations inside the gyrA gene were found in 30.2% of OFX-susceptible, 72.5% and 72.2% of low- and high-level OFX-resistant isolates, and in 28.6% of MFX-susceptible, 58.1% and 83.9% of low- and high-level MFX-resistant isolates. Compared with OFX-susceptible, low- and high-level OFX-resistant isolates had a significantly higher prevalence of mutations at gyrA codons 88–94 and a higher prevalence of the gyrB G512R mutation. Similarly, compared with MFX-susceptible, low- and high-level MFX-resistant isolates had a significantly higher prevalence of mutations at gyrA codons 88–94 as well as gyrB G512R mutation. D94G and D94N mutations in gyrA and the G512R mutation in gyrB were correlated with high-level MFX resistance while the D94A mutation was associated with low-level MFX resistance. However, some OFX- or MFX-susceptible East Asian (Beijing) and Indo-Oceanic strains also harbored those particular mutations, implying that molecular techniques to detect FQ resistance may be less specific in areas with a high prevalence of those strains. MFX has lower minimum inhibitory concentration (MIC) than older-generation fluoroquinolones, such as OFX or ciprofloxacin, and it has been proposed as potentially effective drug to treat OFX-resistant MDR-TB. However, there are still no clinical study to evaluate how levels of MFX resistance influence the treatment outcomes of using MFX in treatment of OFX-resistant MDR-TB. From April 2006 to December 2013, we investigated 81 patients with OFX-resistant MDR-TB and followed-up for two years after treatment. Treatment with MFX had significantly higher treatment success rate and earlier culture-conversion (P=0.004), especially among MFX-susceptible and low-level MFX resistant, but not among high-level MDR-TB. In conclusion, we found that most (69.1%, 56/81) OFX-resistant MDR-TB determined by conventional susceptibility testing were still susceptible or low-level resistant to MFX and benefited from treatment with MFX. The results suggested MFX could be used with other active antituberculosis agents to treat OFX-resistant MDR-TB based on a breakpoint of 2.0 mg/L and also support the new WHO recommendations for testing MFX susceptibility at 2 critical concentrations in the management of MDR-TB. | en |
dc.description.provenance | Made available in DSpace on 2021-06-08T02:03:51Z (GMT). No. of bitstreams: 1 ntu-105-D01421008-1.pdf: 7760327 bytes, checksum: 7d7588a7b63ff21c05bcea7db0efbbdd (MD5) Previous issue date: 2016 | en |
dc.description.tableofcontents | 口試委員會審定書 i
誌 謝 ii 中文摘要 iii 英文摘要 vi 目 錄 viii 壹、 緒論 1 一、 研究動機及背景 1 二、 研究問題及重要性 13 三、 研究的假說與目的 15 貳、 研究方法與材料 20 (1)、Isoniazid單一抗藥結核病的治療策略,多中心回溯性研究 20 (2-1)、南臺灣MDR-TB、XDR-TB、XXDR-TB的流行病學及危險因子與DOTS/DOTS - Plus計劃之成效分析 21 (2-2)、評估使用液態培養基搭配薄膜微陣列,快速鑑定抗藥性結核病的可行性 22 (3-1)、南臺灣Fluoroquinolones抗藥MDR-TB之流行病學與DOT S- Plus計劃之成效分析 23 (3-2)、Fluoroquinolones及二線藥抗藥結核病之流行病學及危險因子分析 24 (3-3)、探討基因體變異對ofloxacin/moxifloxacin抗藥程度的影響 24 (3-4)、探討moxifloxacin抗藥程度及抗藥基因變異,對使用moxifloxacin治療ofloxacin抗藥MDR-TB之影響 32 參、 結果 36 第(1)部分 36 第(2-1)部分 36 第(2-2)部分 38 第(3-1)部分 39 第(3-2)部分 40 第(3-3)部分 41 第(3-4)部分 47 肆、 討論 50 伍、 展望 65 陸、 論文英文簡述 74 柒、 參考文獻 79 捌、 圖表 105 表一、Isoniazid 單一抗藥結核病患者基本資料 105 表二、預測治療Isoniazid 單一抗藥結核病患者不良預後之因素分析 107 表三、多重抗藥性結核病(MDR-TB)及廣泛抗藥性結核病(XDR-TB)患者基本資料表 108 表四、 超級廣泛抗藥性(XXDR-TB)患者臨床資料 109 表五、DOTS/DOTS-Plus和多重抗藥性結核病(MDR-TB)及廣泛抗藥性結核病(XDR-TB)發生率關係表 110 表六、發生獲得性(acquired)多重抗藥性結核病(MDR-TB)及獲得性廣泛抗藥性結核病(XDR-TB)危險因子的多變量邏輯迴歸(multivariate logistic regression)分析 111 表七、使用subculture 及BluePoint MycoID plus kit 鑑定950個 Mycobacteria Growth Indicator Tubes (MGIT) 陽性檢體 112 表八、分析subculture及BluePoint MycoID plus kit鑑定結果不同的菌株 114 表九、比較使用subculture及BluePoint MycoID plus kit 在Mycobacteria Growth Indicator Tubes, MGIT)陽性檢體中鑑定M. tuberculosis 的效能 117 表十、 使用subculture法及BluePoint MycoID plus kit鑑定相異之個案特色 118 表十一、相較於傳統間接瓊脂比例法(agar proportion method),使用BluePoint MycoID plus kit鑑定藥物抗藥的準確度 119 表十二、結核菌的藥物抗藥比例、治療處方的使用量和處方品質及DOTS/DOTS-Plus涵蓋率趨勢分析 120 表十三、結核菌對一線藥物感受性和二線藥物抗藥情形 122 表十四、二線藥處方比例、處方適當比例和DOTS/DOTS-Plus涵蓋率與結核菌菌株對二線藥抗藥之相關 123 表十五、研究菌株之基本資料 124 表十六、研究菌株之基本資料與ofloxacin之最小抑菌濃度 126 表十七、研究菌株之基本資料與moxifloxacin 之最小抑菌濃度 128 表十八、Gyrase基因變異*與ofloxacin最小抑菌濃度之分佈 130 表十九、Gyrase 基因變異*與不同程度之ofloxacin最小抑菌濃度之分佈 132 表二十、各別gyrase 基因變異與ofloxacin最小抑菌濃度之分佈 133 表二十一、各別gyrase 基因變異與不同程度ofloxacin最小抑菌濃度之相關性 135 表二十二、各別gyrase 基因變異與不同程度ofloxacin最小抑菌濃度之相關性 138 表二十三、Gyrase 基因變異*與moxifloxacin 最小抑菌濃度之分佈 141 表二十四、Gyrase基因變異*與不同程度之moxifloxacin最小抑菌濃度之分佈 143 表二十五、各別gyrase 基因變異與moxifloxacin最小抑菌濃度之分佈 144 表二十六、各別gyrase基因變異與不同程度moxifloxacin最小抑菌濃度之相關性 147 表二十七、各別gyrase基因變異與不同程度moxifloxacin最小抑菌濃度之相關性 150 表二十八、各別gyrase基因變異與ofloxacin及moxifloxacin最小抑菌濃度於不同菌株基因型之分佈 153 表二十九、各別gyrase基因變異於ethambutol-resistant/susceptible與不同程度ofloxacin及moxifloxacin最小抑菌濃度之分佈 157 表三十、各別gyrase 基因變異於streptomycin-resistant/susceptible與不同程度ofloxacin及moxifloxacin最小抑菌濃度之分佈 161 表三十一、各別gyrase基因變異於不同性別與不同程度ofloxacin及moxifloxacin最小抑菌濃度之分佈 165 表三十二、各別gyrase 基因變異於不同年齡層與不同程度ofloxacin及moxifloxacin最小抑菌濃度之分佈 169 表三十三、不同gyrase基因變異組合預測low-/high-level ofloxacin 及moxifloxacin最小抑菌濃度之效能 173 表三十四、感染Ofloxacin 及 moxifloxacin 最低抑菌濃度逐漸降低菌株之個案 175 表三十六、藥物輸出幫浦基因變異,於OFX 抗藥及敏感菌株間之分布 178 表三十七、Ofloxacin-resistantMDR-TB患者特性 185 表三十八、接受及未接受moxifloxacin治療的ofloxacin-resistantMDR-TB患者特性 187 表三十九、Ofloxacin-resistantMDR-TB,位於gyrA and gyrB 基因突變和moxifloxacin 抗藥程度的關係 189 表四十、預測ofloxacin抗藥MDR-TB培養陰轉的因素 191 圖一、Isoniazid 單一抗藥結核病治療預後 192 圖二、Isoniazid 單一抗藥及Isoniazid敏感結核病之治療預後 193 圖三、2000-2012 臺大醫院結核病及NTM infection 及colonization的發生率 194 圖四、BluePoint MycoID plus kit 的設計式樣 195 圖五、在Mycobacteria Growth Indicator Tubes (MGIT)陽性檢體中,使用BluePoint MycoID plus kit 鑑定 mycobacterial species 、isoniazid抗藥相關突變(inhA and katG) 及rifampin抗藥相關突變 (rpoB) 的結果 196 圖六、2005到2011年DOTS和DOTS-Plus與原發性(primary) 及獲得性(acquired) MDR-TB、XDR-TB關係圖 197 圖七、DOTS-plus涵蓋率與原發及續發性fluoroquinolones抗藥MDR-TB關係圖 198 圖八、在XDR結核菌菌株中,對fluoroquinolones、注射型二線藥、其他口服型二線藥抗藥的比例,以及直接觀察治療、DOTS和 DOTS-plus計畫的涵蓋率(圖A),從2004至2011年二線藥物療程的使用和一線藥與二線藥療程的適當療程比例(圖B)。星號(*)表示與第一線療程相比P<0.05。 199 圖九、以第一線抗結核藥物感受性分組對第二線抗結核藥物抗藥的比例。星號(*)表示與isoniazid/rifampin敏感組相比P<0.05。 200 圖十、不同ofloxacin最小抑菌濃度的樹形圖(neighbor-joint 法)、24 loci mycobacterial interspersed repetitive units-variable number of tandem repeat (MIRU-VNTR) 及 spoligotyping 201 圖十一、不同ofloxacin最小抑菌濃度的放射樹 (neighbor-joint法) 202 圖十二、不同ofloxacin最小抑菌濃度的樹形圖(Unweighted Pair Group Method with Arithmetic Mean,UPGMA法)、24 loci mycobacterial interspersed repetitive units-variable number of tandem repeat (MIRU-VNTR) 及 spoligotyping 203 圖十三、不同ofloxacin最小抑菌濃度的放射樹 (Unweighted Pair Group Method with Arithmetic Mean,UPGMA法) 204 圖十四、不同moxifloxacin最小抑菌濃度的樹形圖(neighbor-joint法)、24 loci mycobacterial interspersed repetitive units-variable number of tandem repeat (MIRU-VNTR) 及 spoligotyping 205 圖十五、不同moxifloxacin最小抑菌濃度的放射樹 (neighbor-joint法) 205 圖十六、不同moxifloxacin最小抑菌濃度的樹形圖(Unweighted Pair Group Method with Arithmetic Mean,UPGMA法)、24 loci mycobacterial interspersed repetitive units-variable number of tandem repeat (MIRU-VNTR) 及 spoligotyping 207 圖十七、不同moxifloxacin最小抑菌濃度的放射樹 (Unweighted Pair Group Method with Arithmetic Mean,UPGMA法) 208 圖十八、基因突變和抗藥相關性P-value的Manhattan圖 209 圖十九、培養陰轉的Kaplan-Meier圖及log-rank檢定,依有無使用moxifloxacin治療及moxifloxacin(MFX)最小抑菌濃度分組。 210 圖二十、培養陰轉的Kaplan-Meier圖及log-rank檢定,依有無使用moxifloxacin (MFX)治療及是否帶有gyrA gene codon 94 突變分組 211 玖、 附錄:相關論文發表 212 | |
dc.language.iso | zh-TW | |
dc.title | 台灣抗藥結核病流行病學及基因變異之臨床應用 | zh_TW |
dc.title | Clinical applications of epidemiology and genomic alterations for drug-resistant tuberculosis in Taiwan | en |
dc.type | Thesis | |
dc.date.schoolyear | 104-2 | |
dc.description.degree | 博士 | |
dc.contributor.coadvisor | 薛博仁 | |
dc.contributor.oralexamcommittee | 蘇維鈞,余明治,陳祈玲 | |
dc.subject.keyword | 抗藥結核病,多重抗藥性結核病,廣泛抗藥性結核病,超級抗藥性結,fluoroquinolone抗藥性結核病,都治計畫, | zh_TW |
dc.subject.keyword | Drug resistance tuberculosis,Fluoroquinolone-resistance tuberculosis, | en |
dc.relation.page | 213 | |
dc.identifier.doi | 10.6342/NTU201600127 | |
dc.rights.note | 未授權 | |
dc.date.accepted | 2016-03-21 | |
dc.contributor.author-college | 醫學院 | zh_TW |
dc.contributor.author-dept | 臨床醫學研究所 | zh_TW |
顯示於系所單位: | 臨床醫學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-105-1.pdf 目前未授權公開取用 | 7.58 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。