請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/19493
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 林正芳 | |
dc.contributor.author | Chun-Yen Tien | en |
dc.contributor.author | 田俊彥 | zh_TW |
dc.date.accessioned | 2021-06-08T02:01:49Z | - |
dc.date.copyright | 2016-07-06 | |
dc.date.issued | 2016 | |
dc.date.submitted | 2016-06-01 | |
dc.identifier.citation | Bae, J., Shin, C., Lee, E., Kim, J., McCarty, P.L., 2014. Anaerobic treatment of low-strength wastewater: a comparison between single and staged anaerobic fluidized bed membrane bioreactors. Bioresource Technology. 165, 75-80.
Bae, J., Yoo, R., Lee, E., McCarty, P. L., 2013. Two-staged anaerobic fluidized-bed membrane bioreactor treatment of settled domestic wastewater. Water Science and Technology. 68(2), 394–399. Behling, E., Diaz, A., Colina, G., Herrera, M., Gutierrez, E., Chacin, E., Fernandez, N., Forster, C.F., 1997. Domestic wastewater treatment using a USAB reactor. Bioresource Technology. 61(3), 239-245. Borja, R. and Banks, C.J., 1995. Response of an anaerobic fluidized bed reactor treating ice-cream wastewater to organic, hydraulic, temperature and pH shocks. Journal of Biotechnology. 39 (3), 251–259. Brown, J. L., 1998. The application of the anaerobic technology for the treatment of domestic wastewater in Jamaica. UNEP, Caribbean Environment Programme Technical Report. 43, 1-19. Castillo, A., Cecchi, F., Mata-Alvarez, J., 1997. A combined anaerobic–aerobic system to treat domestic sewage in coastal areas. Water Research. 31 (12), 3057–3063. Chen, Y. R., Varel, V. H., Hashimoto, A.G., 1980. Methane Production from Agricultural Cheng, S.G., 1992. Population dynamics of attached biofilm in anaerobic fluidized bed pilot plant. Water Science and Technology. 26(1-11), 503-510. Dauge, R.R., Banik, G.C., Ellis, T.G., 1998. Anaerobic sequencing batch reactor treatment of dilute wastewater at psychrophilic. Water Environment Research. 70(2), 155-160. Demirel, B., Yenigun, O., Onay, T.T., 2005. Anaerobic treatment of dairy wastewaters: A review. Process Biochemistry. 40, 2583-2595. EPRI (Electric Power Research Institute), 1999. Energy Audit Manual for Water/ Wastewater Facilities. CEC Report CR-104300. EPRI Community Environmental Center. St. Louis, Mo. Fang, H.H.P., 2010. Environmental anaerobic technology: Applications and new developments, London: Imperial College Press. Foresti, E., 2002. Anaerobic treatment of domestic sewage: Established technologies and perspectives. Water Science and Technology. 45(10), 181-186. Foresti, E., Zaiat, M. and Vallero, M., 2006. Anaerobic processes as the core technology for sustainable domestic wastewater treatment: Consolidated applications, new trends, perspectives, and challenges. Reviews in Environmental Science and Bio/Technology. 5(1), 3-19. Franklin, R.J., 2001. Full Scale Experience with Anaerobic Treatment of Industrial Wastewater. Water Science and Technology. 44(8), 1-6. Gomes, C.S., 1985. Research at SANEPAR, State of Parana´ Brazil, with anaerobic treatment of domestic sewage in fullscale and pilot plants In: Schwitzenbaum MS (Ed) Proceedings of Seminar-Workshop on Anaerobic Treatment of Sewage, University of Massachusetts, Amherst, USA. Grady, C.P.L. and Lim, H.C., 1980. Biological wastewater treatment: Theory and applications, Baker & Taylor Books, New York, 834-881 Hahn, M.J., Figueroa, L.A., 2015. Pilot scale application of anaerobic baffled reactor for biologically enhanced primary treatment of raw municipal wastewater. Water Research. 87, 494-502. Hartley, K. and Lant, P., 2006. Eliminating non-renewable CO2 emissions from sewage treatment: an anaerobic migrating bed reactor pilot plant study. Biotechnology and Bioengineering. 95(3), 384–398. Henze, M. and Harremoes, P., 1983. Anaerobic treatment of wastewater in fixed film reactors - a literature review. Water Science and Technology. 15(8-9), 1-101. Hickey, R.F., Wu, W.M., Veiga, M.C. and Jones, R., 1991. Start-up, operation, monitoring and control of high-rate anaerobic treatment systems. Water Science and Technology. 24(8), 207-255. Ho, J. and Sung, S., 2010. Methanogenic activities in anaerobic membrane bioreactors (AnMBR) treating synthetic municipal wastewater. Bioresource Technology. 101(7), 2191-2196. Huang, Z., Ong, S.L. Ng, H.Y., 2008. Feasibility of submerged anaerobic membrane bioreactor (SAMBR) for treatment of low-strength wastewater. Water Science and Technology. 58(10), 1925-1931. Huang, Z., Ong, S.L. Ng, H.Y., 2011. Submerged anaerobic membrane bioreactor for low-strength wastewater treatment: Effect of HRT and SRT on treatment performance and membrane fouling. Water Research. 45(2), 705-713. Huang, Z., Ong, S. L., Ng, H.Y., 2013. Performance of submerged anaerobic membrane bioreactor at different SRTs for domestic wastewater treatment. Journal of Biotechnology. 164(1), 82-90. Jewell, W.J., 1987. Anaerobic sewage treatment: Fifth of a six-part series on wastewater treatment processes. Environmental Science and Technology. 21(1), 14-21. Kalyuzhnyi, S.V., Sklyar, V.I., Davlyatshina, M.A., Parshina, S.N., Simankova, M.V., Kostrikina, N.A., Nozhevnikova, A.N., 1996. Organic removal and microbiological features of UASB-reactor under various organic loading rates. Bioresource Technology. 55 (1), 47–54. Kato, M. T., Field, J. A., Kleerebezem, R., Lettinga, G., 1994. Treatment of low strength soluble wastewater in UASB reactors. Journal of Fermentation and Bioengineering. 77(6), 679-686. Khan, A. A., Gaur, R. Z., Tyagi, V. K., Khursheed, A., Lew, B., Mehrotra, I., Kazmi, A. A., 2011. Sustainable options of post treatment of UASB effluent treating sewage: A review. Resources, Conservation and Recycling. 55(12), 1232-1251. Khanal, S.K., 2008. Anaerobic biotechnology for bioenergy production: Principles and applications. Ames, Iowa: Wiley-Blackwell. Kim, J., Kim, K., Ye, H., Lee, E., Shin, C., McCarty, P. L., Bae, J. 2011. Anaerobic fluidized bed membrane bioreactor for wastewater treatment. Environmental Science and Technology. 45(2), 576–581. Langenhoff, A.A.M. and Stuckey, D.C., 2000. The anaerobic treatment of dilute soluble and colloidal wastewater using an anaerobic baffled reactor; influence of hydraulic retention time. Water Research. 34(4), 1307-1317. Langenhoff, A.A.M. and Stuckey, D.C., 2000. Treatment of dilute wastewater using an anaerobic baffled reactor: Effect of low temperature. Water Research. 34(15), 3867-3875. Lawrence, A.W. and McCarty, P.L., 1969. Kinetics of methane fermentation in anaerobic treatment. Journal -Water Pollution Control Federation. 41(2), R1-R17. Leião, R.C., van Haandel, A.C., Zeeman, G., Lettinga, G., 2006. The effects of operational and environmental variations on anaerobic wastewater treatment systems: A review. Bioresource Technology. 97(9), 1105-1118 Leitão, R.C., Silva-Filho, J.A., Sanders, W., van Haandel, A.C., Zeeman, G., Lettinga, G., 2005. The effect of operational conditions on the performance of UASB reactors for domestic wastewater treatment. Water Science and Technology. 52(1-2), 299–305. Lettinga, G., Roersma, R., Grin, P., 1983. Anaerobic treatment of raw domestic sewage at ambient temperatures using a granular bed UASB reactor. Biotechnology and Bioengineering. 25(7), 1701-1723. Lettinga, G., van Nelsen, A. F. M., Hobma, S. W., de Zeeuw, W., Klapwijk, A., 1980. Use of the upflow sludge blanket (USB) reactor concept for biological wastewater treatment, especially for anaerobic treatment. Biotechnology and Bioengineering. 22(4), 699-734. Lew, B., Tarre, S., Beliavski, M., Dosoretz, C., Green, M., 2009. Anaerobic membrane bioreactor (AnMBR) for domestic wastewater treatment. Desalination. 243 (1-3), 251-257. Lin, C.Y., Noike, T., Sato, K., Matsumoto, J., 1986. Temperature characteristics of the methanogenesis process in anaerobic digestion. Water Science and Technology. 19(1-2), 299-310. Liu, C.C., Ng, K.K., Wu, C.J., Lin, C.F., Hong, P.K.A., Yang, P.Y., 2013. Organics and nitrogen removal from wastewater across a plate of entrapped mixed microbial cells. Journal of Environmental Science and Management. 16(1), 29-34. Liu, C.C., Ng, K.K., Wu, C.J., Lin, C.F., Hong, P.K.A., Yang, P.Y., 2013. Modelling Organics biodegradation and ammonia nitrification by entrapped mixed microbial cell carriers. Desalination and Water Treatment. 52(22-24), 4462-4468. Mara, D. D., 1976. Sewage treatment in hot climates. London; New York: Wiley. McCarty, P.L. and Smith, D.P., 1986. Anaerobic wastewater treatment. Environmental Science and Technology. 20(12), 1200-1206. McCarty, P.L., 1964. Anaerobic waste treatment fundamentals, Part III: Toxic materials and their control. Public Works. McCarty, P.L., 1964. Anaerobic Waste Treatment Fundamentals, Part I: Chemistry and microbiology, Public Works. McCarty, P.L., Bae, J. and Kim, J., 2011. Domestic Wastewater Treatment as a Net Energy Producer-Can This be Achieved? Environmental Science and Technology. 45(17), 7100-7106. Mendonça, N.M., Niciura, C.L., Gianotti, E.P., Campos, J.R., 2004. Full scale fluidized bed anaerobic reactor for domestic wastewater treatment: performance, sludge production and biofilm. Water Science and Technology. 49(11-12), 319-325. Monod, J., 1942. Recherches sur la croissance des Cultures Bactériennes. Hermann et Cie. Paris, France. Nopens, I., Capalozza, C., Vanrolleghem, P.A., 2001. Technical report: Stability analysis of a synthetic municipal wastewater. BIOMATH Technical Report. Ghent University, Belgium. 1-22. Noyola, A., Capdeville, B., Roques, H., 1988. Anaerobic Treatment og Domestic Sewage with a Rotating-Stationary Fixed-Film Reactor. Water Research. 22(12), 1585-1592. Oliva, L.C.H.V., 1997. Tratamento de Esgotos Sanitários com Reator Anaeróbio de Manta de Lodo (UASB) Protótipo: Desempenho eRespostas Dinâmicas às Sobrecargas Hidráulicas. Ph.D. Thesis. Universidade de São Paulo, EESC, USP. Pavlostathisa, S.G., and Giraldo‐Gomezb, E., 1991. Kinetics of anaerobic treatment: A critical review. Critical Reviews in Environmental Control. 21(5-6), 411-490. Qian, X., Yang, P.Y., Maekawa, T., 2001. Evaluation of direct removal of nitrate with entrapped mixed microbial cell technology using ethanol as the carbon source. Water Environment Research. 73(5), 584. Residues. A Short Review, Journal of Industrial and Engineering Chemistry. 19(12), 471-477. Sander, S., 2015. Compilation of Henry’s law constants (version 4.0) for water as solvent. Atmospheric Chemistry and Physics, 15(8), 4399-4981. Seghezzo, L., Zeeman, G., van Lier, J. B., Hamelers, H. V. M., Lettinga, G., 1998. A review: The anaerobic treatment of sewage in UASB and EGSB reactors. Bioresource Technology. 65, 175-190. Shin, C., Bae, J., McCarty, P.L., 2012. Lower operational limits to volatile fatty acid degradation with dilute wastewaters in an anaerobic fluidized bed reactor. Bioresource Technology. 109, 13-20. Shin, C., Lee, E., McCarty, P.L., Bae, J., 2011. Effects of influent DO/COD ratio on the performance of an anaerobic fluidized bed reactor fed low-strength synthetic wastewater. Bioresource Technology. 102, 9860-9865. Smith, A.L., Skerlos, S.J., Raslin, L., 2013. Psychrophilic anaerobic membrane bioreactor treatment of domestic wastewater. Water Research. 47, 1655-1665. Smith, P.H., and Hungate, R.E., 1958. Isolation and characterization of methanobacterium Ruminantium N. SP. Journal of Bacteriology. 75(6). 713-718 Souza C.L., Chernicharo C.A.L., Aquino S.F., 2010. Quantification of dissolved methane in UASB reactors treating domestic water under different operating conditions. AD12. Guadaljara, Mexico, International Water Association. 1–8. Speece, R.E., 1983. Anaerobic Biotechnology for Industrial Wastewater-Treatment. Environmental Science and Technology. 17(9), A416-A427. Stander . G.J. and Snyders, R., 1950. Effluents from Fermentation Industries,Part V,' Proceedings Institute of Sewage Purification, Part 4, 447-458. Cavalcanti., P.F.F., 2003. Integrated Application of the UASB Reactor and Ponds for Domestic Sewage Treatment in Tropical Regions. Ph.D. Thesis. Wageningen University, The Netherlands. Switzenbaum, M. S., Jewell, W. J., 1980. Anaerobic attached-film expanded-bed reactor treatment. Journal - Water Pollution Control Federation. 52(7), 1953-1965. Tseng, S.K., Lin, M.R., 1994. Treatmentof organic wastewater by anaerobic biological fluidized bed reactor. Water Science and Technology. 29(12), 157-166. van Haandel, A., Kato, M.T., Cavalcanti, P.F.F., Florencio, L., 2006. Review: Anaerobic reactor design concepts for the treatment of domestic wastewater. Reviews in Environmental Science and Bio/Technology. 5, 21-38. Warneck, P., Williams, J., 2012. The Atmospheric Chemist’s Companion: Numerical Data for Use in the Atmospheric Sciences. Wilhelm, E., Battino, R., Wilcock, R. J., 1977. Low-pressure solubility of gases in liquid water. Chemical Review. 77(2), 219–262. Yang, P.Y., Cai, T. and Want, M.L., 1988. Immobilized mixed microbial cells for wastewater treatment. Biological Wastes. 23(4), 295-312. Yang, P.Y., Wang, M.L., 1990. Packed-entrapped-mixed microbial cells for small wastewater treatment. Water Science and Technology. 22(3-4), 343-350. Yoo, R., Kim, J., McCarty, P. L., Bae, J. 2012. Anaerobic treatment of municipal wastewater with a staged anaerobic fluidized membrane bioreactor (SAF-MBR) system. Bioresource Technology. 120, 133–139. Yoo, R.H., Kim, J.H., McCarty P.L., Bae J.H., 2014. Effect of temperature on the treatment of domestic wastewater with a staged anaerobic fluidized membrane bioreactor. Water Science and Technology. 69(6), 1145-1150. Young, J.C. and McCarty, P.L., 1969. Anaerobic filter for waste treatment. Journal Water Pollution Control Federation. 41(5), 2, R160-R173. 內政部營建署,2011,污水處理廠節能計畫。 吳美惠、張芳賓、朱昱學,1996,固定化微生物廢水處理技術評估,工業污染防治,第59期,81-110。 張長利、王景晶、楊宏,2013,細胞固定化技術研究進展及其在水處理領域的應用,水處理技術,第39卷,第6期,1-4。 陳國誠,1991,廢水生物處理學,茂昌圖書。 陳國誠、吳建一,2000,微生物固定化技術在廢水處理的應用,工業污染防治技術叢書,廢水耗氧處理論祝彙編(下),269-292。 黃郁婷,2013,厭氧薄膜生物處理低濃度廢污水,國立臺灣大學環境工程學研究所碩士論文。 謝仁捷,2014,厭氧生物固定化程序處理都市水,國立臺灣大學環境工程學研究所碩士論文。 | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/19493 | - |
dc.description.abstract | 厭氧生物處理程序能產生甲烷作為生質氣體,且相較於好氧生物處理,其耗能與廢棄污泥產量皆較低,故應用於處理都市污水具有發展潛勢,然而,厭氧微生物生長緩慢,使得處理低強度都市污水需較長的水力停留時間,且生物固體易流失,因此研究將生物固定化技術(Entrapped mixed microbial cell, EMMC)應用於厭氧處理程序,利用生物固定化技術大幅提高微生物濃度與污泥停留時間,縮短水力停留時間,克服厭氧生物處理程序應用於低強度都市污水處理上的限制。
研究建置一實驗室規模的24 L單槽連續式反應槽之厭氧固定生物系統,在35℃下處理低強度脫脂奶粉(Non-fat dry milk, NFDM)合成污水,操作參數包含有機負荷OLR (0.6、1.2 kg/m3/d)、水力停留時間HRT (4、8、16、32小時)、以及進流COD濃度(200、400、800、1600 mg/L),探討各項操作參數對於厭氧固定生物系統除碳及產氣效能的影響。 厭氧固定生物系統連續操作381天以上,整體效能達到80%以上之COD去除率以及44.7%以上之甲烷回收率。當HRT在16小時以上,COD去除率能穩定維持在90%以上,當HRT小於8小時,COD去除率明顯降低;系統產氣受到進流COD濃度影響,在固定HRT下甲烷含量與氣相甲烷產量隨進流COD濃度降低而減少,但在進流COD濃度200 mg/L下仍能維持59%以上的甲烷含量,使甲烷回收率在HRT 4小時仍能維持44.7%以上;而OLR的提升有助於提高系統的除碳產氣效率,對於VRE與甲烷產率有正相關的效果。 整體而言,厭氧固定生物系統優於典型厭氧處理系統,較高的SRT為系統提高優勢,其處理成效顯示出厭氧固定生物系統在不同的操作條件下均能達到較高的COD去除率、甲烷含量與甲烷回收率,因此,結合生物固定化技術與厭氧處理程序,在適當的操作條件下,具有處理低濃度都市污水的發展潛力。 | zh_TW |
dc.description.abstract | Anaerobic biological treatment processes (ABTPs) can produce methane as biogas during wastewater treatment, and consume less energy and waste less sludge compared with aerobic biological processes. As a result, ABTPs show promise in treating domestic wastewater. However, the slow growth rate of microorganism, the requirement of longer hydraulic retention time, and the easily washed-out biosolids have been found while ABTPs treat low-strength domestic wastewater. Therefore, this study employed an immobilization biotechnology of entrapped mixed microbial cell (EMMC) to ABTPs. The immobilization biotechnology was used to enhance biomass concentration, highly increase sludge retention time, and shorten hydraulic retention time which overcome the restraints of ABTPs when treating low-strength domestic wastewater.
A laboratory-scale anaerobic immobilization bioreactor system (AIBS) which contained single continuous stirred-tank with 24 L volume was constructed and used to treat low-strength synthetic wastewater of non-fat dry milk (NFDM) at 35℃.The operation parameters including organic loading rate (0.6, 1.2 kg/m3/d), hydraulic retention time (4, 8, 16, 32 h), and influent COD concentration (200, 400, 800, 1600 mg/L) were used to evaluate the effect of each parameter on carbon removal and methane production of AIBS. After continuous operation of more than 381 day, total COD removal rate and methane recovery efficiency were higher than 80% and 44.7%, respectively, over the range of values tested HRT and COD. When HRT operated above 16 h, the COD removal rates were stably higher than 90%. When HRT operated below 8 h, the COD removal rates significantly decrease. Methane production during the AIBS operation was affected by influent COD concentration. At a constant of HRT, methane content and methane production rate decreased with decreasing of influent COD concentration. However, the methane content was stably higher than 59% when influent COD concentration of 200 mg/L. Hence, the methane recovery efficiency was higher than 44.7% when HRT operated below 4 h. An increase in OLR improved the efficiency of carbon removal and methane production, and OLR has a positive correlation with both VRE and methane production rate. In conclusion, the performance of anaerobic immobilization bioreactor system is better than typical anaerobic treatment process. The advantage of higher SRT improves AIBS. From experimental results, AIBS performs higher COD removal rate, methane content, and methane recovery under different operating conditions. Therefore, the combination of immobilization biotechnology and anaerobic biological treatment process could be potentially used for treatment of low-strength domestic wastewater under appropriate operating conditions. | en |
dc.description.provenance | Made available in DSpace on 2021-06-08T02:01:49Z (GMT). No. of bitstreams: 1 ntu-105-R02541117-1.pdf: 8910371 bytes, checksum: 12d284119f010eb8a99ea5b0e298d9ff (MD5) Previous issue date: 2016 | en |
dc.description.tableofcontents | 致謝 I
摘要 II ABSTRACT III 目錄 V 圖目錄 VII 表目錄 IX 縮寫對照表 X 第一章 前言 1 1.1 研究緣起 1 1.2 研究目的與項目 3 第二章 文獻回顧 5 2.1 厭氧生物處理 5 2.1.1 厭氧生物處理基本原理 5 2.1.2 厭氧生物處理反應技術 14 2.2 厭氧系統處理都市污水 17 2.2.1 厭氧系統處理都市污水之發展 17 2.2.2 厭氧處理低強度污水近年研究 21 2.2.3 厭氧系統處理都市污水之限制 27 2.3 生物固定化技術 29 2.3.1 生物固定化技術之發展 29 2.3.2 生物固定化技術之應用 32 第三章 實驗方法與設備材料 33 3.1 實驗內容 33 3.2 實驗方法 35 3.3 實驗設備與材料 37 3.3.1 厭氧固定生物系統建置 37 3.3.2 固定生物平板之製備 39 3.3.3 系統之合成進流水組成 40 3.4 分析方法 41 3.4.1 水質分析 41 3.4.2 VFA分析 43 3.4.3 氣相分析 44 3.4.4 效能評估 45 第四章 結果與討論 47 4.1 固定生物平板基本特性分析 47 4.2 厭氧固定生物系統之啟動階段 51 4.3 厭氧固定生物系統處理合成污水 56 4.3.1 參數試驗之系統監測數值 57 4.3.2 參數試驗之水質分析結果 59 4.3.3 參數試驗之氣相分析結果 69 4.3.4 水力停留時間之影響 88 4.3.5 進流COD濃度之影響 93 4.3.6 有機負荷OLR之影響 98 第五章 結論與建議 103 5.1 結論 103 5.2 建議 105 參考文獻 107 附錄 116 | |
dc.language.iso | zh-TW | |
dc.title | 厭氧固定生物技術處理低強度合成污水:水力停留時間與進流濃度之影響 | zh_TW |
dc.title | Anaerobic Immobilization Biotechnology for Treating Low Strength Synthetic Wastewater: Effect of HRT and COD Concentration on Treatment Performance | en |
dc.type | Thesis | |
dc.date.schoolyear | 104-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 黃良銘,周楚洋 | |
dc.subject.keyword | 厭氧處理,固定生物,都市污水,甲烷產量,水力停留時間,有機負荷, | zh_TW |
dc.subject.keyword | anaerobic treatment,immobilized microorganism,domestic wastewater,methane production,hydraulic retention time,organic loading rate, | en |
dc.relation.page | 135 | |
dc.identifier.doi | 10.6342/NTU201600282 | |
dc.rights.note | 未授權 | |
dc.date.accepted | 2016-06-01 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 環境工程學研究所 | zh_TW |
顯示於系所單位: | 環境工程學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-105-1.pdf 目前未授權公開取用 | 8.7 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。