Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 管理學院
  3. 財務金融學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/19389
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor葉小蓁(Hsiaw-Chan Yeh)
dc.contributor.authorYI-WEI LIUen
dc.contributor.author劉宜緯zh_TW
dc.date.accessioned2021-06-08T01:56:45Z-
dc.date.copyright2016-07-25
dc.date.issued2015
dc.date.submitted2016-07-04
dc.identifier.citation[1] Borak, S., Härdle, W. and Weron, R. (2005). Stable Distributions. SFB 649 Discussion Paper 2005-008.
[2] Diebold, F. X. (2015). Comparing Predictive Accuracy, Twenty Years Later: A Personal Perspective on the Use and Abuse of Diebold-Mariano Tests. Journal of Business and Economic Statistics, Volume 33, Issue 1
[3] Diebold, F. X. & Mariano, R. S. (1995). Comparing Predictive Accuracy. Journal of Business and Economic Statistics, Volume 13, 253-263
[4] Fama, E. F. (1964). Mandelbrot and the Stable Paretian Hypothesis, Chapter 14, Cootner (1964), pp. 297-306. M.I.T. Press.
[5] Fama, E. F. (1965). The Behavior of Stock-Market Prices. Journal of Business, Volume 38, No. 1, 34-105
[6] Fama, E. F. (1976). Foundations of Finance. Basic Books.
[7] Feller, W. (1971). An Introduction to Probability Theory and its Applications, Volume II, Second Edition. Wiley.
[8] Frain, J. C. (2006). Total Returns on Equity Indices, Fat Tails and the α-Stable Distribution.
http://www.tcd.ie/Economics/staff/frainj/main/Stable distribution/index.htm
[9] Frain, J. C. (2009). Studies on the Application of the α-stable Distribution in Economics. Doctoral Dissertation, University of Dublin.
[10] Janicki, A. and Weron, A. (1994). Simulation and Chaotic Behavior of α-Stable Stochastic Processes. Dekker.
[11] Jhang, Y. J. (2013). The Empirical Study on Portfolio Hedge of Banks by Multivariate GARCH Models. Master Thesis, National Taiwan University.
[12] Kupiec, P. H. (1995). Techniques for Verifying the Accuracy of Risk Measurement Models. The Journal of Derivatives, Volume 3, No. 2, 73-84
[13] Mandelbrot, B. B. (1962). The Variation of Certain Speculative Prices. Technical Report NC-87, IBM Research Report.
[14] Mandelbrot, B. B. (1964). The Variation of Certain Speculative Prices, Chapter 15, Cootner (1964), pp. 307-332. M.I.T. Press.
[15] Mandelbrot, B. B. (1967). The variation of the prices of cotton, wheat, and railroad stocks, and of some financial rates. The Journal of Business, Volume 40, 393-413
[16] Mandelbrot, B. B. (1997). Fractals and Scaling in Finance. Springer.
[17] Mandelbrot, B. B. and Hudson, R. L. (2004). The (mis)Behavior of Markets. Profile Books.
[18] McCulloch, J. H. (1985). Interest-risk sensitive deposit insurance premia: Stable ACH estimates. Journal of Banking & Finance, Volume 9, Issue 1, 137-156
[19] Mittnik, S., Paolella, M. S., and Rachev, S. T. (1998). Unconditional and Conditional Distributional Models for the Nikkei Index. Asia-Pacific Financial Markets, Volume 5, Issue 2, 99-128
[20] Nolan, J. P. (2007). Stable Distributions - Models for Heavy Tailed Data. Boston: Birkhäuser. In progress, Chapter1 online at academic2.american.edu/~jpnolan.
[21] Panorska, A. K., Mittnik, S., and Rachev, S. T. (1995). Stable GARCH Models for Financial Time Series. Applied Mathematics Letters, Volume 8, Issue 5, 33-37
[22] Parrini, A. (2012). Indirect estimation of GARCH models with alpha-stable innovations. MPRA Paper No. 38544, posted 4.
[23] Rachev, S. and S. Mittnik (2000). Stable Paretian Models in Finance. Wiley.
[24] Samorodnitsky, G. and Taqqu, M. S. (1994). Stable Non-Gaussian Random Processes: Stochastic Models with Infinite Variance. Chapman and Hall/CRC.
[25] Tasy, R. S. (2010). Analysis of Financial Time Series, Third Edition. John Wiley & Sons, Inc.
[26] Uchaikin, V. V. and Zolotarev, V. M. (1999). Chance and Stability. VSP, Uthrecht.
[27] Yeh, H. C. (2006). Time Series Analysis and Application. Yeh, Hsiaw-Chan.
[28] Zolotarev, V. M. (1986). One-dimensional Stable Distributions. Translations of Mathematical Monographs, Volume 65, American Mathematical Society.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/19389-
dc.description.abstract實務上,業界人士習慣將他們所要處理的財務資料假設為常態分配。然而,許多文獻指出,大多數金融資產的報酬率之分配具有厚尾的特性,也就是極端值的大小及其出現的頻率要比常態分配所估計的高,因此常態分配的假設是不適當的。而t-分配與α-穩定分配正是適合的替代方案。過去的研究顯示,t-分配完全能夠比常態分配更適合用來描述金融資產報酬率,但是,t-分配與α-穩定分配彼此之間沒有絕對的優劣。用這兩個分配來描述金融資產報酬率皆有其特色與優缺點。
本篇論文的研究主要在比較以t-分配與α-穩定分配來配適亞洲股票指數之報酬率的情形。由於過去相關研究主要著重於歐美權益指數報酬率的分析,因此本篇論文欲探討是否亞洲股市也能得到相似的結果。本篇論文的分析主要分成兩部分:分別為與時間獨立的部分,以及與時間相依的部分。在與時間獨立的部分,分別探討以無條件t-分配與α-穩定分配來配適指數報酬率所求得之風險值,並與實際資料做比較。在與時間相依的部分,以時間序列GARCH模型來分析並預測各個股票指數之報酬率,其中分別假模型之設誤差項為t-分配與α-穩定分配。
主要的發現為,無條件α-穩定分配所估算出來的風險值,在一般的風險水準之下(5%至10%)較t-分配所估算出來的風險值更為精確。而在極端情況下的風險值(小於1%),α-穩定分配較t-分配更傾向於高估真實的風險值。這項特色使得α-穩定分配在風險管理的應用上有其獨有的價值,因為它不但能在正常情況下提供較精確的估計,還能夠在極端情況下將預期損失估計得高一點,使得風險控管者會提撥更多的準備金來預防未來可能的損失,讓風險管理更加穩健安全。
本篇論文亦發現,若從樣本外預測著眼,假設誤差項為α-穩定分配之時間序列GARCH模型會比假設誤差項為t-分配的模型擁有較小的均方根誤差(RMSE),代表前者具有較佳的預測能力。然而,此二模型之預測能力的差異,在統計上的顯著程度大小,還因不同的資料特性而有所不同,這也提供了未來後續研究可能的方向。最後,本篇論文建構出以每個模型對股票指數報酬率做預測所對應的95%預測區間,並將之與動態風險值的概念結合。透過預測區間,我們可以在任何時間點,估算該時刻的動態風險值,使得風險值的估算不止於靜態的估計,而是動態且與時間相關,從而更貼近真實的情況。
zh_TW
dc.description.abstractIn practice, business people used to deal with financial data as if they follow the normal distribution. However, researches have shown that most financial assets returns possess fat-tailed property, which is contradictory to that of the normal distribution. Both the t-distribution and α-stable distribution are attractive alternatives. Past study have stated that the t-distribution dominates the normal distribution, but there is no definite dominance of either the t-distribution or the α-stable distribution over the other. They both carry unique features when fitted to financial data.
This paper compares the fitness of the t-distribution and the α-stable distribution to the stock indices returns in Asia, since most past researches of this kind focus on the equity indices in Europe and America. The analysis in this paper is classified into two parts, first the time independent part and followed by the time dependent part. In the first part, the Value at Risk (VaR) estimated by the unconditional t-distribution and the α-stable distribution are discussed. In the second part, the time series GARCH models with t-innovation and α-stable innovation respectively are also investigated.
The main finding is that in the sense of VaR, the unconditional α-stable distribution provides better estimates of VaR at moderate levels, and extreme VaR less than 1% with α-stable distribution tends to be conservative, with comparison to t-distribution. This is a valuable feature of the application of α-stable distribution to risk management, because it allows risk managers to preserve more reservation in advance for the potential upcoming losses.
Moreover, this paper also shows that the time series GARCH models with α-stable innovation always have smaller RMSE than those with t-innovation when the out-of-sample forecasting is conducted, indicating that the models with α-stable innovation may have better forecasting accuracy than those with t-innovation, though the degrees of significance are different due to the property of the data. Finally, the 95% forecasting intervals are constructed in this paper and they can be connected to the dynamic VaR, making it possible for us to estimate the VaR in accordance with time.
en
dc.description.provenanceMade available in DSpace on 2021-06-08T01:56:45Z (GMT). No. of bitstreams: 1
ntu-104-R02723084-1.pdf: 6475872 bytes, checksum: e728b1dddf080ba4ef3c9ef1e74b102a (MD5)
Previous issue date: 2015
en
dc.description.tableofcontents口試委員會審定書 #
Acknowledgement #
中文摘要 i
ASBTRACT iii
CONTENTS v
LIST OF FIGURES viii
LIST OF TABLES ix
Chapter 1
Introduction 1
Chapter 2
Literature Review 4
2.1 Background 4
2.2 Value at Risk (VaR) 7
2.3 The α-Stable Distribution 9
2.4 The Student’s t-Distribution 13
Chapter 3
Methodology 17
3.1 The Data 17
3.2 Time Independent Analysis: Unconditional Distribution 18
3.2.1 Fitting the Data with Unconditional Distributions 19
3.2.2 Empirical Distributions and the Kolmogorov-Smirnov Test 20
3.2.3 The Value at Risk and Unconditional Coverage Test 21
3.3 Time Dependent Analysis: Conditional Distribution 22
3.3.1 The Time Series Models Identification and Selection 23
3.3.2 Models Construction and Parameters Estimation 25
3.3.3 Models Detection 29
3.3.4 Out-of-sample Forecasting 31
3.3.5 Updating Forecasts, Forecasting Intervals and Value at Risk 34
Chapter 4
Empirical Study 37
4.1 The Data 37
4.2 Time Independent Analysis 39
4.2.1 Fat-tailed Property and Unconditional Distributions 39
4.2.2 α-Stable Distribution, t-Distribution and Empirical Distribution 41
4.2.3 Value at Risk 44
4.3 Time Dependent Analysis 48
4.3.1 Identification 48
4.3.2 Estimation and Goodness of Fit of the Models 52
4.3.3 Models Detection 58
4.3.4 Out-of-sample Forecasting 61
4.3.5 Forecasting Intervals and Value at Risk 64
Chapter 5
Conclusions 68
REFERENCE 71
Appendix A: The Programming Codes 74
Appendix B: The Original Figures of Figure 7 to Figure 11 77
dc.language.isoen
dc.titleα-穩定分配及其在風險值與財務預測上的應用,和t-分配做比較zh_TW
dc.titleα-Stable Distribution and its Application to Value at Risk and Financial Forecasting, in Comparison with Student's t-Distributionen
dc.typeThesis
dc.date.schoolyear104-2
dc.description.degree碩士
dc.contributor.oralexamcommittee王耀輝(Yaw-Huei Wang),許耀文(Yaowen Hsu)
dc.subject.keywordα-穩定分配,風險值,時間序列GARCH模型,財務預測,α-穩定分配之創新獨立變量,t-分配之創新獨立變量,zh_TW
dc.subject.keywordα-Stable Distribution,Value at Risk,Time Series GARCH Models,Financial Forecasting,α-Stable Innovation,t-Innovation,en
dc.relation.page86
dc.identifier.doi10.6342/NTU201600670
dc.rights.note未授權
dc.date.accepted2016-07-04
dc.contributor.author-college管理學院zh_TW
dc.contributor.author-dept財務金融學研究所zh_TW
顯示於系所單位:財務金融學系

文件中的檔案:
檔案 大小格式 
ntu-104-1.pdf
  未授權公開取用
6.32 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved