Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 資訊工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/19365
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor李明穗(Ming-Sui Lee)
dc.contributor.authorDong-Yi Linen
dc.contributor.author林東逸zh_TW
dc.date.accessioned2021-06-08T01:55:34Z-
dc.date.copyright2020-08-24
dc.date.issued2020
dc.date.submitted2020-08-17
dc.identifier.citationA. J. Piergiovanni and M. S. Ryoo, “Fine-grained activity recognition in baseball videos,” IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops, vol. 2018-June, pp. 1821–1830, 2018.
G. Kanojia, S. Kumawat, and S. Raman, “Attentive spatio-temporal representation learning for diving classification,” IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops, vol. 2019-June, pp.
K. Soomro, A. R. Zamir, and M. Shah, “UCF101: A Dataset of 101 Human Actions Classes From Videos in The Wild,” no. November, 2012. [Online]. Available: http://arxiv.org/abs/1212.0402
H. Kuehne, H. Jhuang, E. Garrote, T. Poggio, and T. Serre, “Hmdb51: A large video database for human motion recognition,” 11 2011, pp. 2556–2563.
W. Kay, J. Carreira, K. Simonyan, B. Zhang, C. Hillier, S. Vijayanarasimhan, F. Viola, T. Green, T. Back, P. Natsev, M. Suleyman, and A. Zisserman, “The Kinetics Human Action Video Dataset,” 2017. [Online]. Available: http://arxiv.org/abs/1705.06950
G. A. Sigurdsson, G. Varol, X. Wang, A. Farhadi, I. Laptev, and A. Gupta, “Hollywood in homes: Crowdsourcing data collection for activity understanding,” Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 9905 LNCS, pp. 510–526, 2016.
Y. Li, Y. Li, and N. Vasconcelos, “RESOUND: Towards action recognition without representation bias,” Lecture Notes in Computer Science (includ- ing subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 11210 LNCS, pp. 520–535, 2018.
H. Wang, A. Kla¨ser, C. Schmid, and C. Liu, “Action recognition by dense trajectories,” in CVPR 2011, 2011, pp. 3169–3176.
H. Wang and C. Schmid, “Action recognition with improved trajectories,” Proceedings of the IEEE International Conference on Computer Vision, pp. 3551–3558, 2013.
A. Krizhevsky, I. Sutskever, and G. Hinton, “Imagenet classification with deep convolutional neural networks,” Neural Information Processing Systems, vol. 25, 01 2012.
K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-scale image recognition,” 3rd International Conference on Learning Representations, ICLR 2015 - Conference Track Proceedings, pp. 1–14, 2015.
J. Yue-Hei Ng, M. Hausknecht, S. Vijayanarasimhan, O. Vinyals, R. Monga, and G. Toderici, “Beyond short snippets: Deep networks for video classi- fication,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 2015.
S. Hochreiter and J. Schmidhuber, “Long Short-Term Memory,” Neural Computation, vol. 9, no. 8, pp. 1735–1780, 1997.
A. J. Piergiovanni, C. Fan, and M. S. Ryoo, “Title learning latent subevents in activity videos using temporal attention filters,” in AAAI, 2017.
D. Tran, L. Bourdev, R. Fergus, L. Torresani, and M. Paluri, “Learning spatiotemporal features with 3D convolutional networks,” Proceedings of the IEEE International Conference on Computer Vision, vol. 2015 International Conference on Computer Vision, ICCV 2015, pp. 4489–4497, 2015.
J. Carreira and A. Zisserman, “Quo vadis, action recognition? a new model and the kinetics dataset,” in 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2017, pp. 4724–4733.
K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” in 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016, pp. 770–778.
S. Ren, K. He, R. Girshick, and J. Sun, “Faster r-cnn: Towards real-time object detection with region proposal networks,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 39, no. 6, pp. 1137–1149, 2017.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/19365-
dc.description.abstract棒球是世界上最受歡迎的運動之一,每年都有龐大的商機,相關的科技也蓬勃發展。MLB-YouTube是個更加細分的棒球動作識別資料集,比一般的動作識別資料集都還要更困難一些,因為影片中場景非常類似且每個類別的差異非常微小。在這篇論文,我們微調了一個帶有attention機制的LSTM模型,讓模型更適用於MLB-YouTube資料集,並且引入adaptive content selection,幫助模型更專注在球員及裁判的動作。此外,我們也對資料集做了兩個改進,第一個是原本的資料集在短打及觸身球的影片數量非常少,所以我們從網路上再蒐集了許多這兩個類別的影片,讓資料集更加完整。第二個是我們定義了新的分類方式,改成由許多個動作組合成一個事件,再以事件來做分類,這個新的定義也有助於提升影片分類的準確率。我們提出的方法在原本的分類定義上,提升了6.1%的準確度(mAP)。在新的分類定義上,提升了17.3%的準確度(accuracy)。zh_TW
dc.description.abstractBaseball is one of the most popular sports in the world and has huge business opportunities every year. The technologies of baseball are also booming. MLB-YouTube is a fine-grain action recognition dataset, which is more difficult than normal action recognition datasets because the scenes are very similar and the differences in each class are very small. In this thesis, we use and slightly adjust the attentive-LSTM model to make the model more suitable for the MLB-YouTube dataset, and introduce the adaptive content selection to help the model more focus on the actions of the players and the umpire. In addition, we have also made two improvements to the MLB-YouTube dataset. The first is that this dataset has very few videos about bunt and hit-by-pitch so we collecte many videos of these two class from the Internet to make the dataset more complete. The second is that we define new classes by the events in the baseball game. Each event is combined by several activity class, and the model classify videos by event. This new class definition is also helpful. The proposed approach outperforms the state-of-the-art by 6.1% of mAP on original class definition and 17.3% of accuracy on the new class definition.en
dc.description.provenanceMade available in DSpace on 2021-06-08T01:55:34Z (GMT). No. of bitstreams: 1
U0001-1708202011373900.pdf: 3460813 bytes, checksum: fa9f34630a098dc6a9a3ea24185411b8 (MD5)
Previous issue date: 2020
en
dc.description.tableofcontentsAbstract i
List ofFigures iv
List ofTables v
1 Introduction 1
2 RelatedWork 3
3 ImproveDataset 7
3.1 MLB-YouTubedataset . ...................... 7
3.2 Expanddataset . .......................... 8
3.3 Definenewclassesbyevents . ................... 9
4 Approach 12
4.1 AttentiveLSTM . .......................... 12
4.2 Adaptivecontentselection . .................... 15
5 Experiment 19
5.1 Implementdetail . ......................... 19
5.2 Results . ............................... 19
5.2.1 Comparebyusingorirginalclassdefinition . ....... 20
5.2.2 Comparebyusingnewclassdefinition . ......... 21
5.3 Ablationstudy . ........................... 22
5.3.1 Adaptivecontentselection . ................ 22
5.3.2 Modificationmodel . .................... 23
5.3.3 ExpandedMLB-YouTubedataset . ............ 24
5.3.4 Newclassdefinition . ................... 24
5.4 Executiontime . .......................... 25
6 Conclusion 26
6.1 Conclusion . ............................ 26
6.2 Futurework . ............................ 26
Reference 28
dc.language.isoen
dc.title基於自適內容選擇的學習模型應用於棒球影片分類zh_TW
dc.titleA Learning Model for Classification of Baseball Videos based on Adaptive Content Selectionen
dc.typeThesis
dc.date.schoolyear108-2
dc.description.degree碩士
dc.contributor.oralexamcommittee葉家宏(Chia-Hung Yeh),李界羲(Jessy Lee)
dc.subject.keyword棒球,帶有注意機制的長短記憶模型,動作識別,影片分類,自適內容選擇,zh_TW
dc.subject.keywordbaseball,attentive-LSTM,activity recognition,video classification,adaptive content selection,en
dc.relation.page30
dc.identifier.doi10.6342/NTU202003703
dc.rights.note未授權
dc.date.accepted2020-08-18
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept資訊工程學研究所zh_TW
顯示於系所單位:資訊工程學系

文件中的檔案:
檔案 大小格式 
U0001-1708202011373900.pdf
  未授權公開取用
3.38 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved