請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/19314
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 林江珍 | |
dc.contributor.author | Chia-Yen Hsu | en |
dc.contributor.author | 徐嘉言 | zh_TW |
dc.date.accessioned | 2021-06-08T01:53:17Z | - |
dc.date.copyright | 2016-08-02 | |
dc.date.issued | 2016 | |
dc.date.submitted | 2016-07-18 | |
dc.identifier.citation | 1. Abou El-Nour, K.M.M., et al., Synthesis and applications of silver nanoparticles. Arabian Journal of Chemistry, 2010. 3(3): p. 135-140.
2. Huang, S., L. Dai, and A.W.H. Mau, Patterned Growth and Contact Transfer of Well-Aligned Carbon Nanotube Films. The Journal of Physical Chemistry B, 1999. 103(21): p. 4223-4227. 3. Sinha Ray, S. and M. Okamoto, Polymer/layered silicate nanocomposites: a review from preparation to processing. Progress in Polymer Science, 2003. 28(11): p. 1539-1641. 4. Liu, W.F. and C.S. Chen, Engineering biomaterials to control cell function. Materials Today, 2005. 8(12): p. 28-35. 5. Lin, J.J., R.X. Dong, and W.C. Tsai, High Surface Clay-Supported Silver Nanohybrids, Silver Nanoparticles. InTech, 2010: p. 161-176. 6. Dresselhaus, M.S., G. Dresselhaus, and P.C. Eklund, Science of fullerenes and carbon nanotubes: their properties and applications. 1996: Academic press. 7. Geim, A.K. and K.S. Novoselov, The rise of graphene. Nat Mater, 2007. 6(3): p. 183-191. 8. Mortazavi, B., M. Pötschke, and G. Cuniberti, Multiscale modeling of thermal conductivity of polycrystalline graphene sheets. Nanoscale, 2014. 6(6): p. 3344-3352. 9. Treacy, M.J., T. Ebbesen, and J. Gibson, Exceptionally high Young's modulus observed for individual carbon nanotubes. 1996. 10. Ajayan, P., et al., Aligned carbon nanotube arrays formed by cutting a polymer resin-nanotube composite. SCIENCE-NEW YORK THEN WASHINGTON-, 1994: p. 1212-1212. 11. He, F., et al., High dielectric permittivity and low percolation threshold in nanocomposites based on poly (vinylidene fluoride) and exfoliated graphite nanoplates. Advanced Materials, 2009. 21(6): p. 710-715. 12. Esmaeili, A. and M. Entezari, Facile and fast synthesis of graphene oxide nanosheets via bath ultrasonic irradiation. Journal of colloid and interface science, 2014. 432: p. 19-25. 13. Kim, J., et al., Synthesis and shape memory performance of polyurethane/graphene nanocomposites. Reactive and Functional Polymers, 2014. 74: p. 16-21. 14. Stankovich, S., et al., Synthesis and exfoliation of isocyanate-treated graphene oxide nanoplatelets. Carbon, 2006. 44(15): p. 3342-3347. 15. Ahn, H., et al., Gelation of graphene oxides induced by different types of amino acids. Carbon, 2014. 71: p. 229-237. 16. Hao, R., et al., Aqueous dispersions of TCNQ-anion-stabilized graphene sheets. Chemical Communications, 2008(48): p. 6576-6578. 17. Xu, Y., et al., Flexible graphene films via the filtration of water-soluble noncovalent functionalized graphene sheets. Journal of the American Chemical Society, 2008. 130(18): p. 5856-5857. 18. Shih, P.-T., et al., Transparent graphene–platinum nanohybrid films for counter electrodes in high efficiency dye-sensitized solar cells. Journal of Materials Chemistry A, 2014. 2(23): p. 8742-8748. 19. Bai, H., et al., Non-covalent functionalization of graphene sheets by sulfonated polyaniline. Chem. Commun., 2009(13): p. 1667-1669. 20. Chang, L.-Y., et al., Facile fabrication of PtNP/MWCNT nanohybrid films for flexible counter electrode in dye-sensitized solar cells. Journal of Materials Chemistry, 2012. 22(7): p. 3185-3191. 21. Chen, P.-W., et al., Dye-sensitized solar cells with low-cost catalytic films of polymer-loaded carbon black on their counter electrode. RSC Advances, 2013. 3(17): p. 5871-5881. 22. Chang, L.-Y., et al., Control of morphology and size of platinum crystals through amphiphilic polymer-assisted microemulsions and their uses in dye-sensitized solar cells. Journal of Materials Chemistry, 2012. 22(24): p. 12305-12312. 23. Wei, K.L., et al., Easy preparation of crosslinked polymer films from polyoxyalkylene diamine and poly (styrene–maleic anhydride) for electrostatic dissipation. Journal of applied polymer science, 2007. 103(2): p. 716-723. 24. Jiang, L., et al., Facile and novel electrochemical preparation of a graphene–transition metal oxide nanocomposite for ultrasensitive electrochemical sensing of acetaminophen and phenacetin. Nanoscale, 2014. 6(1): p. 207-214. 25. Liu, P., K. Gong, and P. Xiao, Preparation and characterization of poly (vinyl acetate)-intercalated graphite oxide. Carbon, 1999. 37(12): p. 2073-2075. 26. Kotov, N.A., I. Dékány, and J.H. Fendler, Ultrathin graphite oxide–polyelectrolyte composites prepared by self‐assembly: Transition between conductive and non‐conductive states. Advanced Materials, 1996. 8(8): p. 637-641. 27. Nossol, E., et al., Synthesis, characterization and morphology of reduced graphene oxide–metal–TCNQ nanocomposites. Journal of Materials Chemistry C, 2014. 2(5): p. 870-878. 28. Ocsoy, I., et al., DNA‐Guided Metal‐Nanoparticle Formation on Graphene Oxide Surface. Advanced Materials, 2013. 25(16): p. 2319-2325. 29. Lu, W., et al., Synthesis of Au nanoparticles decorated graphene oxide nanosheets: Noncovalent functionalization by TWEEN 20 in situ reduction of aqueous chloroaurate ions for hydrazine detection and catalytic reduction of 4-nitrophenol. Journal of hazardous materials, 2011. 197: p. 320-326. 30. Venkateswara Rao, C., C.R. Cabrera, and Y. Ishikawa, Graphene-supported Pt–Au alloy nanoparticles: a highly efficient anode for direct formic acid fuel cells. The Journal of Physical Chemistry C, 2011. 115(44): p. 21963-21970. 31. LIU, Z.-r., et al., Preparation of graphene-supported Pt-Co nanoparticles and their use in oxygen reduction reactions. New Carbon Materials, 2012. 27(4): p. 250-257. 32. Liu, Y., et al., Preparation of highly dispersed CuPt nanoparticles on ionic-liquid-assisted graphene sheets for direct methanol fuel cell. Chemical engineering journal, 2012. 197: p. 80-87. 33. Cheng, G., et al., The GO/rGO–Fe 3 O 4 composites with good water-dispersibility and fast magnetic response for effective immobilization and enrichment of biomolecules. Journal of Materials Chemistry, 2012. 22(41): p. 21998-22004. 34. Fan, W., et al., Hybridization of graphene sheets and carbon-coated Fe 3 O 4 nanoparticles as a synergistic adsorbent of organic dyes. Journal of Materials Chemistry, 2012. 22(48): p. 25108-25115. 35. Zhu, S., et al., Sonochemical fabrication of Fe 3 O 4 nanoparticles on reduced graphene oxide for biosensors. Ultrasonics sonochemistry, 2013. 20(3): p. 872-880. 36. Li, S., et al., Fabrication of magnetic Ni nanoparticles functionalized water-soluble graphene sheets nanocomposites as sorbent for aromatic compounds removal. Journal of hazardous materials, 2012. 229: p. 42-47. 37. Wang, S. and A. Manthiram, Graphene ribbon-supported Pd nanoparticles as highly durable, efficient electrocatalysts for formic acid oxidation. Electrochimica Acta, 2013. 88: p. 565-570. 38. Liu, S., et al., Aniline as a dispersing and stabilizing agent for reduced graphene oxide and its subsequent decoration with Ag nanoparticles for enzymeless hydrogen peroxide detection. Journal of colloid and interface science, 2011. 363(2): p. 615-619. 39. Kim, B.-K., Y.-L. Jo, and J.-J. Shim, Preparation and antibacterial activity of silver nanoparticles-decorated graphene composites. The Journal of Supercritical Fluids, 2012. 72: p. 28-35. 40. Qin, X., et al., One-step synthesis of Ag nanoparticles-decorated reduced graphene oxide and their application for H 2 O 2 detection. Electrochimica Acta, 2012. 79: p. 46-51. 41. Zhou, Y., et al., Graphene–silver nanohybrids for ultrasensitive surface enhanced Raman spectroscopy: size dependence of silver nanoparticles. Journal of Materials Chemistry C, 2014. 2(33): p. 6850-6858. 42. Yola, M.L., et al., A novel electro analytical nanosensor based on graphene oxide/silver nanoparticles for simultaneous determination of quercetin and morin. Electrochimica Acta, 2014. 120: p. 204-211. 43. Palanisamy, S., C. Karuppiah, and S.-M. Chen, Direct electrochemistry and electrocatalysis of glucose oxidase immobilized on reduced graphene oxide and silver nanoparticles nanocomposite modified electrode. Colloids and Surfaces B: Biointerfaces, 2014. 114: p. 164-169. 44. Bajpai, R., et al., Graphene supported platinum nanoparticle counter-electrode for enhanced performance of dye-sensitized solar cells. ACS applied materials & interfaces, 2011. 3(10): p. 3884-3889. 45. Huang, J., et al., Nanocomposites of size-controlled gold nanoparticles and graphene oxide: formation and applications in SERS and catalysis. Nanoscale, 2010. 2(12): p. 2733-2738. 46. Choi, H.M. and R.M. Cloud, Natural sorbents in oil spill cleanup. Environmental Science & Technology, 1992. 26(4): p. 772-776. 47. Adebajo, M.O., et al., Porous Materials for Oil Spill Cleanup: A Review of Synthesis and Absorbing Properties. Journal of Porous Materials, 2003. 10(3): p. 159-170. 48. Lin, J., et al., Subtle regulation of the micro- and nanostructures of electrospun polystyrene fibers and their application in oil absorption. Nanoscale, 2012. 4(1): p. 176-182. 49. Bayat, A., et al., Oil Spill Cleanup from Sea Water by Sorbent Materials. Chemical Engineering & Technology, 2005. 28(12): p. 1525-1528. 50. Bastani, D., et al., Study of oil sorption by expanded perlite at 298.15 K. Separation and Purification Technology, 2006. 52(2): p. 295-300. 51. Annunciado, T.R., T.H.D. Sydenstricker, and S.C. Amico, Experimental investigation of various vegetable fibers as sorbent materials for oil spills. Marine Pollution Bulletin, 2005. 50(11): p. 1340-1346. 52. Atta, A.M., et al., Crosslinked reactive macromonomers based on polyisobutylene and octadecyl acrylate copolymers as crude oil sorbers. Reactive and Functional Polymers, 2006. 66(9): p. 931-943. 53. Li, A., et al., Superhydrophobic conjugated microporous polymers for separation and adsorption. Energy & Environmental Science, 2011. 4(6): p. 2062-2065. 54. Farag, R.K. and S.M. El-Saeed, Synthesis and characterization of oil sorbers based on docosanyl acrylate and methacrylates copolymers. Journal of Applied Polymer Science, 2008. 109(6): p. 3704-3713. 55. Kulawardana, E.U. and D.C. Neckers, Photoresponsive oil sorbers. Journal of Polymer Science Part A: Polymer Chemistry, 2010. 48(1): p. 55-62. 56. Toyoda, M. and M. Inagaki, Heavy oil sorption using exfoliated graphite: New application of exfoliated graphite to protect heavy oil pollution. Carbon, 2000. 38(2): p. 199-210. 57. Inagaki, M., et al., Sorption and recovery of heavy oils by using exfoliated graphite Part II: Recovery of heavy oil and recycling of exfoliated graphite. Desalination, 2000. 128(3): p. 213-218. 58. Gui, X., et al., Carbon Nanotube Sponges. Advanced Materials, 2010. 22(5): p. 617-621. 59. Gui, X., et al., Magnetic and Highly Recyclable Macroporous Carbon Nanotubes for Spilled Oil Sorption and Separation. ACS Applied Materials & Interfaces, 2013. 5(12): p. 5845-5850. 60. Ajayan, P.M., Nanotubes from Carbon. Chemical Reviews, 1999. 99(7): p. 1787-1800. 61. Mortazavi, B., M. Potschke, and G. Cuniberti, Multiscale modeling of thermal conductivity of polycrystalline graphene sheets. Nanoscale, 2014. 6(6): p. 3344-3352. 62. Bi, H., et al., Spongy Graphene as a Highly Efficient and Recyclable Sorbent for Oils and Organic Solvents. Advanced Functional Materials, 2012. 22(21): p. 4421-4425. 63. Liu, Y., et al., Cost-Effective Reduced Graphene Oxide-Coated Polyurethane Sponge As a Highly Efficient and Reusable Oil-Absorbent. ACS Applied Materials & Interfaces, 2013. 5(20): p. 10018-10026. 64. Liu, C., et al., Versatile fabrication of the magnetic polymer-based graphene foam and applications for oil–water separation. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2015. 468: p. 10-16. 65. Sun, H., Z. Xu, and C. Gao, Multifunctional, Ultra-Flyweight, Synergistically Assembled Carbon Aerogels. Advanced Materials, 2013. 25(18): p. 2554-2560. 66. Hu, H., et al., Compressible Carbon Nanotube–Graphene Hybrid Aerogels with Superhydrophobicity and Superoleophilicity for Oil Sorption. Environmental Science & Technology Letters, 2014. 1(3): p. 214-220. 67. Zhou, S., et al., Highly Hydrophobic, Compressible, and Magnetic Polystyrene/Fe3O4/Graphene Aerogel Composite for Oil–Water Separation. Industrial & Engineering Chemistry Research, 2015. 54(20): p. 5460-5467. 68. Zhu, H., et al., Graphene Foam with Switchable Oil Wettability for Oil and Organic Solvents Recovery. Advanced Functional Materials, 2015. 25(4): p. 597-605. 69. Esmaeili, A. and M.H. Entezari, Facile and fast synthesis of graphene oxide nanosheets via bath ultrasonic irradiation. Journal of Colloid and Interface Science, 2014. 432: p. 19-25. 70. Huang, K.-C., et al., High performance dye-sensitized solar cells based on platinum nanoparticle/multi-wall carbon nanotube counter electrodes: The role of annealing. Journal of Power Sources, 2012. 203: p. 274-281. 71. Wang, Y.-C., et al., Polymer-dispersed MWCNT gel electrolytes for high performance of dye-sensitized solar cells. Journal of Materials Chemistry, 2012. 22(14): p. 6982-6989. 72. Li, D., et al., Processable aqueous dispersions of graphene nanosheets. Nat Nano, 2008. 3(2): p. 101-105. 73. Hsu, R.-S., W.-H. Chang, and J.-J. Lin, Nanohybrids of Magnetic Iron-Oxide Particles in Hydrophobic Organoclays for Oil Recovery. ACS Applied Materials & Interfaces, 2010. 2(5): p. 1349-1354. 74. Nguyen, D.D., et al., Superhydrophobic and superoleophilic properties of graphene-based sponges fabricated using a facile dip coating method. Energy & Environmental Science, 2012. 5(7): p. 7908-7912. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/19314 | - |
dc.description.abstract | 具有磁性的四氧化三鐵/石墨烯/分散劑複合材可以藉由直接合成磁性四氧化三鐵於分散之片狀石墨烯上並且應用於汙水處理吸附,而自製的分散劑為實驗室先前發明之POEM。吸附原油的性能被大量的測試:有藉由POEM分散之石墨烯由於具有極高的比表面積可以用於吸附原油,吸附能力可以由未加POEM的6倍提升至有加POEM後的220倍。同時,藉由複合磁性四氧化三鐵粒子於中油之石墨上,石墨烯/POEM/四氧化三鐵複合材在1/1/8的比例下可以同時吸附原油高達220倍並且在外加磁場的操控下,可以將帶有原油的複合材聚集並利用磁力完整的回收達到吸油的效果。此外,石墨烯/POEM/四氧化三鐵複合材之吸附性能具有反覆利用的特性,在十次吸附脫附原油的循環之後吸附性能幾乎都不會下降,具有回收的特性。
另外我們同時製備粉末狀的磁性石墨烯以及膜狀的石墨烯膜,因為粉末狀和膜狀的石墨烯應用於實際海上原油吸附的時候可以直接接觸原油表面進行吸附,不像是溶液態之石墨烯/POEM/四氧化三鐵複合材必須藉由外力的混合而達到原油吸附的效果。然而,粉末狀的磁性石墨烯只能吸附10到20倍的原油,並不足以提供實際吸油的應用。而膜狀的石墨烯可以吸附高達93倍,除了吸附速率快這項優點之外,對於實際應用端具有相當的潛力,同時也說明了分散對於石墨烯吸油性能的提升有顯著的效果。 | zh_TW |
dc.description.abstract | The magnetic Fe3O4/Graphene/Dispersant hybrids for oil–water separation were fabricated by the in situ synthesis of magnetic Fe3O4 nanoparticles on graphene sheets in the presence of the home-made dispersant, poly(oxyethylene)-segmented imide (POEM). The property of absorbing crude oil was examined. With POEM, graphene was dispersed with high specific surface area for oil absorption of crude oil at the capacity of 6 g g-1 by the pristine carbon material and 220 g g-1 by the dispersed graphene. By embedding the magnetic iron-oxide nanoparticles, the CPC graphene-like/POEM/Fe3O4 at 1/1/8 weight ratio enabled to absorb crude oil and resulting physically aggregating and being maneuverable under the applied magnetic field. Further, the absorption capacities of the CPC graphene-like/POEM/Fe3O4 remained after 10 times of repetitive usages and recyclability.
Powder type of graphene/POEM/Fe3O4 and film type of graphene/POEM/water- borne PU were also prepared to enhance the possibility for realistic absorbing application, because rather than solution type of graphene/POEM/Fe3O4, powder type and film type can contact crude oil directly without using external mechanical force. Powder type of CPC graphene-like/POEM/Fe3O4 had only 10~20 g g-1 crude oil capacity so that it was not enough for practical application. On the contrary, film type of graphene/POEM/wPU had up to 93 g g-1 crude oil capacity and was applicable for realistic absorbing crude oil on sea water. | en |
dc.description.provenance | Made available in DSpace on 2021-06-08T01:53:17Z (GMT). No. of bitstreams: 1 ntu-105-R03549023-1.pdf: 2835137 bytes, checksum: 21d5d1421ec106447d246b44e9caf7c7 (MD5) Previous issue date: 2016 | en |
dc.description.tableofcontents | 致謝 I
中文摘要 II Abstract III Table of Contents V List of Figures VII List of schemes IX Chapter 1 Introduction 1 1.1 Nanomaterial 1 1.2 Introduction to dispersion of carbon nanotube and graphene 3 1.3 Homemade dispersant 6 1.4 Hybridization of graphene with various functional nanoparticles 9 1.4.1. Nanoparticles-on-graphene 10 1.4.2. Applications of graphene hybrids 12 1.5 Applications of Graphene/POEM/Fe3O4 to oil recovery 14 Chapter 2 Experimental Section 18 2.1. Materials 18 2.2. Preparation of home-made dispersant, poly(oxyethylene)-segmented imide (POE-imide) 18 2.3. Preparation of aqueous dispersion of graphene in polymeric dispersants 20 2.4. Preparation of Iron Oxide Nanoparticles (Fe3O4) 20 2.5. Preparation of graphene/POE-imide/Fe3O4 nanohybrid 20 2.6. Measurements of oil absorption 21 2.7. Measurements of recyclability 22 2.8. Characterization 22 Chapter 3 Results and discussion 24 3.1. Synthesis of graphene/POEM/Fe3O4 hybrid 24 3.1.1 Graphene/POEM dispersion 24 3.1.2 Fe3O4/POEM dispersion 29 3.1.3 Graphite/Fe3O4 and Graphene/POEM/Fe3O4 32 3.2. Graphene/POEM/Fe3O4 Applied for Oil Absorption 40 3.3. Efficiency of CPC graphene-like absorbing oil in different types 48 3.3.1 Powder type of CPC graphene-like/POEM/Fe3O4 48 3.3.2 Film type of CPC graphene-like/POEM/water-borne PU 49 Chapter 4 Conclusions 55 Chapter 5 References 58 | |
dc.language.iso | en | |
dc.title | 磁性氧化鐵及分散石墨烯複合材應用於原油吸附 | zh_TW |
dc.title | Magnetic Fe3O4/Graphene/Dispersant Hybrids as a Highly Efficient and Recyclable Sorbent for Crude Oil | en |
dc.type | Thesis | |
dc.date.schoolyear | 104-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 謝國煌,何國川,張信貞,王逸萍 | |
dc.subject.keyword | 石墨烯,高分子型分散劑,磁性氧化鐵粒子,原油吸附,回收, | zh_TW |
dc.subject.keyword | graphene,polymeric dispersant,magnetic iron-oxide nanoparticles,oil absorption,recyclability., | en |
dc.relation.page | 63 | |
dc.identifier.doi | 10.6342/NTU201601025 | |
dc.rights.note | 未授權 | |
dc.date.accepted | 2016-07-19 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 高分子科學與工程學研究所 | zh_TW |
顯示於系所單位: | 高分子科學與工程學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-105-1.pdf 目前未授權公開取用 | 2.77 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。