Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 昆蟲學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/19288
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor吳岳隆(Yueh-Lung Wu)
dc.contributor.authorCheng-Kang Tangen
dc.contributor.author唐政綱zh_TW
dc.date.accessioned2021-06-08T01:52:09Z-
dc.date.copyright2020-08-24
dc.date.issued2020
dc.date.submitted2020-08-18
dc.identifier.citationAi HX, Yan X, Han RC. 2012. Occurrence and prevalence of seven bee viruses in Apis mellifera and Apis cerana apiaries in China. Journal of Invertebrate Pathology 109:160-164.
Aizen MA, Harder LD. 2009. The global stock of domesticated honey bees is growing slower than agricultural demand for pollination. Current Biology 19:915-918.
Ali MR, Kim Y. 2012. A novel polydnaviral gene family, BEN, and its immunosuppressive function in larvae of Plutella xylostella parasitized by Cotesia plutellae. Journal of Invertebrate Pathology 110:389-397.
Amiri E, Kryger P, Meixner MD, Strand MK, Tarpy DR, Rueppell O. 2018. Quantitative patterns of vertical transmission of deformed wing virus in honey bees. Plos One 13.
Annaheim M, Lanzrein B. 2007. Genome organization of the Chelonus inanitus polydnavirus: excision sites, spacers and abundance of proviral and excised segments. Journal of General Virology 88:450-457.
Asgari S, Zhang G, Zareie R, Schmidt O. 2003. A serine proteinase homolog venom protein from an endoparasitoid wasp inhibits melanization of the host hemolymph. Insect Biochem Mol Biol 33:1017-1024.
Beck M, Strand MR. 2003. RNA interference silences Microplitis demolitor bracovirus genes and implicates glc1.8 in disruption of adhesion in infected host cells. Virology 314:521-535.
Beck M, Strand MR. 2005. Glc1.8 from Microplitis demolitor bracovirus induces a loss of adhesion and phagocytosis in insect High Five and S2 cells. Journal of Virology 79:1861-1870.
Beck MH, Strand MR. 2007a. A novel polydnavirus protein inhibits the insect prophenoloxidase activation pathway. Proc Natl Acad Sci U S A 104:19267-19272.
Beck MH, Strand MR. 2007b. A novel polydnavirus protein inhibits the insect prophenoloxidase activation pathway. Proceedings of the National Academy of Sciences of the United States of America 104:19267-19272.
Bernier A, Sagan SM. 2018. The diverse roles of microRNAs at the host-virus interface. Viruses-Basel 10.
Berry B, Deddouche S, Kirschner D, Imler JL, Antoniewski C. 2009. Viral suppressors of RNA silencing hinder exogenous and endogenous small RNA pathways in drosophila. Plos One 4.
Berthoud H, Imdorf A, Haueter M, Radloff S, Neumann P. 2010. Virus infections and winter losses of honey bee colonies (Apis mellifera). Journal of Apicultural Research 49:60-65.
Bezier A, Louis F, Jancek S, Periquet G, Theze J, Gyapay G, Musset K, Lesobre J, Lenoble P, Dupuy C, Gundersen-Rindal D, Herniou EA, Drezen JM. 2013. Functional endogenous viral elements in the genome of the parasitoid wasp Cotesia congregata: insights into the evolutionary dynamics of bracoviruses. Philosophical Transactions of the Royal Society B-Biological Sciences 368.
Bitra K, Suderman RJ, Strand MR. 2012. Polydnavirus ANK proteins bind NF-kappa B Homodimers and inhibit processing of Relish. Plos Pathogens 8.
Blank M, Werenicz A, Velho LA, Pinto DF, Fedi AC, Lopes MW, Peres TV, Leal RB, Dornelles AS, Roesler R. 2015. Enhancement of memory consolidation by the histone deacetylase inhibitor sodium butyrate in aged rats. Neuroscience Letters 594:76-81.
Brettell LE, Mordecai GJ, Schroeder DC, Jones IM, da Silva JR, Vicente-Rubiano M, Martin SJ. 2017. A comparison of deformed wing virus in deformed and asymptomatic honey bees. Insects 8.
Bruscella P, Bottini S, Baudesson C, Pawlotsky JM, Feray C, Trabucchi M. 2017. Viruses and miRNAs: more friends than foes. Front Microbiol 8.
Burke GR, Strand MR. 2012. Deep Sequencing Identifies Viral and Wasp Genes with Potential Roles in Replication of Microplitis demolitor Bracovirus. Journal of Virology 86:3293-3306.
Burke GR, Thomas SA, Eum JH, Strand MR. 2013. Mutualistic polydnaviruses share essential replication gene functions with pathogenic ancestors. PLoS Pathog 9:e1003348.
Chen C, Ridzon DA, Broomer AJ, Zhou Z, Lee DH, Nguyen JT, Barbisin M, Xu NL, Mahuvakar VR, Andersen MR, Lao KQ, Livak KJ, Guegler KJ. 2005. Real-time quantification of microRNAs by stem-loop RT-PCR. Nucleic acids research 33:e179.
Chen YF, Gao F, Ye XQ, Wei SJ, Shi M, Zheng HJ, Chen XX. 2011. Deep sequencing of Cotesia vestalis bracovirus reveals the complexity of a polydnavirus genome. Virology 414:42-50.
Chen YP, Evans J, Feldlaufer M. 2006. Horizontal and vertical transmission of viruses in the honeybee, Apis mellifera. Journal of Invertebrate Pathology 92:152-159.
Consalvi S, Saccone V, Giordani L, Minetti G, Mozzetta C, Puri PL. 2011. Histone Deacetylase Inhibitors in the Treatment of Muscular Dystrophies: Epigenetic Drugs for Genetic Diseases. Molecular Medicine 17:457-465.
Cornman RS, Tarpy DR, Chen YP, Jeffreys L, Lopez D, Pettis JS, vanEngelsdorp D, Evans D. 2012. Pathogen webs in collapsing honey bee colonies. Plos One 7.
Cox-Foster DL, Conlan S, Holmes EC, Palacios G, Evans JD, Moran NA, Quan PL, Briese T, Hornig M, Geiser DM, Martinson V, vanEngelsdorp D, Kalkstein AL, Drysdale A, Hui J, Zhai JH, Cui LW, Hutchison SK, Simons JF, Egholm M, Pettis JS, Lipkin WI. 2007. A metagenomic survey of microbes in honey bee colony collapse disorder. Science 318:283-287.
Davie JR. 2003. Inhibition of histone deacetylase activity by butyrate. J Nutr 133:2485s-2493s.
de Miranda JR, Genersch E. 2010. Deformed wing virus. Journal of Invertebrate Pathology 103:S48-S61.
Dewar AM. 2017. The adverse impact of the neonicotinoid seed treatment ban on crop protection in oilseed rape in the United Kingdom. Pest management science 73:1305-1309.
Di Prisco G, Annoscia D, Margiotta M, Ferrara R, Varricchio P, Zanni V, Caprio E, Nazzi F, Pennacchio F. 2016. A mutualistic symbiosis between a parasitic mite and a pathogenic virus undermines honey bee immunity and health. Proceedings of the National Academy of Sciences of the United States of America 113:3203-3208.
Dokmanovic M, Clarke C, Marks PA. 2007. Histone deacetylase inhibitors: Overview and perspectives. Mol Cancer Res 5:981-989.
Dolezal T, Krejcova G, Bajgar A, Nedbalova P, Strasser P. 2019. Molecular regulations of metabolism during immune response in insects. Insect Biochemistry and Molecular Biology 109:31-42.
Doublet V, Labarussias M, de Miranda JR, Moritz RFA, Paxton RJ. 2015. Bees under stress: sublethal doses of a neonicotinoid pesticide and pathogens interact to elevate honey bee mortality across the life cycle. Environmental Microbiology 17:969-983.
Etebari K, Hussain M, Asgari S. 2013. Identification of microRNAs from Plutella xylostella larvae associated with parasitization by Diadegma semiclausum. Insect Biochemistry and Molecular Biology 43:309-318.
Fuchikami M, Yamamoto S, Morinobu S, Okada S, Yamawaki Y, Yamawaki S. 2016. The potential use of histone deacetylase inhibitors in the treatment of depression. Progress in Neuro-Psychopharmacology Biological Psychiatry 64:320-324.
Gad W, Kim Y. 2009. N-terminal tail of a viral histone H4 encoded in Cotesia plutellae bracovirus is essential to suppress gene expression of host histone H4. Insect Molecular Biology 18:111-118.
Garcez ML, de Carvalho CA, Mina F, Bellettini-Santos T, Schiavo GL, da Silva S, Campos A, Varela RB, Valvassori SS, Damiani AP, Longaretti LM, de Andrade VM, Budni J. 2018. Sodium butyrate improves memory and modulates the activity of histone deacetylases in aged rats after the administration of D-galactose. Experimental Gerontology 113:209-217.
Genersch E, von der Ohe W, Kaatz H, Schroeder A, Otten C, Buchler R, Berg S, Ritter W, Muhlen W, Gisder S, Meixner M, Liebig G, Rosenkranz P. 2010. The German bee monitoring project: a long term study to understand periodically high winter losses of honey bee colonies. Apidologie 41:332-352.
Genersch E, Yue C, Fries I, de Miranda JR. 2006. Detection of Deformed wing virus, a honey bee viral pathogen, in bumble bees (Bombus terrestris and Bombus pascuorum) with wing deformities. Journal of Invertebrate Pathology 91:61-63.
Gomez-Orte E, Belles X. 2009. MicroRNA-dependent metamorphosis in hemimetabolan insects. Proceedings of the National Academy of Sciences of the United States of America 106:21678-21682.
Gross M. 2013. EU ban puts spotlight on complex effects of neonicotinoids. Current Biology 23:R462-R464.
Gundersen-Rindal DE, Pedroni MJ. 2010. Larval stage Lymantria dispar microRNAs differentially expressed in response to parasitization by Glyptapanteles flavicoxis parasitoid. Archives of Virology 155:783-787.
Harvey JA, Sano T, Tanaka T. 2010. Differential host growth regulation by the solitary endoparasitoid, Meteorus pulchricornis in two hosts of greatly differing mass. Journal of Insect Physiology 56:1178-1183.
Hayakawa Y, Yazaki K. 1997. Envelope protein of parasitic wasp symbiont virus, polydnavirus, protects the wasp eggs from cellular immune reactions by the host insect. European Journal of Biochemistry 246:820-826.
Hegazi EM, Ella SMA, Bazzaz A, Khamis O, Abd-Allah L. 2005. The calyx fluid of Microplitis rufiventris parasitoid and growth of its host Spodoptera littoralis larvae. Journal of Insect Physiology 51:777-787.
Hepat R, Kim Y. 2011. Transient expression of a viral histone H4 inhibits expression of cellular and humoral immune-associated genes in Tribolium castaneum. Biochem Bioph Res Co 415:279-283.
Hladun KR, Smith BH, Mustard JA, Morton RR, Trumble JT. 2012. Selenium toxicity to honey bee (Apis mellifera L.) pollinators: Effects on behaviors and survival. Plos One 7.
Hu YT, Tang CK, Wu CP, Wu PC, Yang EC, Tai CC, Wu YL. 2018. Histone deacetylase inhibitor treatment restores memory-related gene expression and learning ability in neonicotinoid-treated Apis mellifera. Insect Molecular Biology 27:512-521.
Hu YT, Wu TC, Yang EC, Wu PC, Lin PT, Wu YL. 2017. Regulation of genes related to immune signaling and detoxification in Apis mellifera by an inhibitor of histone deacetylation. Sci Rep-Uk 7.
Hunter W, Ellis J, Vanengelsdorp D, Hayes J, Westervelt D, Glick E, Williams M, Sela I, Maori E, Pettis J, Cox-Foster D, Paldi N. 2010. Large-scale field application of RNAi technology reducing Israeli acute paralysis virus disease in honey bees (Apis mellifera, Hymenoptera: Apidae). Plos Pathogens 6.
Jamnikar-Ciglenecki U, Ocepek MP, Toplak I. 2019. Genetic Diversity of Deformed Wing Virus From Apis mellifera carnica (Hymenoptera: Apidae) and Varroa Mite (Mesostigmata: Varroidae). J Econ Entomol 112:11-19.
Jiang JA, Wang CH, Chen CH, Liao MS, Su YL, Chen WS, Huang CP, Yang EC, Chuang CL. 2016. A WSN-based automatic monitoring system for the foraging behavior of honey bees and environmental factors of beehives. Comput Electron Agr 123:304-318.
Johnson RM, Ellis MD, Mullin CA, Frazier M. 2010. Pesticides and honey bee toxicity - USA. Apidologie 41:312-331.
Kajobe R, Marris G, Budge G, Laurenson L, Cordoni G, Jones B, Wilkins S, Cuthbertson AGS, Brown MA. 2010. First molecular detection of a viral pathogen in Ugandan honey bees. Journal of Invertebrate Pathology 104:153-156.
Kim J, Kim Y. 2010. Transient expression of a viral histone H4, CpBV-H4, suppresses immune-associated genes of Plutella xylostella and Spodoptera exigua. Journal of Asia-Pacific Entomology 13:313-318.
Kincaid RP, Sullivan CS. 2012. Virus-encoded microRNAs: an overview and a look to the future. Plos Pathogens 8.
Kumar S, Gu XJ, Kim Y. 2016. A viral histone H4 suppresses insect insulin signal and delays host development. Developmental and Comparative Immunology 63:66-77.
Lagos-Quintana M, Rauhut R, Lendeckel W, Tuschl T. 2001. Identification of novel genes coding for small expressed RNAs. Science 294:853-858.
Lanzi G, De Miranda JR, Boniotti MB, Cameron CE, Lavazza A, Capucci L, Camazine SM, Rossi C. 2006. Molecular and biological characterization of deformed wing virus of honeybees (Apis mellifera L.). Journal of Virology 80:4998-5009.
Lawlor L, Yang XBB. 2019. Harnessing the HDAC-histone deacetylase enzymes, inhibitors and how these can be utilised in tissue engineering. International Journal of Oral Science 11.
Le Conte Y, Ellis M, Ritter W. 2010. Varroa mites and honey bee health: can Varroa explain part of the colony losses? Apidologie 41:353-363.
Li XS, Webb BA. 1994. Apparent functional-role for a cysteine-rich polydnavirus protein in suppression of the insect cellular immune-response. Journal of Virology 68:7482-7489.
Li Y, Li SJ, Li RM, Xu J, Jin P, Chen LM, Ma F. 2017. Genome-wide miRNA screening reveals miR-310 family members negatively regulate the immune response in Drosophila melanogaster via co-targeting Drosomycin. Developmental and Comparative Immunology 68:34-45.
Ling EJ, Yu XQ. 2006. Cellular encapsulation and melanization are enhanced by immulectins, pattern recognition receptors from the tobacco hornworm Manduca sexta. Developmental and Comparative Immunology 30:289-299.
Locke B, Semberg E, Forsgren E, de Miranda JR. 2017. Persistence of subclinical deformed wing virus infections in honeybees following Varroa mite removal and a bee population turnover. Plos One 12.
Marks PA, Richon VM, Rifkind RA. 2000. Histone deacetylase inhibitors: Inducers of differentiation or apoptosis of transformed cells. Jnci-Journal of the National Cancer Institute 92:1210-1216.
Martin SJ, Highfield AC, Brettell L, Villalobos EM, Budge GE, Powell M, Nikaido S, Schroeder DC. 2012. Global honey bee viral landscape altered by a parasitic mite. Science 336:1304-1306.
McKinsey TA. 2011. Targeting Inflammation in Heart Failure with Histone Deacetylase Inhibitors. Molecular Medicine 17:434-441.
Merlin BL, Consoli FL. 2019. Regulation of the larval transcriptome of Diatraea saccharalis (Lepidoptera: Crambidae) by maternal and other factors of the parasitoid Cotesia flavipes (Hymenoptera: Braconidae). Frontiers in Physiology 10.
Morales J, Medina P, Vinuela E. 2007. The influence of two endoparasitic wasps, Hyposoter didymator and Chelonus inanitus, on the growth and food consumption of their host larva Spodoptera littoralis. Biocontrol 52:145-160.
Nalini M, Choi JY, Je YH, Hwang I, Kim Y. 2008. Immunoevasive property of a polydnaviral product, CpBV-lectin, protects the parasitoid egg from hemocytic encapsulation of Plutella xylostella (Lepidoptera : Yponomeutidae). Journal of Insect Physiology 54:1125-1131.
Neov B, Georgieva A, Shumkova R, Radoslavov G, Hristov P. 2019. Biotic and abiotic factors associated with colonies mortalities of managed honey bee (Apis mellifera). Diversity-Basel 11.
Nicholls E, Botias C, Rotheray EL, Whitehorn P, David A, Fowler R, David T, Feltham H, Swain JL, Wells P, Hill EM, Osborne JL, Goulson D. 2018. Monitoring Neonicotinoid Exposure for Bees in Rural and Peri-urban Areas of the UK during the Transition from Pre- to Post-moratorium. Environmental Science Technology 52:9391-9402.
Norton AM, Remnant EJ, Buchmann G, Beekman M. 2020. Accumulation and Competition Amongst Deformed Wing Virus Genotypes in Naive Australian Honeybees Provides Insight Into the Increasing Global Prevalence of Genotype B. Front Microbiol 11.
Pardo A, Borges PAV. 2020. Worldwide importance of insect pollination in apple orchards: A review. Agric. Ecosyst. Environ. 293:17.
Potts SG, Biesmeijer JC, Kremen C, Neumann P, Schweiger O, Kunin WE. 2010. Global pollinator declines: trends, impacts and drivers. Trends in ecology evolution 25:345-353.
Pruijssers AJ, Falabella P, Eum JH, Pennacchio F, Brown MR, Strand MR. 2009. Infection by a symbiotic polydnavirus induces wasting and inhibits metamorphosis of the moth Pseudoplusia includens. Journal of Experimental Biology 212:2998-3006.
Rao GVR, Wightman JA, Rao DVR. 1993. World review of the natural enemies and diseases of Spodoptera-Litura (F) (Lepidoptera, Noctuidae). Insect Sci Appl 14:273-284.
Ray S, Ferneyhough B. 1997a. The effects of age on olfactory learning and memory in the honey bee Apis mellifera. Neuroreport 8:789-793.
Ray S, Ferneyhough B. 1997b. Seasonal variation of proboscis extension reflex conditioning in the honey bee (Apis mellifera). Journal of Apicultural Research 36:108-110.
Richards EH, Edwards JP. 2000. Parasitization of Lacanobia oleracea (Lepidoptera) by the ectoparasitic wasp, Eulophus pennicornis, suppresses haemocyte-mediated recognition of non-self and phagocytosis. Journal of Insect Physiology 46:1-11.
Rosenkranz P, Aumeier P, Ziegelmann B. 2010. Biology and control of Varroa destructor. Journal of Invertebrate Pathology 103:S96-S119.
Rucker RR, Thurman WN, Burgett M. 2019. Colony collapse and the consequences of bee disease: Market adaptation to environmental change. Journal of the Association of Environmental and Resource Economists 6:927-960.
Salvia R, Nardiello M, Scieuzo C, Scala A, Bufo SA, Rao A, Vogel H, Falabella P. 2018. Novel factors of viral origin inhibit TOR pathway gene expression. Frontiers in Physiology 9.
Schmittgen TD, Lee EJ, Jiang JM, Sarkar A, Yang LQ, Elton TS, Chen CF. 2008. Real-time PCR quantification of precursor and mature microRNA. Methods 44:31-38.
Schnettler E, Sterken MG, Leung JY, Metz SW, Geertsema C, Goldbach RW, Vlak JM, Kohl A, Khromykh AA, Pijlman GP. 2012. Noncoding flavivirus RNA displays RNA interference suppressor activity in insect and mammalian cells. Journal of Virology 86:13486-13500.
Schweiger O, Biesmeijer JC, Bommarco R, Hickler T, Hulme PE, Klotz S, Kuhn I, Moora M, Nielsen A, Ohlemuller R, Petanidou T, Potts SG, Pysek P, Stout JC, Sykes MT, Tscheulin T, Vila M, Walther GR, Westphal C, Winter M, Zobel M, Settele J. 2010. Multiple stressors on biotic interactions: how climate change and alien species interact to affect pollination. Biological Reviews 85:777-795.
Shah KS, Evans EC, Pizzorno MC. 2009. Localization of deformed wing virus (DWV) in the brains of the honeybee, Apis mellifera Linnaeus. Virology Journal 6.
Shein NA, Shohami E. 2011. Histone Deacetylase Inhibitors as Therapeutic Agents for Acute Central Nervous System Injuries. Molecular Medicine 17:448-456.
Shelby KS, Webb BA. 1999. Polydnavirus-mediated suppression of insect immunity. Journal of Insect Physiology 45:507-514.
Stern-Ginossar N, Elefant N, Zimmermann A, Wolf DG, Saleh N, Biton M, Horwitz E, Prokocimer Z, Prichard M, Hahn G, Goldman-Wohl D, Greenfield C, Yagel S, Hengel H, Altuvia Y, Margalit H, Mandelboim O. 2007. Host immune system gene targeting by a viral miRNA. Science 317:376-381.
Strand MR. 2007. Polydnavirus-mediated suppression of the insect immune response. Journal of Insect Science 7.
Strand MR, Beck MH, Lavine MD, Clark KD. 2006. Microplitis demolitor bracovirus inhibits phagocytosis by hemocytes from Pseudoplusia includens. Arch Insect Biochem 61:134-145.
Strand MR, Burke GR. 2012. Polydnaviruses as symbionts and gene delivery systems. Plos Pathogens 8.
Strand MR, Burke GR. 2013. Polydnavirus-wasp associations: evolution, genome organization, and function. Curr Opin Virol 3:587-594.
Strand MR, Burke GR. 2019. Polydnaviruses: evolution and function. Current Issues in Molecular Biology 34:163-181.
Sun YC, Zhang XB. 2019. Role of DCP1-DCP2 complex regulated by viral and host microRNAs in DNA virus infection. Fish Shellfish Immunology 92:21-30.
Tauber JP, Collins WR, Schwarz RS, Chen YP, Grubbs K, Huang Q, Lopez D, Peterson R, Evans JD. 2019. Natural Product Medicines for Honey Bees: Perspective and Protocols. Insects 10.
Teng ZW, Xu G, Gan SY, Chen X, Fang Q, Ye GY. 2016. Effects of the endoparasitoid Cotesia chilonis (Hymenoptera: Braconidae) parasitism, venom, and calyx fluid on cellular and humoral immunity of its host Chilo suppressalis (Lepidoptera: Crambidae) larvae. Journal of Insect Physiology 85:46-56.
Thoetkiattikul H, Beck MH, Strand MR. 2005. Inhibitor kappa B-like proteins from a polydnavirus inhibit NF-kappa B activation and suppress the insect immune response. Proceedings of the National Academy of Sciences of the United States of America 102:11426-11431.
Tian HY, Hu Y, Zhang P, Xing WX, Xu CX, Yu D, Yang Y, Luo KJ, Li M. 2019. Spodoptera litura cyclophilin A is required for Microplitis bicoloratus bracovirus-induced apoptosis during insect cellular immune response. Arch Insect Biochem 100.
Traniello IM, Bukhari SA, Kevill J, Ahmed AC, Hamilton AR, Naeger NL, Schroeder DC, Robinson GE. 2020. Meta-analysis of honey bee neurogenomic response links Deformed wing virus type A to precocious behavioral maturation. Sci Rep 10:3101.
Tuan SJ, Yeh CC, Atlihan R, Chi H, Tang LC. 2016. Demography and consumption of Spodoptera litura (Lepidoptera: Noctuidae) reared on cabbage and taro. J Econ Entomol 109:732-739.
van der Sluijs JP, Simon-Delso N, Goulson D, Maxim L, Bonmatin JM, Belzunces LP. 2013. Neonicotinoids, bee disorders and the sustainability of pollinator services. Current Opinion in Environmental Sustainability 5:293-305.
Van Wynsberghe PM, Chan SP, Slack FJ, Pasquinelli AE. 2011. Analysis of microRNA Expression and Function. In: Rothman JH, Singson A, (eds). Caenorhabditis elegans: molecular genetics and development, second edition. pp 219-252.
Vecsey CG, Hawk JD, Lattal KM, Stein JM, Fabian SA, Attner MA, Cabrera SM, McDonough CB, Brindle PK, Abel T, Wood MA. 2007. Histone deacetylase inhibitors enhance memory and synaptic plasticity via CREB: CBP-dependent transcriptional activation. J. Neurosci. 27:6128-6140.
Volkoff AN, Jouan V, Urbach S, Samain S, Bergoin M, Wincker P, Demettre E, Cousserans F, Provost B, Coulibaly F, Legeai F, Beliveau C, Cusson M, Gyapay G, Drezen JM. 2010. Analysis of virion structural components reveals vestiges of the ancestral ichnovirus genome. Plos Pathogens 6.
Wang ZZ, Ye XQ, Shi M, Li F, Wang ZH, Zhou YN, Gu QJ, Wu XT, Yin CL, Guo DH, Hu RM, Hu NN, Chen T, Zheng BY, Zou JN, Zhan LQ, Wei SJ, Wang YP, Huang JH, Fang XD, Strand MR, Chen XX. 2018. Parasitic insect-derived miRNAs modulate host development. Nature Communications 9.
Wu PC, Lin YH, Wu TC, Lee ST, Wu CP, Chang Y, Wu YL. 2018. MicroRNAs derived from the insect virus HzNV-1 promote lytic infection by suppressing histone methylation. Sci Rep-Uk 8.
Wu SF, Xu G, Stanley D, Huang J, Ye GY. 2015. Dopamine modulates hemocyte phagocytosis via a D1-like receptor in the rice stem borer, Chilo suppressalis. Sci Rep-Uk 5:13.
Wu Y, Starzinski-Powitz A, Guo SW. 2007. Trichostatin A, a histone deacetylase inhibitor, attenuates invasiveness and reactivates E-cadherin expression in immortalized endometriotic cells. Reproductive Sciences 14:374-382.
Yanez O, Jaffe R, Jarosch A, Fries I, Moritz RFA, Paxton RJ, de Miranda JR. 2012. Deformed wing virus and drone mating flights in the honey bee (Apis mellifera): implications for sexual transmission of a major honey bee virus. Apidologie 43:17-30.
Yang XL, Cox-Foster DL. 2005. Impact of an ectoparasite on the immunity and pathology of an invertebrate: Evidence for host immunosuppression and viral amplification. Proceedings of the National Academy of Sciences of the United States of America 102:7470-7475.
Zhao YM, Sun H, Lu J, Li XX, Chen X, Tao D, Huang WF, Huang BQ. 2005. Lifespan extension and elevated hsp gene expression in Drosophila caused by histone deacetylase inhibitors. J. Exp. Biol. 208:697-705.
Zhou YH, Badgett MJ, Billard L, Bowen JH, Orlando R, Willis JH. 2017. Properties of the cuticular proteins of Anopheles gambiae as revealed by serial extraction of adults. Plos One 12.
Zhu F, Cusumano A, Bloem J, Weldegergis BT, Villela A, Fatouros NE, van Loon JJA, Dicke M, Harvey JA, Vogel H, Poelman EH. 2018. Symbiotic polydnavirus and venom reveal parasitoid to its hyperparasitoids. Proceedings of the National Academy of Sciences of the United States of America 115:5205-5210.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/19288-
dc.description.abstract膜翅目昆蟲在生物界中擁有許多重要地位,也是昆蟲綱 (Incecta) 中第三大目 (Order),牠們不僅是重要的社會性昆蟲代表也是許多植物的受粉者。這類昆蟲居多皆有極佳的飛行能力,能探索長距離的巢外環境亦能有較廣的環境資源。然而,也因為牠們接觸的環境較為多元,其所面臨的環境壓力也可能因此增加。膜翅目昆蟲病毒的研究在近年受到高度重視,本論文即在探討小繭蜂與西方花蜜蜂之病毒研究。膜翅目昆蟲體內的病毒性病原菌未必皆會使其帶原寄主死亡,在馬尼拉小繭蜂體內有著一種特殊共生性病毒,其名為多去氧核糖核酸病毒 (Polydnavirus, PDV),此病毒會在雌性馬尼拉小繭蜂的卵巢中利用卵萼細胞進行大量的病毒複製,但不會對馬尼拉小繭蜂造成任何毒性傷害,反而會幫助馬尼拉小繭蜂在寄生鱗翅目寄主時壓制寄主的免疫系統,使其幼蟲能在鱗翅目寄主體內完好發育。另外在西方花蜜蜂的研究中,因近年各種環境因子、農藥施用、蟲生病原菌等逆境非生物及生物性壓力,造成蜜蜂巢內有大量工蜂因不知明原因而消失。而近期的研究指出,在蜜蜂越冬時,會嚴重感染蜜蜂的畸翅病毒 (Deformed wing virus, DWV) 即是使蜜蜂大量死亡的原因之一,也因為此病毒對蜜蜂全生活史皆可感染,故其所造成的生物性逆境壓力會從蜜蜂幼蟲持續累積到成蜂階段,使蜂巢整體健全程度影響甚鉅。故在本篇研究中,我們將探討不同膜翅目昆蟲體內的不同種病毒,如何影響其寄主的生理系統,研究此生物性逆境所造成的結果是幫助其寄主,亦或是使其寄主受毒力影響而出現不正常生理反應。此研究將有助於釐清昆蟲在病理學中,病原菌造成的生物性逆境下如何影響寄主和寄主生理系統的反應。zh_TW
dc.description.abstractHymenopterans are some of the most important creatures in the wild world. The third largest order within Insecta, they are the mainly social insects and major pollinators, contributing greatly to plant diversity. Due to their powerful flight ability, which enables them to search for diverse resources across significant distances, they encounter a greater variety of environmental stresses then other insects. In recent years, Hymenopteran viruses have been highlight in various scientific reports. In our studies, we focus on the two different pathogenic virus of Snellenius manilae and Apis mellifera. Polydnavirus (PDV), a symbiont of Braconidae parasitoids, replicate in their ovaries without causing any virulence to the parasitoid. In fact, Snellenius manilae braconirus (SmBV), a kind of PDV, actually helps Snellenius manilae protect its offspring from the immune response of the parasitized host. It not only shuts down their host’s immune system, but also changes their metabolism of the parasitized caterpillar larvae. On the other hands, populations of Apis mellifera, also known as the western honey bee, have been declining in recent years. Whilst the cause is still not fully understood, with some studies suggesting a combination of pesticide abuse, various environmental factors and pathogen, it could be linked to deformed-wing virus (DWV) which causes significant damage to a great many hives and honey bee each winter. It can infect all stages of honey bees, and results in adult bees growing a pair of “useless”. Severely infected bees are not expected to survive for more than 48 hours or be able to return back to the hive. With this in mind, our study focuses on the physiological effects from different types of infectious viruses in hymenopterans and different phenomena a arising from the biological stress. This will help further our understanding of relationship between insect physiology and pathology.en
dc.description.provenanceMade available in DSpace on 2021-06-08T01:52:09Z (GMT). No. of bitstreams: 1
U0001-1708202012403000.pdf: 4104021 bytes, checksum: 55c651d148ccadfc69d08d396761e687 (MD5)
Previous issue date: 2020
en
dc.description.tableofcontentsCONTENTS
摘要 i
ABSTRACT ii
CONTENTS iv
SECTION Ⅰ 1
摘要 2
ABSTRACT 4
LIST OF FIGURES 5
LIST OF TABLES 6
Chapter 1 Introduction 7
Chapter 2 Material and Method 10
2.1 Insects 10
2.2 Cells and SmBV particles extraction 10
2.3 Total RNA extraction, cDNA synthesis, and qPCR 10
2.4 Small RNA Hiseq next-generation sequencing 11
2.5 Stem-loop qPCR 12
2.6 Phagocytosis assay 12
2.7 Encapsulation assay 13
2.8 Statistical analyses 13
Chapter 3 Results 15
3.1 SmBV genome encodes abundant potential miRNAs that are associated with different physiological genes in the host 15
3.2 SmBV-derived miR-199b-5p and miR-2989 are expressed in parasitized hosts 16
3.3 MiR-199b-5p and miR-2989 are the main miRNAs suppressing the host immune system and target the JAK/STAT and Toll pathways, respectively 17
3.4 MiR-199b-5p and miR-2989 affect phagocytosis and encapsulation in cellular immunity 19
3.5 Inhibitors of miR-199b-5p and miR-2989 restore the development of parasitized S. litura larvae and damage the S. manilae eggs 19
Chapter 4 Discussion 21
SECTION Ⅱ 57
摘要 58
ABSTRACT 59
LIST OF FIGURES 60
LIST OF TABLES 61
Chapter 1 Introduction 62
Chapter 2 Material and Method 66
2.1 Bee rearing 66
2.2 Purification of deformed wing virus 66
2.3 Determination of virus copy number 67
2.4 Experimental treatment of bees with DWV and sodium butyrate 67
2.5 Proboscis extension reflex assay 67
2.6 Western-blot analysis 68
2.7 Extraction of total RNA 69
2.8 Next generation sequencing 69
2.9 cDNA synthesis 70
2.10 Analysis of gene expression by real-time quantification PCR 70
2.11 Real-time recording of bee activity by wireless sensoring network (WSN)-based automatic monitoring system 70
2.12 Statistical analysis 71
Chapter 3 Results 72
3.1 Sodium butyrate could significantly reverse low survival rate and learning ability of bees induced by DWV infection 72
3.2 Sodium butyrate enhances the expression of genes involved in learning and memory in bees 73
3.3 Sodium butyrate reduces the negative physiological effect by DWV infection in bees and increases their field activity 74
3.4 Steady dietary supply of sodium butyrate significantly improves homing ability of DWV-infected worker bees via upregulating expression of genes involved in memory and learning 76
Chapter 4 Discussion 78
REFERENCE 104
博士班研究發表之期刊論文 112
dc.language.isoen
dc.title昆蟲病毒對寄主免疫與學習之調節zh_TW
dc.titleRegulation of host immune and learning responses by insect virusesen
dc.typeThesis
dc.date.schoolyear108-2
dc.description.degree博士
dc.contributor.oralexamcommittee張俊哲(Chun-Che Chang),趙裕展(Yu-Chan Chao),吳宗遠(Tzong-Yuan Wu),陳美娥(Mei-Er Chen),吳明城(Ming-Cheng Wu)
dc.subject.keyword畸翅病毒,多去氧核糖核酸病毒,生物性逆境,膜翅目,寄生蜂,zh_TW
dc.subject.keywordDeformed-wing virus,Polydnavirus,biological stress,Hymenoptera,parasitoid,en
dc.relation.page113
dc.identifier.doi10.6342/NTU202003722
dc.rights.note未授權
dc.date.accepted2020-08-19
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept昆蟲學研究所zh_TW
顯示於系所單位:昆蟲學系

文件中的檔案:
檔案 大小格式 
U0001-1708202012403000.pdf
  未授權公開取用
4.01 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved