Please use this identifier to cite or link to this item:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/19282
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield??? | Value | Language |
---|---|---|
dc.contributor.advisor | 張俊哲(Chun-che Chang) | |
dc.contributor.author | Bo-Kai Wu | en |
dc.contributor.author | 吳百凱 | zh_TW |
dc.date.accessioned | 2021-06-08T01:51:55Z | - |
dc.date.copyright | 2016-08-02 | |
dc.date.issued | 2016 | |
dc.date.submitted | 2016-07-22 | |
dc.identifier.citation | Abraha, A., Ghoshal, N., Gamblin, T. C., Cryns, V., Berry, R. W., Kuret, J. and Binder, L. I. (2000). C-terminal inhibition of tau assembly in vitro and in Alzheimer's disease. J Cell Sci 113 Pt 21, 3737-3745.
Airaksinen, M. S. and Saarma, M. (2002). The GDNF family: signalling, biological functions and therapeutic value. Nat Rev Neurosci 3, 383-394. Alcaraz-Perez, F., Mulero, V. and Cayuela, M. L. (2008). Application of the dual-luciferase reporter assay to the analysis of promoter activity in Zebrafish embryos. BMC Biotechnol 8, 81. Ansai, S. and Kinoshita, M. (2014). Targeted mutagenesis using CRISPR/Cas system in medaka. Biol Open 3, 362-371. Atkinson-Leadbeater, K., Hehr, C. L., Johnston, J., Bertolesi, G. and McFarlane, S. (2016). EGCG stabilizes growth cone filopodia and impairs retinal ganglion cell axon guidance. Dev Dyn 245, 667-677. Bai, Q., Garver, J. A., Hukriede, N. A. and Burton, E. A. (2007). Generation of a transgenic zebrafish model of Tauopathy using a novel promoter element derived from the zebrafish eno2 gene. Nucleic Acids Res 35, 6501-6516. Bernardos, R. L. and Raymond, P. A. (2006). GFAP transgenic zebrafish. Gene Expr Patterns 6, 1007-1013. Bevis, B. J. and Glick, B. S. (2002). Rapidly maturing variants of the Discosoma red fluorescent protein (DsRed). Nat Biotechnol 20, 83-87. Billingsley, M. L. and Kincaid, R. L. (1997). Regulated phosphorylation and dephosphorylation of tau protein: effects on microtubule interaction, intracellular trafficking and neurodegeneration. Biochem J 323, 577-591. Brinker, A. M., Ma, J., Lipsky, P. E. and Raskin, I. (2007). Medicinal chemistry and pharmacology of genus Tripterygium (Celastraceae). Phytochemistry 68, 732-766. Calkins, M. J., Johnson, D. A., Townsend, J. A., Vargas, M. R., Dowell, J. A., Williamson, T. P., Kraft, A. D., Lee, J. M., Li, J. and Johnson, J. A. (2009). The Nrf2/ARE pathway as a potential therapeutic target in neurodegenerative disease. Antioxid Redox Signal 11, 497-508. Canu, N., Dus, L., Barbato, C., Ciotti, M. T., Brancolini, C., Rinaldi, A. M., Novak, M., Cattaneo, A., Bradbury, A. and Calissano, P. (1998). Tau cleavage and dephosphorylation in cerebellar granule neurons undergoing apoptosis. J Neurosci 18, 7061-7074. Cao, X., Li, C. J., Yang, J. Z., Wei, B. X., Yuan, S. P., Luo, Y. M., Hou, Q. and Zhang, D. M. (2012). Four new neolignans from the leaves of Tripterygium wilfordii. Fitoterapia 83, 343-347. Chang, C. F., Cho, S. and Wang, J. (2014). (-)-Epicatechin protects hemorrhagic brain via synergistic Nrf2 pathways. Ann Clin Transl Neurol 1, 258-271. Chee, F. C., Mudher, A., Cuttle, M. F., Newman, T. A., MacKay, D., Lovestone, S. and Shepherd, D. (2005). Over-expression of tau results in defective synaptic transmission in Drosophila neuromuscular junctions. Neurobiol Dis 20, 918-928. Chen, J., Zhang, Z. and Cai, L. (2014). Diabetic cardiomyopathy and its prevention by nrf2: current status. Diabetes Metab J 38, 337-345. Chen, M., Martins, R. N. and Lardelli, M. (2009). Complex splicing and neural expression of duplicated tau genes in zebrafish embryos. J Alzheimers Dis 18, 305-317. Chen, X., Li, Y., Huang, J., Cao, D., Yang, G., Liu, W., Lu, H. and Guo, A. (2007). Study of tauopathies by comparing Drosophila and human tau in Drosophila. Cell Tissue Res 329, 169-178. Cheng, C. H., Chou, C. M., Chu, C. Y., Chen, G. D., Lien, H. W., Hwang, P. P., Chang, M. S. and Huang, C. J. (2014). Differential regulation of Tetraodon nigroviridis Mx gene promoter activity by constitutively-active forms of STAT1, STAT2, and IRF9. Fish Shellfish Immunol 38, 230-243. Cheng, T., Wang, W., Li, Q., Han, X., Xing, J., Qi, C., Lan, X., Wan, J., Potts, A., Guan, F., et al. (2016). Cerebroprotection of flavanol (-)-epicatechin after traumatic brain injury via Nrf2-dependent and -independent pathways. Free Radic Biol Med 92, 15-28. Chung, C. W., Song, Y. H., Kim, I. K., Yoon, W. J., Ryu, B. R., Jo, D. G., Woo, H. N., Kwon, Y. K., Kim, H. H., Gwag, B. J., et al. (2001). Proapoptotic effects of tau cleavage product generated by caspase-3. Neurobiol Dis 8, 162-172. De Felice, E., Porreca, I., Alleva, E., De Girolamo, P., Ambrosino, C., Ciriaco, E., Germana, A. and Sordino, P. (2014). Localization of BDNF expression in the developing brain of zebrafish. J Anat 224, 564-574. Facello, B., Castaldo, L., De Martino, L. and Lucini, C. (2009). Glial cell line-derived neurotrophic factor in Purkinje cells of adult zebrafish: an autocrine mode of action? Neurosci Lett 465, 133-137. Fasulo, L., Ugolini, G. and Cattaneo, A. (2005). Apoptotic effect of caspase-3 cleaved tau in hippocampal neurons and its potentiation by tau FTDP-mutation N279K. J Alzheimers Dis 7, 3-13. Fasulo, L., Ugolini, G., Visintin, M., Bradbury, A., Brancolini, C., Verzillo, V., Novak, M. and Cattaneo, A. (2000). The neuronal microtubule-associated protein tau is a substrate for caspase-3 and an effector of apoptosis. J Neurochem 75, 624-633. Fasulo, L., Visintin, M., Novak, M. and Cattaneo, A. (1998). Tau truncation in Alzheimer's disease: expression of a fragment encompassing PHF core tau induces apoptosis in COS cells. Alzheimers Reports 1, 25-31. Ferrer, I., Goutan, E., Marin, C., Rey, M. J. and Ribalta, T. (2000). Brain-derived neurotrophic factor in Huntington disease. Brain Res 866, 257-261. Gamblin, T. C., Chen, F., Zambrano, A., Abraha, A., Lagalwar, S., Guillozet, A. L., Lu, M., Fu, Y., Garcia-Sierra, F., LaPointe, N., et al. (2003). Caspase cleavage of tau: linking amyloid and neurofibrillary tangles in Alzheimer's disease. Proc Natl Acad Sci U S A 100, 10032-10037. Gauthier, L. R., Charrin, B. C., Borrell-Pages, M., Dompierre, J. P., Rangone, H., Cordelieres, F. P., De Mey, J., MacDonald, M. E., Lessmann, V., Humbert, S., et al. (2004). Huntingtin controls neurotrophic support and survival of neurons by enhancing BDNF vesicular transport along microtubules. Cell 118, 127-138. George, R. C., Lew, J. and Graves, D. J. (2013). Interaction of cinnamaldehyde and epicatechin with tau: implications of beneficial effects in modulating Alzheimer's disease pathogenesis. J Alzheimers Dis 36, 21-40. Goedert, M., Spillantini, M. G., Jakes, R., Rutherford, D. and Crowther, R. A. (1989a). Multiple isoforms of human microtubule-associated protein tau: sequences and localization in neurofibrillary tangles of Alzheimer's disease. Neuron 3, 519-526. Goedert, M., Spillantini, M. G., Potier, M. C., Ulrich, J. and Crowther, R. A. (1989b). Cloning and sequencing of the cDNA encoding an isoform of microtubule-associated protein tau containing four tandem repeats: differential expression of tau protein mRNAs in human brain. EMBO J 8, 393-399. Goedert, M., Wischik, C. M., Crowther, R. A., Walker, J. E. and Klug, A. (1988). Cloning and sequencing of the cDNA encoding a core protein of the paired helical filament of Alzheimer disease: identification as the microtubule-associated protein tau. Proc Natl Acad Sci U S A 85, 4051-4055. Gong, H., Zhang, B. K., Yan, M., Fang, P. F., Li, H. D., Hu, C. P., Yang, Y., Cao, P., Jiang, P. and Fan, X. R. (2015). A protective mechanism of licorice (Glycyrrhiza uralensis): isoliquiritigenin stimulates detoxification system via Nrf2 activation. J Ethnopharmacol 162, 134-139. Guillozet-Bongaarts, A. L., Garcia-Sierra, F., Reynolds, M. R., Horowitz, P. M., Fu, Y., Wang, T., Cahill, M. E., Bigio, E. H., Berry, R. W. and Binder, L. I. (2005). Tau truncation during neurofibrillary tangle evolution in Alzheimer's disease. Neurobiol Aging 26, 1015-1022. Hashimoto, M. and Heinrich, G. (1997). Brain-derived neurotrophic factor gene expression in the developing zebrafish. Int J Dev Neurosci 15, 983-997. Hisano, Y., Ota, S. and Kawahara, A. (2014). Genome editing using artificial site-specific nucleases in zebrafish. Dev Growth Differ 56, 26-33. Hong, Z., Wang, G., Gu, J., Pan, J., Bai, L., Zhang, S. and Chen, S. D. (2007). Tripchlorolide protects against MPTP-induced neurotoxicity in C57BL/6 mice. Eur J Neurosci 26, 1500-1508. Horowitz, P. M., Patterson, K. R., Guillozet-Bongaarts, A. L., Reynolds, M. R., Carroll, C. A., Weintraub, S. T., Bennett, D. A., Cryns, V. L., Berry, R. W. and Binder, L. I. (2004). Early N-terminal changes and caspase-6 cleavage of tau in Alzheimer's disease. J Neurosci 24, 7895-7902. Iqbal, K., Flory, M., Khatoon, S., Soininen, H., Pirttila, T., Lehtovirta, M., Alafuzoff, I., Blennow, K., Andreasen, N., Vanmechelen, E., et al. (2005). Subgroups of Alzheimer's disease based on cerebrospinal fluid molecular markers. Ann Neurol 58, 748-757. Jacobson, B. A., Chen, E. Z., Tang, S., Belgum, H. S., McCauley, J. A., Evenson, K. A., Etchison, R. G., Jay-Dixon, J., Patel, M. R., Raza, A., et al. (2015). Triptolide and its prodrug minnelide suppress Hsp70 and inhibit in vivo growth in a xenograft model of mesothelioma. Genes Cancer 6, 144-152. Jo, C., Gundemir, S., Pritchard, S., Jin, Y. N., Rahman, I. and Johnson, G. V. (2014). Nrf2 reduces levels of phosphorylated tau protein by inducing autophagy adaptor protein NDP52. Nat Commun 5, 3496. Joshi, G. and Johnson, J. A. (2012). The Nrf2-ARE pathway: a valuable therapeutic target for the treatment of neurodegenerative diseases. Recent Pat CNS Drug Discov 7, 218-229. Jung, H. A., Jung, M. J., Kim, J. Y., Chung, H. Y. and Choi, J. S. (2003). Inhibitory activity of flavonoids from Prunus davidiana and other flavonoids on total ROS and hydroxyl radical generation. Arch Pharm Res 26, 809-815. Kawahara, A., Hisano, Y., Ota, S. and Taimatsu, K. (2016). Site-Specific Integration of Exogenous Genes Using Genome Editing Technologies in Zebrafish. Int J Mol Sci 17. Kim, J. H., Lee, S. R., Li, L. H., Park, H. J., Park, J. H., Lee, K. Y., Kim, M. K., Shin, B. A. and Choi, S. Y. (2011a). High cleavage efficiency of a 2A peptide derived from porcine teschovirus-1 in human cell lines, zebrafish and mice. PLoS One 6, e18556. Kim, K. H., Kim, M. A., Moon, E., Kim, S. Y., Choi, S. Z., Son, M. W. and Lee, K. R. (2011b). Furostanol saponins from the rhizomes of Dioscorea japonica and their effects on NGF induction. Bioorg Med Chem Lett 21, 2075-2078. Kim, M. J., Ryu, G. R., Kang, J. H., Sim, S. S., Min, D. S., Rhie, D. J., Yoon, S. H., Hahn, S. J., Jeong, I. K., Hong, K. J., et al. (2004). Inhibitory effects of epicatechin on interleukin-1beta-induced inducible nitric oxide synthase expression in RINm5F cells and rat pancreatic islets by down-regulation of NF-kappaB activation. Biochem Pharmacol 68, 1775-1785. Kobayashi, A., Ohta, T. and Yamamoto, M. (2004). Unique function of the Nrf2-Keap1 pathway in the inducible expression of antioxidant and detoxifying enzymes. Methods Enzymol 378, 273-286. Konar, A., Shah, N., Singh, R., Saxena, N., Kaul, S. C., Wadhwa, R. and Thakur, M. K. (2011). Protective role of Ashwagandha leaf extract and its component withanone on scopolamine-induced changes in the brain and brain-derived cells. PLoS One 6, e27265. Konishi, Y., Yang, L. B., He, P., Lindholm, K., Lu, B., Li, R. and Shen, Y. (2014). Deficiency of GDNF receptor GFRalpha1 in Alzheimer's neurons results in neuronal death. J Neurosci 34, 13127-13138. Kopke, E., Tung, Y. C., Shaikh, S., Alonso, A. C., Iqbal, K. and Grundke-Iqbal, I. (1993). Microtubule-associated protein tau. Abnormal phosphorylation of a non-paired helical filament pool in Alzheimer disease. J Biol Chem 268, 24374-24384. Leiros, M., Alonso, E., Rateb, M. E., Houssen, W. E., Ebel, R., Jaspars, M., Alfonso, A. and Botana, L. M. (2015). Gracilins: Spongionella-derived promising compounds for Alzheimer disease. Neuropharmacology 93, 285-293. Leuenroth, S. J., Okuhara, D., Shotwell, J. D., Markowitz, G. S., Yu, Z., Somlo, S. and Crews, C. M. (2007). Triptolide is a traditional Chinese medicine-derived inhibitor of polycystic kidney disease. Proc Natl Acad Sci U S A 104, 4389-4394. Lin, L. F., Doherty, D. H., Lile, J. D., Bektesh, S. and Collins, F. (1993). GDNF: a glial cell line-derived neurotrophic factor for midbrain dopaminergic neurons. Science 260, 1130-1132. Lin, N., Pan, X. D., Chen, A. Q., Zhu, Y. G., Wu, M., Zhang, J. and Chen, X. C. (2014). Tripchlorolide improves age-associated cognitive deficits by reversing hippocampal synaptic plasticity impairment and NMDA receptor dysfunction in SAMP8 mice. Behav Brain Res 258, 8-18. Liu, J., Lee, J., Salazar Hernandez, M. A., Mazitschek, R. and Ozcan, U. (2015). Treatment of obesity with celastrol. Cell 161, 999-1011. Lopez-Ramirez, M. A., Dominguez-Monzon, G., Vergara, P. and Segovia, J. (2008). Gas1 reduces Ret tyrosine 1062 phosphorylation and alters GDNF-mediated intracellular signaling. Int J Dev Neurosci 26, 497-503. Lovestone, S. and Reynolds, C. H. (1997). The phosphorylation of tau: a critical stage in neurodevelopment and neurodegenerative processes. Neuroscience 78, 309-324. Ma, Q. (2013). Role of nrf2 in oxidative stress and toxicity. Annu Rev Pharmacol Toxicol 53, 401-426. Mershin, A., Pavlopoulos, E., Fitch, O., Braden, B. C., Nanopoulos, D. V. and Skoulakis, E. M. (2004). Learning and memory deficits upon TAU accumulation in Drosophila mushroom body neurons. Learn Mem 11, 277-287. Mudher, A., Shepherd, D., Newman, T. A., Mildren, P., Jukes, J. P., Squire, A., Mears, A., Drummond, J. A., Berg, S., MacKay, D., et al. (2004). GSK-3beta inhibition reverses axonal transport defects and behavioural phenotypes in Drosophila. Mol Psychiatry 9, 522-530. Novak, M., Kabat, J. and Wischik, C. M. (1993). Molecular characterization of the minimal protease resistant tau unit of the Alzheimer's disease paired helical filament. EMBO J 12, 365-370. Ohta, K., Fujinami, A., Kuno, S., Sakakimoto, A., Matsui, H., Kawahara, Y. and Ohta, M. (2004). Cabergoline stimulates synthesis and secretion of nerve growth factor, brain-derived neurotrophic factor and glial cell line-derived neurotrophic factor by mouse astrocytes in primary culture. Pharmacology 71, 162-168. Orena, S., Owen, J., Jin, F., Fabian, M., Gillitt, N. D. and Zeisel, S. H. (2015). Extracts of fruits and vegetables activate the antioxidant response element in IMR-32 Cells. J Nutr 145, 2006-2011. Ortiz-Lopez, L., Marquez-Valadez, B., Gomez-Sanchez, A., Silva-Lucero, M. D., Torres-Perez, M., Tellez-Ballesteros, R. I., Ichwan, M., Meraz-Rios, M. A., Kempermann, G. and Ramirez-Rodriguez, G. B. (2016). Green tea compound epigallo-catechin-3-gallate (EGCG) increases neuronal survival in adult hippocampal neurogenesis in vivo and in vitro. Neuroscience 322, 208-220. Papiez, M. A., Baran, J., Bukowska-Strakova, K. and Wiczkowski, W. (2010). Antileukemic action of (-)-epicatechin in the spleen of rats with acute myeloid leukemia. Food Chem Toxicol 48, 3391-3397. Paquet, D., Bhat, R., Sydow, A., Mandelkow, E. M., Berg, S., Hellberg, S., Falting, J., Distel, M., Koster, R. W., Schmid, B., et al. (2009). A zebrafish model of tauopathy allows in vivo imaging of neuronal cell death and drug evaluation. J Clin Invest 119, 1382-1395. Park, H. C., Kim, C. H., Bae, Y. K., Yeo, S. Y., Kim, S. H., Hong, S. K., Shin, J., Yoo, K. W., Hibi, M., Hirano, T., et al. (2000). Analysis of upstream elements in the HuC promoter leads to the establishment of transgenic zebrafish with fluorescent neurons. Dev Biol 227, 279-293. Penberthy, W. T., Shafizadeh, E. and Lin, S. (2002). The zebrafish as a model for human disease. Front Biosci 7, d1439-1453. Peterson, D. W., George, R. C., Scaramozzino, F., LaPointe, N. E., Anderson, R. A., Graves, D. J. and Lew, J. (2009). Cinnamon extract inhibits tau aggregation associated with Alzheimer's disease in vitro. J Alzheimers Dis 17, 585-597. Phillips, J. T. and Fox, R. J. (2013). BG-12 in multiple sclerosis. Semin Neurol 33, 56-65. Porreca, I., De Felice, E., Fagman, H., Di Lauro, R. and Sordino, P. (2012). Zebrafish bcl2l is a survival factor in thyroid development. Dev Biol 366, 142-152. Rensheng Xu, J. M. F., John H. Musser (2005). Bioactive compounds from Tripterygium wilfordii. In Studies in Natural Products Chemistry (ed. Atta-ur-Rahman), pp. 773–801. London: Elsevier. Revilla, S., Sunol, C., Garcia-Mesa, Y., Gimenez-Llort, L., Sanfeliu, C. and Cristofol, R. (2014). Physical exercise improves synaptic dysfunction and recovers the loss of survival factors in 3xTg-AD mouse brain. Neuropharmacology 81, 55-63. Rissman, R. A., Poon, W. W., Blurton-Jones, M., Oddo, S., Torp, R., Vitek, M. P., LaFerla, F. M., Rohn, T. T. and Cotman, C. W. (2004). Caspase-cleavage of tau is an early event in Alzheimer disease tangle pathology. J Clin Invest 114, 121-130. Sariola, H. and Saarma, M. (2003). Novel functions and signalling pathways for GDNF. J Cell Sci 116, 3855-3862. Shahani, N. and Brandt, R. (2002). Functions and malfunctions of the tau proteins. Cell Mol Life Sci 59, 1668-1680. Shahani, N., Subramaniam, S., Wolf, T., Tackenberg, C. and Brandt, R. (2006). Tau aggregation and progressive neuronal degeneration in the absence of changes in spine density and morphology after targeted expression of Alzheimer's disease-relevant tau constructs in organotypic hippocampal slices. J Neurosci 26, 6103-6114. Shay, J., Elbaz, H. A., Lee, I., Zielske, S. P., Malek, M. H. and Huttemann, M. (2015). Molecular mechanisms and therapeutic effects of (-)-epicatechin and other polyphenols in cancer, inflammation, diabetes, and neurodegeneration. Oxid Med Cell Longev 2015, 181260. Shepherd, I. T., Beattie, C. E. and Raible, D. W. (2001). Functional analysis of zebrafish GDNF. Dev Biol 231, 420-435. Shin, I. S., Hong, J., Jeon, C. M., Shin, N. R., Kwon, O. K., Kim, H. S., Kim, J. C., Oh, S. R. and Ahn, K. S. (2013). Diallyl-disulfide, an organosulfur compound of garlic, attenuates airway inflammation via activation of the Nrf-2/HO-1 pathway and NF-kappaB suppression. Food Chem Toxicol 62, 506-513. Smith, R. C., O'Bryan, L. M., Mitchell, P. J., Leung, D., Ghanem, M., Wilson, J. M., Hanson, J. C., Sossick, S., Cooper, J., Huang, L., et al. (2015). Increased brain bio-distribution and chemical stability and decreased immunogenicity of an engineered variant of GDNF. Exp Neurol 267, 165-176. Spillantini, M. G., Bird, T. D. and Ghetti, B. (1998). Frontotemporal dementia and Parkinsonism linked to chromosome 17: a new group of tauopathies. Brain Pathol 8, 387-402. Spillantini, M. G., Murrell, J. R., Goedert, M., Farlow, M., Klug, A. and Ghetti, B. (2006). Mutations in the tau gene (MAPT) in FTDP-17: the family with Multiple System Tauopathy with Presenile Dementia (MSTD). J Alzheimers Dis 9, 373-380. Stoothoff, W. H. and Johnson, G. V. (2005). Tau phosphorylation: physiological and pathological consequences. Biochim Biophys Acta 1739, 280-297. Tomasiewicz, H. G., Flaherty, D. B., Soria, J. P. and Wood, J. G. (2002). Transgenic zebrafish model of neurodegeneration. J Neurosci Res 70, 734-745. Treanor, J. J., Goodman, L., de Sauvage, F., Stone, D. M., Poulsen, K. T., Beck, C. D., Gray, C., Armanini, M. P., Pollock, R. A., Hefti, F., et al. (1996). Characterization of a multicomponent receptor for GDNF. Nature 382, 80-83. Ungos, J. M., Karlstrom, R. O. and Raible, D. W. (2003). Hedgehog signaling is directly required for the development of zebrafish dorsal root ganglia neurons. Development 130, 5351-5362. Venkatesha, S. H., Yu, H., Rajaiah, R., Tong, L. and Moudgil, K. D. (2011). Celastrus-derived celastrol suppresses autoimmune arthritis by modulating antigen-induced cellular and humoral effector responses. J Biol Chem 286, 15138-15146. Walton, K. M. (1999). GDNF: a novel factor with therapeutic potential for neurodegenerative disorders. Mol Neurobiol 19, 43-59. Wang, C., Li, C. J., Yang, J. Z., Ma, J., Chen, X. G., Hou, Q. and Zhang, D. M. (2013). Anti-inflammatory sesquiterpene derivatives from the leaves of Tripterygium wilfordii. J Nat Prod 76, 85-90. Wang, X. J., Hayes, J. D. and Wolf, C. R. (2006). Generation of a stable antioxidant response element-driven reporter gene cell line and its use to show redox-dependent activation of nrf2 by cancer chemotherapeutic agents. Cancer Res 66, 10983-10994. Ward, S. M., Himmelstein, D. S., Lancia, J. K. and Binder, L. I. (2012). Tau oligomers and tau toxicity in neurodegenerative disease. Biochem Soc Trans 40, 667-671. Westerfield, M. (2000). The zebrafish book. A guide for the laboratory use of zebrafish (Danio rerio). (fourth ed. edn). Eugene.: University of Oregon Press. Wheeler, J. M., Guthrie, C. R. and Kraemer, B. C. (2010). The role of MSUT-2 in tau neurotoxicity: a target for neuroprotection in tauopathy? Biochem Soc Trans 38, 973-976. Williams, L. M., Timme-Laragy, A. R., Goldstone, J. V., McArthur, A. G., Stegeman, J. J., Smolowitz, R. M. and Hahn, M. E. (2013). Developmental expression of the Nfe2-related factor (Nrf) transcription factor family in the zebrafish, Danio rerio. PLoS One 8, e79574. Wong, K. F., Chan, J. K., Chan, K. L., Tam, P., Yang, D., Fan, S. T. and Luk, J. M. (2008). Immunochemical characterization of the functional constituents of Tripterygium wilfordii contributing to its anti-inflammatory property. Clin Exp Pharmacol Physiol 35, 55-59. Wong, K. F., Yuan, Y. and Luk, J. M. (2012). Tripterygium wilfordii bioactive compounds as anticancer and anti-inflammatory agents. Clin Exp Pharmacol Physiol 39, 311-320. Wu, B. K., Yuan, R. Y., Lien, H. W., Hung, C. C., Hwang, P. P., Chen, R. P., Chang, C. c., Liao, Y. F. and Huang, C. J. (2016). Multiple signaling factors and drugs alleviate neuronal death induced by expression of human and zebrafish tau proteins in vivo. J Biomed Sci 23, 25. Xu, J., Wang, H., Ding, K., Zhang, L., Wang, C., Li, T., Wei, W. and Lu, X. (2014). Luteolin provides neuroprotection in models of traumatic brain injury via the Nrf2-ARE pathway. Free Radic Biol Med 71, 186-195. Xu, S. L., Bi, C. W., Choi, R. C., Zhu, K. Y., Miernisha, A., Dong, T. T. and Tsim, K. W. (2013). Flavonoids induce the synthesis and secretion of neurotrophic factors in cultured rat astrocytes: a signaling response mediated by estrogen receptor. Evid Based Complement Alternat Med 2013, 127075. Zeng, Y., Zhang, J., Zhu, Y., Shen, H., Lu, J., Pan, X., Lin, N., Dai, X., Zhou, M. and Chen, X. (2015). Tripchlorolide improves cognitive deficits by reducing amyloid beta and upregulating synapse-related proteins in a transgenic model of Alzheimer's Disease. J Neurochem 133, 38-52. Zhang, M., An, C., Gao, Y., Leak, R. K., Chen, J. and Zhang, F. (2013). Emerging roles of Nrf2 and phase II antioxidant enzymes in neuroprotection. Prog Neurobiol 100, 30-47. Zhu, H., Liu, X. W., Cai, T. Y., Cao, J., Tu, C. X., Lu, W., He, Q. J. and Yang, B. (2010). Celastrol acts as a potent antimetastatic agent targeting beta1 integrin and inhibiting cell-extracellular matrix adhesion, in part via the p38 mitogen-activated protein kinase pathway. J Pharmacol Exp Ther 334, 489-499. Zilka, N., Filipcik, P., Koson, P., Fialova, L., Skrabana, R., Zilkova, M., Rolkova, G., Kontsekova, E. and Novak, M. (2006). Truncated tau from sporadic Alzheimer's disease suffices to drive neurofibrillary degeneration in vivo. FEBS Lett 580, 3582-3588. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/19282 | - |
dc.description.abstract | Tau蛋白是一個微管結合蛋白,其主要的工作在於維持微管的形成與穩定。當tau基因產生突變時,會伴隨產生家族性的第17號染色體與額顳葉性癡呆合併巴金森氏症 (frontotemporal dementia with Parkinsonism linked to chromosome-17, FTDP-17)。而在阿茲海默症 (Alzheimer’s disease, AD) 的患者腦部中,通常發現在細胞內會有由磷酸化Tau蛋白所組成的神經纖維糾結以及在細胞間會有β-類澱粉蛋白沈積。為了瞭解Tau蛋白在個體層次之功能,在轉基因的動物模式是非常重要的。而在這之中,包含斑馬魚等模式生物,也已被用於研究由Tau蛋白所導致的神經退化機制。在此篇的研究,我們利用專一表現在神經系統的HuC啟動子,來表現人類跟斑馬魚Tau螢光融合蛋白,建立一套Tau螢光蛋白瞬時表現系統。相較於果蠅及老鼠等模式生物,此系統可藉由活體影像來追蹤Tau螢光蛋白所造成的高度神經元細胞死亡。而為了想要降低Tau螢光蛋白所造成的神經細胞死亡,我們發現在表現Bcl2-L1,Nrf2以及GDNF等訊息因子時,能有效地保護神經細胞免於Tau螢光蛋白所引起的死亡。在使用抗氧化反應或促進神經營養作用等化合物之下,同樣也能產生類似的神經保護作用,並且使人類的Tau螢光蛋白維持在磷酸化的狀態下,同時可以被pT212以及AT8等抗體偵測到。於是,我們接著便利用此系統去篩選了400種的中草藥萃取物,並在其中找到了45種萃取物能有效降低Tau螢光蛋白所造成的神經元細胞死亡。雷公藤 (Tripterygium wilfordii) 便是其中一個有效的草本萃取物。在透過高效能液相層析法 (HPLC) 分析以及功能測試上,證明了表兒茶素 (epicatechin, EC) 是雷公藤莖部萃取物中能降低Tau螢光蛋白所造成神經毒性的主要化合物。ARE (antioxidant response elements)-luciferase reporter gene assay主要用於偵測Nrf2的活性,而利用此實驗,我們可以在斑馬魚活體之中,確認表兒茶素可以增加Nrf2的活性。以上這些研究結果顯示,雷公藤莖部萃取物中表兒茶素具由降低Tau螢光蛋白所造成的神經細胞死亡的功用,是藉由透過活化Nrf2來達成。 | zh_TW |
dc.description.abstract | Tau protein is a tubulin-binding protein, which plays important roles in the formation and stability of the microtubule. Mutations in the tau gene are associated with familial forms of frontotemporal dementia with Parkinsonism linked to chromosome-17 (FTDP-17). Neurofibrillary tangles (NFTs) of Tau and extracellular plaques containing amyloid-β (Aβ) are found in the brain of Alzheimer’s disease (AD) patients. Transgenic models, including those of zebrafish, have been employed to elucidate the mechanisms by which Tau protein causes neurodegeneration. In this study, a transient expression system was established to express GFP fusion proteins of zebrafish and human Tau under the control of a neuron-specific HuC promoter. The expression of Tau-GFP was observed to cause high levels of neuronal death which could be directly traced in vivo. Multiple signaling factors, such as Bcl2-L1, Nrf2, and GDNF, were found to effectively protect neuronal cells expressing Tau-GFP from death. Treatment with compounds that induce anti-oxidative or neurotrophic effects also resulted in a similar neuronal protective effect and maintained human Tau-GFP protein in a phosphorylated state, as detected by antibodies pT212 and AT8. Therefore, we used this model to screen 400 herbal extracts and found 45 of them to be effective on reducing Tau-GFP-induced neuronal death. One of the effective herbal extracts is the Tripterygium wilfordii. HPLC analysis and functional assay demonstrated that epicatechin (EC) is the major compound of Tripterygium wilfordii stem extract to decrease the neurotoxicity induced by Tau-GFP. ARE (antioxidant response elements)-luciferase reporter gene assay is usually used to detect the activity of Nrf2. We used the assay to demonstrate that EC could increase the activity of Nrf2 in zebrafish. These data suggest that EC from the Tripterygium wilfordii stem extract could diminish Tau-GFP-induced neuronal death through the activation of Nrf2. | en |
dc.description.provenance | Made available in DSpace on 2021-06-08T01:51:55Z (GMT). No. of bitstreams: 1 ntu-105-D98642001-1.pdf: 2447263 bytes, checksum: 802de2cecf4d6be64d6a8c3d229f4a48 (MD5) Previous issue date: 2016 | en |
dc.description.tableofcontents | Content i
Chart List iii 中文摘要 iv Abstract v Abbreviations vi Introduction 1 The function of Tau protein in mammalian brains 1 The expression of truncated Tau protein in AD 1 The exon structure and splicing patterns of the tau gene 2 Zebrafish as an experimental model for tauopathy research 3 The potential of Tripterygium wilfordii extract in neurodegenerative disease 4 The research of Epicatechin in neurodegenerative disease 4 Specific aims 6 Materials and Methods 8 Zebrafish care 8 Cloning of full-length cDNAs encoding z3R-tau and h4R-tau 8 Construction of expression plasmids 8 Construction of luciferase reporter plasmid 10 Microinjection of zebrafish embryos 10 TUNEL assay 10 Whole-mount immunostaining 11 Western blots of zebrafish embryos 11 Chemical treatment 12 Neuron toxicity assay 12 Fractionation of Tripterygium wilfordii extract and analysis of components 13 Dual-luciferase reporter assay 13 Results 15 Induction of neuronal death by overexpression of wild-type and truncated human and zebrafish Tau proteins in zebrafish embryos 15 Zebrafish Bcl2-L1 prevents neuronal death induced by overexpression of human 4R-tau and zebrafish 3R-tau 16 Zebrafish Nrf2 prevents neuronal death induced by overexpression of human 4R-tau and zebrafish 3R-tau 18 Neuronal death by overexpression of human 4R-tau and zebrafish 3R-tau can be rescued by expression of zebrafish GDNF 19 Treatment with DADS and luteolin can prevent neuronal death induced by overexpression of human 4R-tau 20 Bioactive compounds in Tripterygium wilfordii stem extract could reduce neuronal death induced by overexpression of h4R-tau-GFP 22 Fractionation of Tripterygium wilfordii stem extract and analysis of components 23 Epicatechin is the major component in Tripterygium wilfordii stem extract to attenuate Tau-GFP-induced neuronal death in vivo 23 Epicatechin increases the Nrf2 activity in zebrafish embryos 24 Discussion 26 Conclusion and perspective 31 References 33 Appendix 64 Fig. 1. Overexpression of human and zebrafish Tau proteins in zebrafish embryo 44 Fig. 2. Overexpression of human 4R-tau-GFP in zebrafish embryo resulted in neuronal death 45 Fig. 3. Zebrafish Bcl2-L1 overexpression prevented human 4R-tau-GFP and zebrafish 3R-tau-GFP induced neuronal death 47 Fig. 4. Phosphorylation status of h4R-tau-GFP in zebrafish neuronal cells 49 Fig. 5. Zebrafish Nrf2 overexpression prevented human 4R-tau-GFP and zebrafish 3R-tau-GFP induced neuronal death 51 Fig. 6. Zebrafish GDNF overexpression prevented human 4R-tau-GFP and zebrafish 3R-tau-GFP induced neuronal death 54 Fig. 7. DADS and luteolin treatment prevent neuronal death induced by overexpression of h4R-tau-GFP 56 Fig. 8. Treatment of Tripterygium wilfordii stem extract could reduce neuronal death by overexpression of h4R-tau-GFP in vivo 58 Fig. 9. HPLC profiles of Fraction C7 from Tripterygium wilfordii stem extract and 5 catechin derivatives 59 Fig. 10. Epicatechin has potential to reduce neuronal death induced by h4R-tau-GFP 61 Fig. 11. Epicatechin increases the Nrf2 activity in zebrafish embryos 62 | |
dc.language.iso | en | |
dc.title | 建立斑馬魚成為Tauopathy研究與藥物篩選之模式動物 | zh_TW |
dc.title | Establishment of zebrafish as an animal model for Tauopathy research and drug screening | en |
dc.type | Thesis | |
dc.date.schoolyear | 104-2 | |
dc.description.degree | 博士 | |
dc.contributor.coadvisor | 黃銓珍(Chang-Jen Huang) | |
dc.contributor.oralexamcommittee | 廖永豐(Yung-Feng Liao),陳佩燁(Rita Pei-Yeh Chen),張茂山(Mau-Sun Chang) | |
dc.subject.keyword | tauopathy,Bcl-2,Nrf2,GDNF,神經毒性,斑馬魚,表兒茶素,雷公藤, | zh_TW |
dc.subject.keyword | tauopathy,Bcl-2,Nrf2,GDNF,neurotoxicity,zebrafish,epicatechin,Tripterygium wilfordii, | en |
dc.relation.page | 69 | |
dc.identifier.doi | 10.6342/NTU201600979 | |
dc.rights.note | 未授權 | |
dc.date.accepted | 2016-07-25 | |
dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
dc.contributor.author-dept | 生物科技研究所 | zh_TW |
Appears in Collections: | 生物科技研究所 |
Files in This Item:
File | Size | Format | |
---|---|---|---|
ntu-105-1.pdf Restricted Access | 2.39 MB | Adobe PDF |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.