請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/19262完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 張玉芳(Julia Yu-Fong Chang) | |
| dc.contributor.author | Chih-Huang Tseng | en |
| dc.contributor.author | 曾智皇 | zh_TW |
| dc.date.accessioned | 2021-06-08T01:51:05Z | - |
| dc.date.copyright | 2016-08-26 | |
| dc.date.issued | 2016 | |
| dc.date.submitted | 2016-07-26 | |
| dc.identifier.citation | 1. Regezi JA, Kerr DA, Courtney RM. Odontogenic tumors: analysis of 706 cases. Journal of oral surgery (American Dental Association : 1965) 1978;36(10):771-8.
2. Larsson A, Almeren H. Ameloblastoma of the jaws. An analysis of a consecutive series of all cases reported to the Swedish Cancer Registry during 1958--1971. Acta pathologica et microbiologica Scandinavica Section A, Pathology 1978;86a(5):337-49. 3. Robinson R, editor. Tumors and cysts of the jaws: Silver Spring MD: ARP Press; 2012. 4. Neville BW. Oral and Maxillofacial Pathology. 3251 Riverport Lane St. Louis, Missouri 63043: ELSEVIER; 2016. 5. Barnes L EJ, W. Reichart P, Sideransky D. World Health Organization classification of tumors pathology and genetics of head and neck tumors. Lyon: IARC Press, 2005; 296–300. 6. McClary AC, West RB, McClary AC, et al. Ameloblastoma: a clinical review and trends in management. European archives of oto-rhino-laryngology : official journal of the European Federation of Oto-Rhino-Laryngological Societies (EUFOS) : affiliated with the German Society for Oto-Rhino-Laryngology - Head and Neck Surgery 2015. 7. Philipsen H. The Development and Fate of Epithelial Residues after Completion of the Human Odontogenesis with Special Reference to the Origins of Epithelial Odontogenic Neoplasms, Hamartomas and Cysts. Oral Biosci Med 2004;1(3):171-179. 8. Brown NA, Furtado LV, Betz BL, et al. High prevalence of somatic MAP2K1 mutations in BRAF V600E-negative Langerhans cell histiocytosis. Blood 2014;124(10):1655-8. 9. Kurppa KJ, Caton J, Morgan PR, et al. High frequency of BRAF V600E mutations in ameloblastoma. J Pathol 2014;232(5):492-8. 10. Sweeney RT, McClary AC, Myers BR, et al. Identification of recurrent SMO and BRAF mutations in ameloblastomas. Nat Genet 2014;46(7):722-5. 11. Philipsen HP, Reichart PA. Unicystic ameloblastoma. A review of 193 cases from the literature. Oral Oncol 1998;34(5):317-25. 12. Ackermann GL, Altini M, Shear M. The unicystic ameloblastoma: a clinicopathological study of 57 cases. Journal of oral pathology 1988;17(9-10):541-6. 13. Chapman PB, Hauschild A, Robert C, et al. Improved survival with vemurafenib in melanoma with BRAF V600E mutation. The New England journal of medicine 2011;364(26):2507-16. 14. Robert C, Karaszewska B, Schachter J, et al. Improved Overall Survival in Melanoma with Combined Dabrafenib and Trametinib. New England Journal of Medicine 2015;372(1):30-39. 15. Kaye FJ, Ivey AM, Drane WE, Mendenhall WM, Allan RW. Clinical and radiographic response with combined BRAF-targeted therapy in stage 4 ameloblastoma. Journal of the National Cancer Institute 2015;107(1):378. 16. Tan S, Pollack JR, Kaplan MJ, Colevas AD, West RB. BRAF inhibitor treatment of primary BRAF-mutant ameloblastoma with pathologic assessment of response. Oral Surgery, Oral Medicine, Oral Pathology and Oral Radiology. 17. Hong J, Yun PY, Chung IH, et al. Long-term follow up on recurrence of 305 ameloblastoma cases. International journal of oral and maxillofacial surgery 2007;36(4):283-8. 18. Nauta JM, Panders AK, Schoots CJ, Vermey A, Roodenburg JL. Peripheral ameloblastoma. A case report and review of the literature. International journal of oral and maxillofacial surgery 1992;21(1):40-4. 19. Buchner A, Sciubba JJ. Peripheral epithelial odontogenic tumors: a review. Oral surgery, oral medicine, and oral pathology 1987;63(6):688-97. 20. Potten CS, Loeffler M. Stem cells: attributes, cycles, spirals, pitfalls and uncertainties. Lessons for and from the crypt. Development (Cambridge, England) 1990;110(4):1001-20. 21. Jaenisch R, Young R. Stem cells, the molecular circuitry of pluripotency and nuclear reprogramming. Cell 2008;132(4):567-82. 22. Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 2006;126(4):663-76. 23. Takahashi K, Tanabe K, Ohnuki M, et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 2007;131(5):861-72. 24. Barker N. Adult intestinal stem cells: critical drivers of epithelial homeostasis and regeneration. Nature reviews Molecular cell biology 2014;15(1):19-33. 25. Watt FM, Jensen KB. Epidermal stem cell diversity and quiescence. EMBO Molecular Medicine 2009;1(5):260-267. 26. Wang LD, Wagers AJ. Dynamic niches in the origination and differentiation of haematopoietic stem cells. Nature reviews Molecular cell biology 2011;12(10):643-55. 27. Hsu YC, Fuchs E. A family business: stem cell progeny join the niche to regulate homeostasis. Nature reviews Molecular cell biology 2012;13(2):103-14. 28. Blanpain C, Fuchs E. Epidermal homeostasis: a balancing act of stem cells in the skin. Nature reviews Molecular cell biology 2009;10(3):207-17. 29. Barker N, van Es JH, Kuipers J, et al. Identification of stem cells in small intestine and colon by marker gene Lgr5. Nature 2007;449(7165):1003-7. 30. Spangrude GJ, Heimfeld S, Weissman IL. Purification and characterization of mouse hematopoietic stem cells. Science (New York, NY) 1988;241(4861):58-62. 31. Scadden DT. The stem-cell niche as an entity of action. Nature 2006;441(7097):1075-9. 32. Jaks V, Barker N, Kasper M, et al. Lgr5 marks cycling, yet long-lived, hair follicle stem cells. Nature genetics 2008;40(11):1291-9. 33. Miura M, Gronthos S, Zhao M, et al. SHED: stem cells from human exfoliated deciduous teeth. Proceedings of the National Academy of Sciences of the United States of America 2003;100(10):5807-12. 34. Sonoyama W, Liu Y, Yamaza T, et al. Characterization of Apical Papilla and its Residing Stem Cells from Human Immature Permanent Teeth –A Pilot Study. Journal of endodontics 2008;34(2):166-171. 35. Juuri E, Saito K, Ahtiainen L, et al. Sox2+ stem cells contribute to all epithelial lineages of the tooth via Sfrp5+ progenitors. Developmental cell 2012;23(2):317-28. 36. Harada H, Kettunen P, Jung HS, Mustonen T, Wang YA, Thesleff I. Localization of putative stem cells in dental epithelium and their association with Notch and FGF signaling. The Journal of cell biology 1999;147(1):105-20. 37. Suomalainen M, Thesleff I. Patterns of Wnt pathway activity in the mouse incisor indicate absence of Wnt/beta-catenin signaling in the epithelial stem cells. Developmental dynamics : an official publication of the American Association of Anatomists 2010;239(1):364-72. 38. Chang JYF, Wang C, Jin C, et al. Self-renewal and multilineage differentiation of mouse dental epithelial stem cells. Stem Cell Research 2013;11(3):990-1002. 39. Li L, Kwon H-J, Harada H, Ohshima H, Cho S-W, Jung H-S. Expression patterns of ABCG2, Bmi-1, Oct-3/4, and Yap in the developing mouse incisor. Gene Expression Patterns 2011;11(3–4):163-170. 40. Hombach-Klonisch S, Panigrahi S, Rashedi I, et al. Adult stem cells and their trans-differentiation potential--perspectives and therapeutic applications. Journal of molecular medicine (Berlin, Germany) 2008;86(12):1301-14. 41. Klonisch T, Wiechec E, Hombach-Klonisch S, et al. Cancer stem cell markers in common cancers - therapeutic implications. Trends in molecular medicine 2008;14(10):450-60. 42. Barker N, Ridgway RA, van Es JH, et al. Crypt stem cells as the cells-of-origin of intestinal cancer. Nature 2009;457(7229):608-11. 43. Vazquez-Martin A, Cufi S, Lopez-Bonet E, et al. Reprogramming of non-genomic estrogen signaling by the stemness factor SOX2 enhances the tumor-initiating capacity of breast cancer cells. Cell cycle (Georgetown, Tex) 2013;12(22):3471-7. 44. Leis O, Eguiara A, Lopez-Arribillaga E, et al. Sox2 expression in breast tumours and activation in breast cancer stem cells. Oncogene 2012;31(11):1354-65. 45. Menendez S, Camus S, Herreria A, et al. Increased dosage of tumor suppressors limits the tumorigenicity of iPS cells without affecting their pluripotency. Aging cell 2012;11(1):41-50. 46. Bernhardt M, Galach M, Novak D, Utikal J. Mediators of induced pluripotency and their role in cancer cells - current scientific knowledge and future perspectives. Biotechnology journal 2012;7(6):810-21. 47. Gubbay J, Collignon J, Koopman P, et al. A gene mapping to the sex-determining region of the mouse Y chromosome is a member of a novel family of embryonically expressed genes. Nature 1990;346(6281):245-250. 48. Sinclair AH, Berta P, Palmer MS, et al. A gene from the human sex-determining region encodes a protein with homology to a conserved DNA-binding motif. Nature 1990;346(6281):240-244. 49. Schepers GE, Teasdale RD, Koopman P. Twenty pairs of sox: extent, homology, and nomenclature of the mouse and human sox transcription factor gene families. Dev Cell 2002;3(2):167-70. 50. Sarkar A, Hochedlinger K. The sox family of transcription factors: versatile regulators of stem and progenitor cell fate. Cell Stem Cell 2013;12(1):15-30. 51. Kamachi Y, Kondoh H. Sox proteins: regulators of cell fate specification and differentiation. Development 2013;140(20):4129-44. 52. Wegner M. All purpose Sox: The many roles of Sox proteins in gene expression. The international journal of biochemistry & cell biology 2010;42(3):381-90. 53. Weina K, Utikal J. SOX2 and cancer: current research and its implications in the clinic. Clinical and translational medicine 2014;3:19. 54. Avilion AA, Nicolis SK, Pevny LH, Perez L, Vivian N, Lovell-Badge R. Multipotent cell lineages in early mouse development depend on SOX2 function. Genes Dev 2003;17(1):126-40. 55. Ferri AL, Cavallaro M, Braida D, et al. Sox2 deficiency causes neurodegeneration and impaired neurogenesis in the adult mouse brain. Development 2004;131(15):3805-19. 56. Que J, Luo X, Schwartz RJ, Hogan BLM. Multiple roles for Sox2 in the developing and adult mouse trachea. Development (Cambridge, England) 2009;136(11):1899-1907. 57. Okubo T, Pevny LH, Hogan BL. Sox2 is required for development of taste bud sensory cells. Genes Dev 2006;20(19):2654-9. 58. Arnold K, Sarkar A, Yram MA, et al. Sox2(+) adult stem and progenitor cells are important for tissue regeneration and survival of mice. Cell Stem Cell 2011;9(4):317-29. 59. Taranova OV, Magness ST, Fagan BM, et al. SOX2 is a dose-dependent regulator of retinal neural progenitor competence. Genes & development 2006;20(9):1187-202. 60. Matsushima D, Heavner W, Pevny LH. Combinatorial regulation of optic cup progenitor cell fate by SOX2 and PAX6. Development (Cambridge, England) 2011;138(3):443-54. 61. He S, Nakada D, Morrison SJ. Mechanisms of stem cell self-renewal. Annual review of cell and developmental biology 2009;25:377-406. 62. Surzenko N, Crowl T, Bachleda A, Langer L, Pevny L. SOX2 maintains the quiescent progenitor cell state of postnatal retinal Muller glia. Development (Cambridge, England) 2013;140(7):1445-56. 63. Liu Z, Walters BJ, Owen T, et al. Regulation of p27Kip1 by Sox2 maintains quiescence of inner pillar cells in the murine auditory sensory epithelium. The Journal of neuroscience : the official journal of the Society for Neuroscience 2012;32(31):10530-40. 64. Boumahdi S, Driessens G, Lapouge G, et al. SOX2 controls tumour initiation and cancer stem-cell functions in squamous-cell carcinoma. Nature 2014;511(7508):246-50. 65. Fang WT, Fan CC, Li SM, et al. Downregulation of a putative tumor suppressor BMP4 by SOX2 promotes growth of lung squamous cell carcinoma. Int J Cancer 2014;135(4):809-19. 66. Jia X, Li X, Xu Y, et al. SOX2 promotes tumorigenesis and increases the anti-apoptotic property of human prostate cancer cell. J Mol Cell Biol 2011;3(4):230-8. 67. Chen S, Li X, Lu D, et al. SOX2 regulates apoptosis through MAP4K4-survivin signaling pathway in human lung cancer cells. Carcinogenesis 2014;35(3):613-23. 68. Girouard SD, Laga AC, Mihm MC, et al. SOX2 contributes to melanoma cell invasion. Lab Invest 2012;92(3):362-70. 69. Alonso MM, Diez-Valle R, Manterola L, et al. Genetic and epigenetic modifications of Sox2 contribute to the invasive phenotype of malignant gliomas. PLoS One 2011;6(11):e26740. 70. Han X, Fang X, Lou X, et al. Silencing SOX2 Induced Mesenchymal-Epithelial Transition and Its Expression Predicts Liver and Lymph Node Metastasis of CRC Patients. PLoS ONE 2012;7(8):e41335. 71. Singh S, Trevino J, Bora-Singhal N, et al. EGFR/Src/Akt signaling modulates Sox2 expression and self-renewal of stem-like side-population cells in non-small cell lung cancer. Mol Cancer 2012;11:73. 72. Schrock A, Bode M, Goke FJ, et al. Expression and role of the embryonic protein SOX2 in head and neck squamous cell carcinoma. Carcinogenesis 2014;35(7):1636-42. 73. Maier S, Wilbertz T, Braun M, et al. SOX2 amplification is a common event in squamous cell carcinomas of different organ sites. Human pathology 2011;42(8):1078-88. 74. Schröck A, Göke F, Wagner P, et al. Sex Determining Region Y-Box 2 (SOX2) Amplification Is an Independent Indicator of Disease Recurrence in Sinonasal Cancer. PLoS ONE 2013;8(3):e59201. 75. Li X, Xu Y, Chen Y, et al. SOX2 promotes tumor metastasis by stimulating epithelial-to-mesenchymal transition via regulation of WNT/beta-catenin signal network. Cancer Lett 2013;336(2):379-89. 76. Sun C, Sun L, Li Y, Kang X, Zhang S, Liu Y. Sox2 expression predicts poor survival of hepatocellular carcinoma patients and it promotes liver cancer cell invasion by activating Slug. Medical oncology (Northwood, London, England) 2013;30(2):503. 77. Tian Y, Jia X, Wang S, et al. SOX2 oncogenes amplified and operate to activate AKT signaling in gastric cancer and predict immunotherapy responsiveness. J Cancer Res Clin Oncol 2014;140(7):1117-24. 78. Piva M, Domenici G, Iriondo O, et al. Sox2 promotes tamoxifen resistance in breast cancer cells. EMBO molecular medicine 2014;6(1):66-79. 79. Neumann J, Bahr F, Horst D, et al. SOX2 expression correlates with lymph-node metastases and distant spread in right-sided colon cancer. BMC Cancer 2011;11(1):1-7. 80. Wang Q, He W, Lu C, et al. Oct3/4 and Sox2 are significantly associated with an unfavorable clinical outcome in human esophageal squamous cell carcinoma. Anticancer research 2009;29(4):1233-41. 81. Forghanifard MM, Ardalan Khales S, Javdani-Mallak A, Rad A, Farshchian M, Abbaszadegan MR. Stemness state regulators SALL4 and SOX2 are involved in progression and invasiveness of esophageal squamous cell carcinoma. Medical oncology (Northwood, London, England) 2014;31(4):922. 82. Honing J, Pavlov KV, Meijer C, et al. Loss of CD44 and SOX2 expression is correlated with a poor prognosis in esophageal adenocarcinoma patients. Ann Surg Oncol 2014;21 Suppl 4:S657-64. 83. Otsubo T, Akiyama Y, Yanagihara K, Yuasa Y. SOX2 is frequently downregulated in gastric cancers and inhibits cell growth through cell-cycle arrest and apoptosis. Br J Cancer 2008;98(4):824-31. 84. Saigusa S, Tanaka K, Toiyama Y, et al. Correlation of CD133, OCT4, and SOX2 in rectal cancer and their association with distant recurrence after chemoradiotherapy. Ann Surg Oncol 2009;16(12):3488-98. 85. Toschi L, Finocchiaro G, Nguyen TT, et al. Increased SOX2 gene copy number is associated with FGFR1 and PIK3CA gene gain in non-small cell lung cancer and predicts improved survival in early stage disease. PLoS One 2014;9(4):e95303. 86. Velcheti V, Schalper K, Yao X, et al. High SOX2 levels predict better outcome in non-small cell lung carcinomas. PLoS One 2013;8(4):e61427. 87. Wilbertz T, Wagner P, Petersen K, et al. SOX2 gene amplification and protein overexpression are associated with better outcome in squamous cell lung cancer. Mod Pathol 2011;24(7):944-53. 88. Thesleff I. StemBook. Cambridge (MA): Harvard Stem Cell Institute; 2009. 89. Juuri E, Saito K, Ahtiainen L, et al. Sox2+ Stem Cells Contribute to All Epithelial Lineages of the Tooth via Sfrp5+ Progenitors. Developmental Cell 2012;23(2):317-328. 90. Juuri E, Jussila M, Seidel K, et al. Sox2 marks epithelial competence to generate teeth in mammals and reptiles. Development 2013;140(7):1424-32. 91. Juuri E, Isaksson S, Jussila M, Heikinheimo K, Thesleff I. Expression of the stem cell marker, SOX2, in ameloblastoma and dental epithelium. Eur J Oral Sci 2013;121(6):509-16. 92. Smith MM, Fraser GJ, Mitsiadis TA. Dental lamina as source of odontogenic stem cells: evolutionary origins and developmental control of tooth generation in gnathostomes. Journal of experimental zoology Part B, Molecular and developmental evolution 2009;312b(4):260-80. 93. Numakura C, Kitanaka S, Kato M, et al. Supernumerary impacted teeth in a patient with SOX2 anophthalmia syndrome. American journal of medical genetics Part A 2010;152a(9):2355-9. 94. Jarvinen E, Salazar-Ciudad I, Birchmeier W, Taketo MM, Jernvall J, Thesleff I. Continuous tooth generation in mouse is induced by activated epithelial Wnt/beta-catenin signaling. Proc Natl Acad Sci U S A 2006;103(49):18627-32. 95. Mansukhani A, Ambrosetti D, Holmes G, Cornivelli L, Basilico C. Sox2 induction by FGF and FGFR2 activating mutations inhibits Wnt signaling and osteoblast differentiation. The Journal of Cell Biology 2005;168(7):1065-1076. 96. Seo E, Basu-Roy U, Zavadil J, Basilico C, Mansukhani A. Distinct functions of Sox2 control self-renewal and differentiation in the osteoblast lineage. Mol Cell Biol 2011;31(22):4593-608. 97. Lei Y, Jaradat JM, Owosho A, et al. Evaluation of SOX2 as a potential marker for ameloblastic carcinoma. Oral Surg Oral Med Oral Pathol Oral Radiol 2014;117(5):608-616 e1. 98. van Diest PJ, Brugal G, Baak JP. Proliferation markers in tumours: interpretation and clinical value. Journal of clinical pathology 1998;51(10):716-24. 99. Muskhelishvili L, Latendresse JR, Kodell RL, Henderson EB. Evaluation of cell proliferation in rat tissues with BrdU, PCNA, Ki-67(MIB-5) immunohistochemistry and in situ hybridization for histone mRNA. The journal of histochemistry and cytochemistry : official journal of the Histochemistry Society 2003;51(12):1681-8. 100. Miyachi K, Fritzler MJ, Tan EM. Autoantibody to a nuclear antigen in proliferating cells. Journal of immunology (Baltimore, Md : 1950) 1978;121(6):2228-34. 101. de Oliveira MG, Lauxen Ida S, Chaves AC, Rados PV, Sant'Ana Filho M. Immunohistochemical analysis of the patterns of p53 and PCNA expression in odontogenic cystic lesions. Medicina oral, patologia oral y cirugia bucal 2008;13(5):E275-80. 102. Scholzen T, Gerdes J. The Ki-67 protein: from the known and the unknown. Journal of cellular physiology 2000;182(3):311-22. 103. Gerdes J, Lemke H, Baisch H, Wacker HH, Schwab U, Stein H. Cell cycle analysis of a cell proliferation-associated human nuclear antigen defined by the monoclonal antibody Ki-67. Journal of immunology (Baltimore, Md : 1950) 1984;133(4):1710-5. 104. Lindboe CF, Torp SH. Comparison of Ki-67 equivalent antibodies. Journal of clinical pathology 2002;55(6):467-471. 105. Klimstra DS, Modlin IR, Coppola D, Lloyd RV, Suster S. The pathologic classification of neuroendocrine tumors: a review of nomenclature, grading, and staging systems. Pancreas 2010;39(6):707-12. 106. Aaltomaa S, Lipponen P, Vesalainen S, Ala-Opas M, Eskelinen M, Syrjanen K. Value of Ki-67 immunolabelling as a prognostic factor in prostate cancer. European urology 1997;32(4):410-5. 107. Bettencourt MC, Bauer JJ, Sesterhenn IA, Mostofi FK, McLeod DG, Moul JW. Ki-67 expression is a prognostic marker of prostate cancer recurrence after radical prostatectomy. The Journal of urology 1996;156(3):1064-8. 108. Feng W, Malpica A, Skaland I, et al. Can Proliferation Biomarkers Reliably Predict Recurrence in World Health Organization 2003 Defined Endometrial Stromal Sarcoma, Low Grade? PLoS ONE 2013;8(10):e75899. 109. Protzel C, Knoedel J, Zimmermann U, Woenckhaus C, Poetsch M, Giebel J. Expression of proliferation marker Ki67 correlates to occurrence of metastasis and prognosis, histological subtypes and HPV DNA detection in penile carcinomas. Histology and histopathology 2007;22(11):1197-204. 110. Boonkitticharoen V, Kulapaditharom B, Leopairut J, et al. Vascular endothelial growth factor a and proliferation marker in prediction of lymph node metastasis in oral and pharyngeal squamous cell carcinoma. Archives of otolaryngology--head & neck surgery 2008;134(12):1305-11. 111. Oka S, Uramoto H, Shimokawa H, Iwanami T, Tanaka F. The expression of Ki-67, but not proliferating cell nuclear antigen, predicts poor disease free survival in patients with adenocarcinoma of the lung. Anticancer research 2011;31(12):4277-82. 112. Ahlem B, Wided A, Amani L, Nadia Z, Amira A, Faten F. Study of Ki67 and CD10 expression as predictive factors of recurrence of ameloblastoma. European annals of otorhinolaryngology, head and neck diseases 2015;132(5):275-9. 113. Safadi RA, Quda BF, Hammad HM. Immunohistochemical expression of K6, K8, K16, K17, K19, maspin, syndecan-1 (CD138), alpha-SMA, and Ki-67 in ameloblastoma and ameloblastic carcinoma: diagnostic and prognostic correlations. Oral surgery, oral medicine, oral pathology and oral radiology 2016;121(4):402-11. 114. Sandra F, Mitsuyasu T, Nakamura N, Shiratsuchi Y, Ohishi M. Immunohistochemical evaluation of PCNA and Ki-67 in ameloblastoma. Oral Oncol 2001;37(2):193-8. 115. Bologna-Molina R, Mosqueda-Taylor A, Lopez-Corella E, et al. Syndecan-1 (CD138) and Ki-67 expression in different subtypes of ameloblastomas. Oral Oncol 2008;44(8):805-11. 116. Meer S, Galpin JS, Altini M, Coleman H, Ali H. Proliferating cell nuclear antigen and Ki67 immunoreactivity in ameloblastomas. Oral surgery, oral medicine, oral pathology, oral radiology, and endodontics 2003;95(2):213-21. 117. Nanci. Ten Cate's Oral Histology,: Elsevier; 2013. 118. Ellis P, Fagan BM, Magness ST, et al. SOX2, a persistent marker for multipotential neural stem cells derived from embryonic stem cells, the embryo or the adult. Developmental neuroscience 2004;26(2-4):148-65. 119. Chen Y, Wang JM, Li TJ. Ameloblastic fibroma: a review of published studies with special reference to its nature and biological behavior. Oral oncology 2007;43(10):960-9. 120. Buchner A, Vered M. Ameloblastic fibroma: a stage in the development of a hamartomatous odontoma or a true neoplasm? Critical analysis of 162 previously reported cases plus 10 new cases. Oral surgery, oral medicine, oral pathology and oral radiology 2013;116(5):598-606. 121. De Riu G, Meloni SM, Contini M, Tullio A. Ameloblastic fibro-odontoma. Case report and review of the literature. Journal of cranio-maxillo-facial surgery : official publication of the European Association for Cranio-Maxillo-Facial Surgery 2010;38(2):141-4. 122. Vanner RJ, Remke M, Gallo M, et al. Quiescent sox2(+) cells drive hierarchical growth and relapse in sonic hedgehog subgroup medulloblastoma. Cancer Cell 2014;26(1):33-47. 123. Chen PL, Chen WS, Li J, Lind AC, Lu D. Diagnostic utility of neural stem and progenitor cell markers nestin and SOX2 in distinguishing nodal melanocytic nevi from metastatic melanomas. Mod Pathol 2013;26(1):44-53. 124. Chou MY, Hu FW, Yu CH, Yu CC. Sox2 expression involvement in the oncogenicity and radiochemoresistance of oral cancer stem cells. Oral Oncol 2015;51(1):31-9. 125. Simões BM, Piva M, Iriondo O, et al. Effects of estrogen on the proportion of stem cells in the breast. Breast Cancer Research and Treatment 2010;129(1):23-35. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/19262 | - |
| dc.description.abstract | 造釉細胞瘤是顎骨中最常見之齒源性腫瘤,雖屬於良性但其具有局部侵犯能力而需進行較大範圍之切除,因此,患者常會有顏面部變形並有較高的復發可能,特別是前次手術未將腫瘤完全移除時。有關造釉細胞瘤的來源仍然未有定論,而齒源性上皮殘留體被認為是可能的來源之一。目前對於造釉細胞瘤的致病機轉仍相當有限。許多研究顯示組織特有幹細胞常為腫瘤的啟始細胞,在經過治療後,造成腫瘤復發的細胞也常是腫瘤幹細胞。目前對於牙齒上皮幹細胞在造釉細胞瘤的致病機轉仍不清楚。Sox2為一轉錄因子,表現於胚胎或成人的幹細胞。在許多腫瘤中也常見Sox2的表現,並在腫瘤的生長、侵犯能力、抗藥性、預後都扮演著重要的角色。在先前研究中發現在牙胚中表現Sox2的細胞後續能分化成各類的齒源上皮細胞,因而Sox2被認為是牙齒上皮幹細胞的標記。在本實驗中,我們利用免疫染色的方式來確認齒源性上皮殘留體是否有Sox2的表現,並探查不同亞型之造釉細胞瘤的Sox2表現情形,並觀察造釉細胞瘤其臨床及病理表現與Sox2染色表現程度的相關性。本實驗一共收錄七十四例造釉細胞瘤及六例齒濾泡。依組織學分類,本實驗收集之造釉細胞瘤分為:濾胞型 (27 例,36.5%);叢狀型 (22例,29.7%);單室型 (25例,33.8%)。我們首先利用過去研究使用的兩株Sox2的抗體,觀察其在鱗狀上皮與造釉細胞瘤的表現,找出其中較可信賴之抗體用以繼續後續的實驗。所得之結果如下:(1)在6例齒濾泡中,在齒源性上皮殘留體皆有表現Sox2的細胞,表現率為44.7%,Sox2表現細胞呈現於小型圓核細胞。(2)74例的造釉細胞瘤腫瘤細胞,皆有Sox2的表現,叢狀型表現率顯著地高於濾泡型(28.8% vs. 17.2%, 曼惠二氏U檢定法,p=0.031),但與單室型(20.3%)無顯著差距。Sox2多表現於圓或橢圓形的類造釉母細胞,偶爾表現在有極性的高柱狀型類造釉母細胞; (3)Sox2與臨床情形(顎骨穿孔與否、因腫瘤而牙根吸收與否、腫瘤大小)並無顯著相關。另外也發現不論是復發的病例或是將來有復發情形病例,其Sox2的表現程度與無復發的病例相比並無顯著差異。然而在三對分別為原發與復發的病例中,復發病例的Sox2表現程度明顯大於原發組別。(4)病理觀察方面,出現表現Sox2的高柱狀類造釉母細胞與其他臨床指標也無相關。(5)此外我們也在2例造釉細胞纖維瘤及4例造釉細胞纖維牙瘤上進行Sox2免疫染色,觀察到Sox2+的高柱狀類造釉母細胞在所有表現Sox2腫瘤細胞的比例越高的病例,其腫瘤尺寸越大。以上呈現了Sox2在造釉細胞瘤的表現情形,雖然其表現程度與臨床指標並無顯著相關,但Sox2可能在復發病例扮演重要的角色。而齒源性上皮殘留體具有強烈的Sox2,可能為造釉細胞瘤或是其他齒源性腫瘤的來源。 | zh_TW |
| dc.description.abstract | Ameloblastoma is the most common odontogenic neoplasm. Although ameloblastoma is a benign and slowly growing epithelial odontogenic tumor, it is local invasive with high recurrence rate, especially when the lesion is not adequately removed in the initial surgery. The knowledge of pathogenesis of ameloblastoma remains limited and the cell of origin for ameloblastoma is unclear. It has been suggested that it may arise from the remnants of the odontogenic epithelium. Recent studies point the stem/progenitor cells as both initiators and propagators of the tumors. Sox2 is a transcription factor and plays important roles in many stage of mammalian development, tissue homeostasis and tumor pathogenesis. Sox2+ cells have been showed to give rise to all dental epithelial lineages and therefore has been accepted as a dental epithelial stem cell marker. In this study, we conducted immunohistochemical study to investigate whether there is Sox2+ cells in the remnants of the odontogenic epithelium in dental follicles, and the expression pattern of Sox2 in different subtypes (follicular, plexiform and unicystic) of ameloblastoma. The correlation between Sox2 expression and clinicopathological findings was performed. In this study, we enrolled 6 cases of dental follicle, 74 (27 follicular; 22 plexiform; 25 unicystic type) paraffin-embedded tissues of ameloblastoma. Since previous studies using two different clones of Sox2 antibodies show different results, we first performed a pilot study to determine the antibody we would further used for our study. The results showed as following: (1) Sox2+ cells can be identified in odontogenic epithelial nests in all six dental follicles and the labeling indices is 44.7%. The positive cells are small round cells. (2) Sox2+ cells can be identified in all 74 cases of ameloblastoma with scattered and patchy distribution and variable amount. Majority of positive cells are peripheral basal to pre-ameloblast-like cells. Few Sox2 expression in high columnar ameloblast-like cells can be identified. The plexiform type showed significant higher Sox2 labeling indices than follicular type using Mann-Whitney u test (28.8% vs. 17.2%, p= 0.031). (3) The expression of Sox2 were not correlated with the clinical findings (bone perforation or not, root resorption causing by tumor or not, size of tumor) in ameloblastoma. The expression level also show no difference in cases with recurrent events and cases without recurrence. However, the recurrent cases show much higher Sox2 labeling indices than original ones in three paired cases of three patients. (4) the presence of high-columnar Sox2+ cell was not correlated to any of the clinical parameters in these three type of ameloblastoma. (5) All cases of 2 cases of ameloblastic fibroma and 4 cases of ameloblastic fibro-odontoma showed Sox2+ cells. Sox2+ cells were randomly and scattered distributed in islands or strands of odontogenic epithelium. The cases with more Sox2+ high-columnar cell showed larger tumor size. In this study, we examined the expression pattern of Sox2 in dental follicle and three different types of ameloblastoma and odontogenic tumors with ameloblastic features. Our findings suggested that Sox2+ cells might play some roles in propagation and recurrence of ameloblastoma. Sox2+ cells can be identified in remnants of the odontogenic epithelium in dental follicle, which suggested that these Sox2+ dental epithelial stem cells might be the origin of ameloblastoma and other odontogenic tumors. However, the roles of Sox2 in clinical behavior of ameloblastoma are still not clear and it needs further investigations to uncover what roles Sox2 play in the tumorigenesis of ameloblastoma. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-08T01:51:05Z (GMT). No. of bitstreams: 1 ntu-105-R03422001-1.pdf: 4871487 bytes, checksum: 4a94673205a56766da64dc88c2b94f6a (MD5) Previous issue date: 2016 | en |
| dc.description.tableofcontents | Contents
誌謝 i 中文摘要 ii Abstract iii Contents v Introduction 1 Part 1: Introduction of ameloblastoma 1 1.1.1 Epidemiology of ameloblastoma 1 1.1.2 Introduction of ameloblastoma 2 1.1.3 Clinical features of ameloblastoma 3 1.1.4 Pathogenesis of ameloblastoma 4 1.1.5 Treatment modalities of ameloblastoma 6 1.1.6 Prognosis of ameloblastoma 8 Part 2: Introduction of stem cell 9 1.2.1 Stem cells 9 1.2.2 Induced pluripotent stem (iPS) cells 10 1.2.3 Adult stem cells 10 1.2.4 Identification of adult stem cells 11 1.2.5 Dental stem cells and markers 12 1.2.6 Concepts of tumor stem cell 13 Part 3: Introduction of Sox2 14 1.3.1 Transcription factor Sox2 14 1.3.2 The role of Sox2 in tumor 16 1.3.3 The role of Sox2 in tooth generation 19 1.3.4 Expression of Sox2 in ameloblastoma 25 Part 4: Introduction of proliferative marker 27 1.4.1 Proliferative maker 27 1.4.2 Expression of Ki-67 in ameloblastoma 30 | |
| dc.language.iso | en | |
| dc.title | Sox2蛋白於造釉細胞瘤的表現及與其臨床病理之相關性 | zh_TW |
| dc.title | Expression of Sox2 Protein and Its Clinicopathological Correlations in Ameloblastoma | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 104-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 江俊斌(Chun-Pin Chiang),張龍昌 | |
| dc.subject.keyword | 造釉細胞瘤,幹細胞,Sox2,Ki-67,齒源性上皮殘留體, | zh_TW |
| dc.subject.keyword | ameloblastoma,stem cell,Sox2,Ki-67,remnants of the odontogenic epithelium, | en |
| dc.relation.page | 88 | |
| dc.identifier.doi | 10.6342/NTU201601438 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2016-07-27 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 臨床牙醫學研究所 | zh_TW |
| 顯示於系所單位: | 臨床牙醫學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-105-1.pdf 未授權公開取用 | 4.76 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
