Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 公共衛生學院
  3. 食品安全與健康研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/19254
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor吳焜裕(Kuen-Yuh Wu)
dc.contributor.authorJia-Ru Linen
dc.contributor.author林佳儒zh_TW
dc.date.accessioned2021-06-08T01:50:45Z-
dc.date.copyright2020-08-27
dc.date.issued2020
dc.date.submitted2020-08-18
dc.identifier.citationRice, J. M. (2005). The carcinogenicity of acrylamide. Mutation Research/Genetic
Toxicology and Environmental Mutagenesis, 580(1-2), 3-20.
International Agency for Research on Cancer. (1994). Some industrial chemicals. IARC
Monographs on the Evaluation of the Carcinogenic Risk of Chemicals to Humans, 60.
Alison, R. H., Capen, C. C. and Prentice, D. (1994). 'Neoplastic lesions of questionable significance to humans.' Toxicologic Pathology 22(2): 179-186.
Arvidsson, P., van Boekel, M. A. J. S., Skog, K. and Jägerstad, M. (2005). Formation of Mutagenic Maillard Reaction Products. The Maillard Reaction in Foods and Medicine. J. O'Brien, H. E. Nursten, M. J. C. Crabbe and J. M. Ames, Woodhead Publishing: 219-224.
Balagiannis, D. P., Mottram, D. S., Higley, J., Smith, G., Wedzicha, B. L. and Parker, J. K. (2019). 'Kinetic modelling of acrylamide formation during the finish-frying of french fries with variable maltose content.' Food Chemistry 284: 236-244.
Balagiannis, D. P., Parker, J. K., Higley, J., Henson, T., Smith, G., Wedzicha, B. L. and Mottram, D. S. (2016). A Three Dimensional Kinetic Model for the Formation of Acrylamide in French Fries with Variable Glucose and Fructose Content. Browned Flavors: Analysis, Formation, and Physiology, American Chemical Society. 1237: 67-79.
Beland, F. A., Benson, R. W., Mellick, P. W., Kovatch, R. M., Roberts, D. W., Fang, J.-L. and Doerge, D. R. (2005). 'Effect of ethanol on the tumorigenicity of urethane (ethyl carbamate) in B6C3F1 mice.' Food and chemical toxicology 43(1): 1-19.
Beland, F. A., Mellick, P. W., Olson, G. R., Mendoza, M. C., Marques, M. M. and Doerge, D. R. (2013). 'Carcinogenicity of acrylamide in B6C3F1 mice and F344/N rats from a 2-year drinking water exposure.' Food and chemical toxicology 51: 149-159.
Beland, F. A., Mellick, P. W., Olson, G. R., Mendoza, M. C. B., Marques, M. M. and Doerge, D. R. (2013). 'Carcinogenicity of acrylamide in B6C3F1 mice and F344/N rats from a 2-year drinking water exposure.' Food and Chemical Toxicology 51: 149-159.
Ben-Jonathan, N., LaPensee, C. R. and LaPensee, E. W. (2008). 'What can we learn from rodents about prolactin in humans?' Endocrine reviews 29(1): 1-41.
Bull, R. J., Robinson, M. and Stober, J. A. (1984). 'Carcinogenic activity of acrylamide in the skin and lung of Swiss-ICR mice.' Cancer Letters 24(2): 209-212.
Calleman, C. J., Bergmark, E. and Costa, L. G. (1990). 'Acrylamide is metabolized to glycidamide in the rat: evidence from hemoglobin adduct formation.' Chemical Research in Toxicology 3(5): 406-412.
Dart, R. C. (2004). Medical toxicology, Lippincott Williams Wilkins.
De Vleeschouwer, K., Van der Plancken, I., Van Loey, A. and Hendrickx, M. E. (2008). 'Investigation of the influence of different moisture levels on acrylamide formation/elimination reactions using multiresponse analysis.' Journal of Agricultural and Food Chemistry 56(15): 6460-6470.
De Vleeschouwer, K., Van der Plancken, I., Van Loey, A. and Hendrickx, M. E. (2008). 'The kinetics of acrylamide formation/elimination in asparagine–glucose systems at different initial reactant concentrations and ratios.' Food Chemistry 111(3): 719-729.
De Vleeschouwer, K., Van der Plancken, I., Van Loey, A. and Hendrickx, M. E. (2009). 'Modelling acrylamide changes in foods: from single-response empirical to multiresponse mechanistic approaches.' Trends in food science technology 20(3-4): 155-167.
Doerge, D. R., da Costa, G. G., McDaniel, L. P., Churchwell, M. I., Twaddle, N. C. and Beland, F. A. (2005). 'DNA adducts derived from administration of acrylamide and glycidamide to mice and rats.' Mutation Research/Genetic Toxicology and Environmental Mutagenesis 580(1-2): 131-141.
Esposito, F., Nardone, A., Fasano, E., Triassi, M. and Cirillo, T. (2017). 'Determination of acrylamide levels in potato crisps and other snacks and exposure risk assessment through a Margin of Exposure approach.' Food Chemical Toxicology 108: 249-256.
Fennell, T. R., Sumner, S. C. J., Snyder, R. W., Burgess, J., Spicer, R., Bridson, W. E. and Friedman, M. A. (2004). 'Metabolism and Hemoglobin Adduct Formation of Acrylamide in Humans.' Toxicological Sciences 85(1): 447-459.
Friedman, M. A., Dulak, L. H. and Stedham, M. A. (1995). 'A lifetime oncogenicity study in rats with acrylamide.' Toxicological Sciences 27(1): 95-105.
Gamboa da Costa, G., Churchwell, M. I., Hamilton, L. P., Von Tungeln, L. S., Beland, F. A., Marques, M. M. and Doerge, D. R. (2003). 'DNA adduct formation from acrylamide via conversion to glycidamide in adult and neonatal mice.' Chemical research in toxicology 16(10): 1328-1337.
Ghanayem, B. I., Witt, K. L., El-Hadri, L., Hoffler, U., Kissling, G. E., Shelby, M. D. and Bishop, J. B. (2005). 'Comparison of germ cell mutagenicity in male CYP2E1-null and wild-type mice treated with acrylamide: evidence supporting a glycidamide-mediated effect.' Biology of reproduction 72(1): 157-163.
Hariri, E., Abboud, M. I., Demirdjian, S., Korfali, S., Mroueh, M. and Taleb, R. I. (2015). 'Carcinogenic and neurotoxic risks of acrylamide and heavy metals from potato and corn chips consumed by the Lebanese population.' Journal of Food Composition and Analysis 42: 91-97.
Heath, J. C., Falk, H. and Creech, J. J. J. A. o. t. N. Y. A. o. S. (1975). 'Characteristics of cases of angiosarcoma of the liver among vinyl chloride workers in the United States.' 246: 231-236.
Hodge, J. E. (1953). 'Dehydrated foods, chemistry of browning reactions in model systems.' Journal of Agricultural and Food Chemistry 1(15): 928-943.
Johnson, K. A., Gorzinski, S. J., Bodner, K. M., Campbell, R. A., Wolf, C. H., Friedman, M. A. and Mast, R. W. (1986). 'Chronic toxicity and oncogenicity study on acrylamide incorporated in the drinking water of Fischer 344 rats.' Toxicology and Applied Pharmacology 85(2): 154-168.
Kikas, E. (2010). Reducing environmental impacts of pharmaceutical sector: some opportunities in quality control.
Klaunig, J. E. and Kamendulis, L. M. (2005). Mechanisms of acrylamide induced rodent carcinogenesis. In Chemistry and safety of acrylamide in food, Springer: 49-62.
Knol, J. J., Linssen, J. P. and van Boekel, M. A. J. F. C. (2010). 'Unravelling the kinetics of the formation of acrylamide in the Maillard reaction of fructose and asparagine by multiresponse modelling.' 120(4): 1047-1057.
Knol, J. J., van Loon, W. A., Linssen, J. P., Ruck, A.-L., van Boekel, M. A. and Voragen, A. G. (2005). 'Toward a kinetic model for acrylamide formation in a glucose− asparagine reaction system.' Journal of Agricultural and Food Chemistry 53(15): 6133-6139.
Low, M. Y. (2006). Relationship between acrylamide formation and flavour generation in heated foods, University of Reading.
Maier, A., Kohrman-Vincent, M., Hertzberg, R., Allen, B., Haber, L. T. and Dourson, M. (2012). 'Critical review of dose–response options for F344 rat mammary tumors for acrylamide–Additional insights based on mode of action.' Food and chemical toxicology 50(5): 1763-1775.
Maillard, L. C. (1912). 'Reaction of amino acids on sugars: melanoidin formation through a methodologic way.' Comptes rendus de l'Académie des Sciences 156: 148-149.
Manjanatha, M. G., Aidoo, A., Shelton, S. D., Bishop, M. E., McDaniel, L. P., Lyn‐Cook, L. E. and Doerge, D. R. (2006). 'Genotoxicity of acrylamide and its metabolite glycidamide administered in drinking water to male and female Big Blue mice.' Environmental and molecular mutagenesis 47(1): 6-17.
Maronpot, R. R., Thoolen, R. J. M. M. and Hansen, B. (2015). 'Two-year carcinogenicity study of acrylamide in Wistar Han rats with in utero exposure.' Experimental and Toxicologic Pathology 67(2): 189-195.
Martins, S. I. F. S., Jongen, W. M. F. and van Boekel, M. A. J. S. (2000). 'A review of Maillard reaction in food and implications to kinetic modelling.' Trends in Food Science Technology 11(9): 364-373.
Mei, N., Hu, J., Churchwell, M. I., Guo, L., Moore, M. M., Doerge, D. R. and Chen, T. (2008). 'Genotoxic effects of acrylamide and glycidamide in mouse lymphoma cells.' Food and Chemical Toxicology 46(2): 628-636.
Mei, N., McDaniel, L. P., Dobrovolsky, V. N., Guo, X., Shaddock, J. G., Mittelstaedt, R. A., Azuma, M., Shelton, S. D., McGarrity, L. J. and Doerge, D. R. (2010). 'The genotoxicity of acrylamide and glycidamide in big blue rats.' Toxicological Sciences 115(2): 412-421.
Melnick, R. L. and Sills, R. C. (2001). 'Comparative carcinogenicity of 1, 3-butadiene, isoprene, and chloroprene in rats and mice.' Chemico-Biological Interactions 135: 27-42.
Mills, C., Tlustos, C., Evans, R. and Matthews, W. (2008). 'Dietary acrylamide exposure estimates for the United Kingdom and Ireland: comparison between semiprobabilistic and probabilistic exposure models.' Journal of agricultural and food chemistry 56(15): 6039-6045.
Mottram, D. S., Wedzicha, B. L. and Dodson, A. T. (2002). 'Acrylamide is formed in the Maillard reaction.' Nature 419(6906): 448-449.
Nematollahi, A., Kamankesh, M., Hosseini, H., Ghasemi, J., Hosseini-Esfahani, F., Mohammadi, A. and Khaneghah, A. M. (2020). 'Acrylamide content of collected food products from Tehran’s market: a risk assessment study.' Environmental Science Pollution Research Internationa.
Neumann, F. (1991). 'Early indicators for carcinogenesis in sex-hormone-sensitive organs.' Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis 248(2): 341-356.
Park, J., Kamendulis, L. M., Friedman, M. A. and Klaunig, J. E. (2002). 'Acrylamide-induced cellular transformation.' Toxicological Sciences 65(2): 177-183.
Parker, J. K., Balagiannis, D. P., Higley, J., Smith, G., Wedzicha, B. L. and Mottram, D. S. (2012). 'Kinetic model for the formation of acrylamide during the finish-frying of commercial French fries.' Journal of Agricultural and Food Chemistry 60(36): 9321-9331.
Preedy, V. R. (2014). Processing and impact on active components in food, Academic press.
Ramadan, M. F. and Oraby, H. F. (2016). 'Fatty acids and bioactive lipids of potato cultivars: an overview.' Journal of oleo science 65(6): 459-470.
Ramu, K., Fraiser, L. H., Mamiya, B., Ahmed, T. and Kehrer, J. P. (1995). 'Acrolein Mercapturates: Synthesis, Characterization, and Assessment of Their Role in the Bladder Toxicity of Cyclophosphamide.' Chemical Research in Toxicology 8(4): 515-524.
Segerbäck, D., Calleman, C. J., Schroeder, J. L., Costa, L. G. and Faustman, E. M. (1995). 'Formation of N-7-(2-carbamoyl-2-hydroxyethyl)guanine in DNA of the mouse and the rat following intraperitoneal administration of [14C]acrylamide.' Carcinogenesis 16(5): 1161-1165.
Shahrbabki, P. E., Hajimohammadi, B., Shoeibi, S., Elmi, M., Yousefzadeh, A., Conti, G. O., Ferrante, M., Amirahmadi, M., Fakhri, Y. and Khaneghah, A. M. (2018). 'Probabilistic non-carcinogenic and carcinogenic risk assessments (Monte Carlo simulation method) of the measured acrylamide content in Tah-dig using QuEChERS extraction and UHPLC-MS/MS.' Food and chemical toxicology 118: 361-370.
Sirot, V., Hommet, F., Tard, A. and Leblanc, J.-C. (2012). 'Dietary acrylamide exposure of the French population: results of the second French Total Diet Study.' Food Chemical Toxicology 50(3-4): 889-894.
Solomon, J. J. (1999). 'Cyclic adducts and intermediates induced by simple epoxides.' IARC scientific publications(150): 123-135.
Stadler, R. H., Blank, I., Varga, N., Robert, F., Hau, J., Guy, P. A., Robert, M.-C. and Riediker, S. (2002). 'Acrylamide from Maillard reaction products.' Nature 419(6906): 449-450.
Svensson, K., Abramsson, L., Becker, W., Glynn, A., Hellenäs, K. E., Lind, Y. and Rosen, J. (2003). 'Dietary intake of acrylamide in Sweden.' Food and Chemical Toxicology 41(11): 1581-1586.
Tareke, E., Rydberg, P., Karlsson, P., Eriksson, S. and Törnqvist, M. (2000). 'Acrylamide: a cooking carcinogen?' Chemical Research in Toxicology 13(6): 517-522.
Tareke, E., Rydberg, P., Karlsson, P., Eriksson, S. and Törnqvist, M. (2002). 'Analysis of acrylamide, a carcinogen formed in heated foodstuffs.' Journal of Agricultural and Food Chemistry 50(17): 4998-5006.
Wang, R.-S., McDaniel, L. P., Manjanatha, M. G., Shelton, S. D., Doerge, D. R. and Mei, N. (2010). 'Mutagenicity of acrylamide and glycidamide in the testes of big blue mice.' Toxicological Sciences 117(1): 72-80.
Wedzicha, B. L. (1984). 'A kinetic model for the sulphite inhibited Maillard reaction.' Food Chemistry 14(3): 173-187.
Wedzicha, B. L., Mottram, D. S., Elmore, J. S., Koutsidis, G. and Dodson, A. T. (2005). Kinetic models as a route to control acrylamide formation in food. In Chemistry and safety of acrylamide in food Springer: 235-253.
Yuan, Y. and Chen, F. (2019). Acrylamide. Chemical Hazards in Thermally-Processed Foods. S. Wang. Singapore, Springer Singapore: 47-85.
Zyzak, D. V., Sanders, R. A., Stojanovic, M., Tallmadge, D. H., Eberhart, B. L., Ewald, D. K., Gruber, D. C., Morsch, T. R., Strothers, M. A. and Rizzi, G. P. (2003). 'Acrylamide formation mechanism in heated foods.' Journal of Agricultural and Food Chemistry 51(16): 4782-4787.
FDA, Survey Data on Acrylamide in Food: Total Diet Study Results, last updated 2006. [Online]. Available: http://www.fda.gov/Food/FoodborneIllnessContaminants/ChemicalContaminants/ucm053566.htm#table4 [30 August 2013].
EFSA, Results on acrylamide levels in food from monitoring years 2007–2009. EFSA J 9:2133–2181 (2011).
FoodDrinkEurope 2013. Acrylamide Toolbox 2013.FoodDrinkEurope, January 10, 2013; Brussels, Belgium.
CAC (Codex Alimentarius Commission).2009. Code of Practice for the Reduction of Acrylamide in Foods. CAC/RCP 67-2009.
陳時欣、高絹智、康宏毅、戚祖沅、鄭維智、葉安義。2014。市售嬰兒食品及早
餐穀類食品中丙烯醯胺含量調查。食品藥物研究年報,5,50-59。
行政院衛生福利部食品藥物管理署。食品中丙烯醯胺指標值之參考指引。2016。
行政院衛生福利部食品藥物管理署。降低食品中丙烯醯胺含量加工參考手冊。
2016。
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/19254-
dc.description.abstract丙烯醯胺(Acrylamide)為工業化學品,亦可於高溫處理的食品中加熱生成。丙烯醯胺在動物實驗中對大鼠及小鼠多個器官或部位引起腫瘤,且大量攝取丙烯醯胺經代謝轉化為具有化學反應性和基因毒性的環氧化物縮水甘油醯胺(Glycidamide)。但因流行病學研究尚未有具體結論,因此被國際癌症研究機構(International Agency for Research on Cancer)在1994年將它列為2A級致癌物。過去研究顯示富含澱粉之食品,例如:馬鈴薯,在高溫(120℃以上)烹調之下,會與天門冬醯胺及還原糖經梅納反應生成丙烯醯胺,因此民眾擔心每天經飲食攝食到丙烯醯胺,會對健康造成不良的影響。本研究擬針對高溫處理食品的加工過程中,影響丙烯醯胺形成的因素,如處理時間及溫度,其次食材中所含天門冬醯胺、游離胺基酸、葡萄糖、果糖含量等作系統性研究,並評估這些因素對健康風險的影響。因此首先建立形成丙烯醯胺程的化學動力學模型,以預測模擬在不同條件下丙烯醯胺形成量,經與實測值比對驗證後,研究控制或是降低丙烯醯胺含量的處理條件。
利用模式模擬在165℃下,加熱處理300秒形成的丙烯醯胺濃度為的0.0104 mmol/kg fat-free dry weight (相當於0.216 ppm),介在文獻模擬值的0.015 mmol/kg fat-free dry weight (相當於0.312 ppm) 及實驗值 0.007 mmol/kg fat-free dry weight 之間(相當於0.145 ppm),這些結果作為驗證,顯示可以利用此化學動力學模式模擬高溫處理食品中丙烯醯胺的含量。並根據模擬得到的丙烯醯胺含量,整合毒理資料與動物實驗數據,執行劑量反應關係利用(The Benchmark Dose Software 2.7.0.4)估算得到BMDL10為0.265 mg/kg/day,致癌係數為0.377 (mg/kg/day)-1。台灣的國家攝食資料庫在2019年調查19~65歲國人消費者的薯條薯餅食物品項之每天平均的攝食量為76.05 g/day。利用蒙地卡羅方法進行10000次抽樣,計算透過攝食薯餅薯條類暴露丙烯醯胺的致癌風險(Cancer risk)與暴露限值(Margin of exposure, MOE)。19~65歲國人丙烯醯胺消費者之致癌風險(Cancer risk)中位數為8.64×10-5,95%的信賴區間上限為4.75×10-4,男性及女性丙烯醯胺消費者致癌風險中位數則分別為7.71×10-5 及9.31×10-5;19~65歲國人、男性及女性之暴露限值中位數分別為1.15×103 、1.28×103 、1.08×103 。經由對致癌風險進行敏感度分析,影響最大的因素為暴露到丙烯醯胺的食物攝食量,與致癌風險呈正相關且影響程度占93 %。
從製程參數對於致癌風險的關聯性,可以觀察到體重為-0.0826、攝食量為0.31、天門冬醯胺為0.2354、時間為0.2123、水分為-0.282、溫度為0.7918,除了可從攝食量改善外,從溫度著手甚為重要。
本研究目的為開發出丙烯醯胺在食品中化學動力學模型,探討影響丙烯醯胺形成的因素,並藉由模型參數改善加工製程。模擬馬鈴薯類食品在油炸過程中丙烯醯胺之產生,並針對油炸馬鈴薯類食品製造過程中產生丙烯醯胺進行健康風險評估。
zh_TW
dc.description.abstractAcrylamide is an industrial chemical and exists in high temperature processed food. When exposed, it is metabolized into chemically reactive and genotoxic epoxides - glycidamide. Evidence of its carcinogenicity has been shown via animal studies that observed tumors in multiple organs of rats and mice. However, evidence in epidemiological studies still remain inconclusive. Therefore, International Agency for Research on Cancer (IARC) listed acrylamide as a Class 2A carcinogen in 1994. The Maillard reaction between amino acids and carbohydrates has been recognized as the most probable process for producing acrylamide. Previous studies have reported that when starch-rich foods, such as potatoes, are processed in high temperature (above 120 °C), asparagine and reducing sugars would react to acrylamide, and partially decompose to degradation products. Thus, exposure to acrylamide through daily diet have become a common public concern. In this study, a systematic study was conducted to understand the effect of high-temperature processing on the formation of acrylamide. Food processing involves numerous factors that can affect the formation of acrylamide, such as processing time and temperature, followed by asparagine, free amino acids, glucose, fructose content, etc. The impact of these factors on health risks was evaluated. The objective of this study was to establish a chemical kinetic model of the food processing to discuss how the formation of acrylamide can be predicted, controlled and reduced.
We use the model to predict frying for 300 seconds at 165°C, the acrylamide concentration is 0.0104 mmol/kg fat-free dry weight (equivalent to 0. 216 ppm), which is between 0.015 mmol/kg fat-free dry weight (Equivalent to 0. 312 ppm) of the simulated valueand and 0.007 mmol/kg fat-free dry weight (equivalent to 0.145 ppm) of the experimental value in the paper. These results were used as verification and show that this chemical kinetic model can be used to simulate the content of acrylamide in high-temperature processed food. Based on the simulated acrylamide concentration, integrating toxicological data and animal experiment data of acrylamide, we used The Benchmark Dose Software (version 2.7.0.4) to calculate dose response relationship. The BMDL of humans was 0.265 mg/kg/day, and the CSF was 0.377 (mg /kg/day)-1. In 2019, the National Food Database of Taiwan surveyed the consumption pattern of fries and potato foods of 19 to 65 years-old consumers and estimated the average intake to be 76.05 g per day. Monte Carlo simulation with 10,000 iterations was carried out to conduct a probabilistic estimate of the cancer risk and Margin of exposure of exposure to acrylamide through ingestion of fries potato foods.
The median cancer risk of 19~65 years-old consumers was 8.64×10-5, and the upper limit of the 95% confidence interval was 4.75×10-4; the median cancer risk of 19~65 years-old male and female consumers were 7.71×10-5 and 9.31×10-5, respectively; the median MOE for of 19~65 years-old consumers, male and female were 1.15×103, 1.28×103, and 1.08×103, respectively. The sensitivity analysis of cancer risk showed that the most influential factor was the intake rate of acrylamide, which 93% positively correlated to cancer risk.
From the correlation of process parameters to cancer risk, it can be observed that body weight is -0.0826, food intake is 0.31, asparagine is 0.2354, time is 0.2123, moisture is -0.282, and temperature is 0.7918, except that food intake can be improved. It is very important to start with temperature.
The purpose of this research was to develop a chemical kinetic model of acrylamide in food, explore the formation mechanism of acrylamide, and improve the processing process by adjusting the model parameters. Simulate the production of acrylamide during the frying process of potato foods, and conduct a health risk assessment.
en
dc.description.provenanceMade available in DSpace on 2021-06-08T01:50:45Z (GMT). No. of bitstreams: 1
U0001-1708202015185900.pdf: 5490311 bytes, checksum: 03fd3a50c6088ca17c4d3f494ee03182 (MD5)
Previous issue date: 2020
en
dc.description.tableofcontents中文摘要 i
Abstract iii
目錄 vi
圖目錄 ix
表目錄 xiii
第一章 緒論 1
1.1 台灣馬鈴薯介紹 1
1.2 健康風險評估介紹 3
1.2.1 有害物質鑑定 3
1.2.2 劑量反應關係評估 5
1.2.3 暴露評估 5
1.2.4 風險特性化 6
1.3 研究動機與目的 6
第二章 文獻回顧 8
2.1 梅納反應介紹 8
2.2 丙烯醯胺介紹 9
2.2.1有害物質鑑定 9
2.3 化學動力學模型介紹 16
第三章 研究方法 19
3.1 研究架構 19
3.2 評估目的與範圍 21
3.3 丙烯醯胺化學動力學模型外推至黑糖以及油條 21
3.4 劑量反應關係評估 21
3.4.1 劑量反應評估基準劑量10%下限值及軟體使用 21
3.4.2 癌症斜率因子(Cancer slope factor, CSF) 22
3.5 暴露評估 22
3.5.1 丙烯醯胺濃度模擬預測 22
3.5.2 炸薯條製程參數敏感度分析 31
3.5.3 國人攝食量估計 32
3.5.4 終生每日平均暴露劑量(LADD) 32
3.6 風險特性化 32
3.6.1 致癌風險(Cancer Risk) 33
3.6.2 暴露限值(Margin of exposure, MOE) 33
3.6.3 軟體 33
3.7系統性文獻回顧與統合分析方法 34
3.7.1 PRISMA Statement的發展 34
3.7.2 文獻搜尋 35
3.7.3 文獻篩選標準與流程 35
3.7.4 資料彙整與文獻分析 35
第四章 結果討論 36
4.1 劑量反應關係評估結果 36
4.1.1 基準劑量10%下限值(BMDL10) 36
4.1.2癌症斜率因子(Cancer slope factor, CSF) 37
4.2 暴露評估結果 37
4.2.1 炸薯條中丙醯胺濃度模擬結果 37
4.2.2 丙烯醯胺預測值與文獻中實際測定值比較 38
4.2.3 炸薯條製程參數敏感度分析 40
4.2.4 終生每日平均暴露劑量(LADD) 41
4.3 風險評估特性化結果 42
4.3.1致癌風險(Cancer risk) 42
4.3.2暴露限值(Margin of exposure, MOE) 44
4.3.3敏感度分析 45
4.3.4不確定因子 46
4.4. 與其他食品中之丙烯醯胺含量比較 48
4.5 與其他文獻中之丙烯醯胺風險比較 48
4.6 國際上對於丙烯醯胺所採取之減量方法 49
第五章 研究限制 50
第六章 結論 51
參考文獻 52
dc.language.isozh-TW
dc.title影響高溫加熱處理食品中丙烯醯胺形成與風險之研究zh_TW
dc.titleStudy on the formation and health risk of acrylamide in high temperature processed foodsen
dc.typeThesis
dc.date.schoolyear108-2
dc.description.degree碩士
dc.contributor.oralexamcommittee鄭維智(Wei-Chih Cheng),王根樹(Gen-Shuh Wang),王宗櫚(Tzong-Liu Wang),黃俊儒(Jin-Ru Huang)
dc.subject.keyword丙烯醯胺,化學動力學,風險評估,馬鈴薯,高溫加熱處理食品,zh_TW
dc.subject.keywordAcrylamide,Chemical Kinetic Model,Risk Assessment,Potato,High Temperature Processed Foods,en
dc.relation.page166
dc.identifier.doi10.6342/NTU202003765
dc.rights.note未授權
dc.date.accepted2020-08-18
dc.contributor.author-college公共衛生學院zh_TW
dc.contributor.author-dept食品安全與健康研究所zh_TW
顯示於系所單位:食品安全與健康研究所

文件中的檔案:
檔案 大小格式 
U0001-1708202015185900.pdf
  目前未授權公開取用
5.36 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved