請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/19253
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 石明豐 | |
dc.contributor.author | Po-Ju Sung | en |
dc.contributor.author | 宋柏儒 | zh_TW |
dc.date.accessioned | 2021-06-08T01:50:43Z | - |
dc.date.copyright | 2016-08-02 | |
dc.date.issued | 2016 | |
dc.date.submitted | 2016-07-26 | |
dc.identifier.citation | [1] A. Ashkin, J. M. Dziedzic, and P. W. Smith, 'Continuous-wave self-focusing and self-trapping of light in artificial Kerr media, 'Opt. Lett. 7, 276-278 (1982).
[2] A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu, 'Observation of a single beam gradient force optical trap for dielectric particles, ' Opt. Lett. 11, 288-290 (1986). [3] R. W. Bowman, and M. J. Padgett, 'Optical trapping and binding, ' Rep. Prog. Phys. 76, 026401 (2013). [4] G. Stegeman and M. Segev, 'Optical Spatial Solitons and Their Interactions: Universality and Diversity, ' Science 286, 1518-1523 (1999). [5] R. Y. Chiao, E. Garmire, C. H. Townes, 'Self-Trapping of Optical Beams, ' Phys. Rev. Lett. 13, 479-482 (1964). [6] M. Segev, B. Crosignani, A. Yariv, B. Fischer, 'Spatial Solitons in Photorefractive Media, ' Phys. Rev. Lett. 68, 923-926 (1992). [7] G. Duree et al. 'Observation of Self-Trapping of an Optical Beam Due to the Photorefractive Effect, ' Phys. Rev. Lett. 71, 533-536 (1993). [8] M.F. Shih, P. Leach, and M. Segev, M.H. Garrett, G. Salamo, G.C. Valley, 'Two-dimensional steady-state photorefractive screening solitons, ' Opt. Lett. 21, 324-326 (1996). [9] A. Ashkin, 'Forces of a single-beam gradient laser trap on a dielectric sphere in the ray optics regime, ' Biophys. J. 61, 569-582 (1992). [10] http://www.ariasgonzalez.com/nmo---pinzas-ópticas.html [11] P. Zemanek, A. Jonas, L. Sramek, M. Liska, 'Optical trapping of Rayleigh particles using a Gaussian standing wave, ' Opt. Commun. 151, 273-285 (1998). [12] K. Svoboda, S.M. Block, 'Biological Application of Optical Forces, ' Ann. Rev. Biophys. Biomol. Struct. 23, 247-285 (1994). [13] https://en.wikipedia.org/wiki/Boundary_layer [14] https://en.wikipedia.org/wiki/Viscosity [15] http://www.engineeringtoolbox.com/water-dynamic-kinematic-viscosity-d_596.html [16] R. Rusconi, L. Isa, and R. Piazza, 'Thermal-lensing measurement of particle thermophoresis in aqueous dispersions, ' J. Opt. Soc. Am. B 21, 605-616 (2004). [17] C. R. Chen, 'Optical self-focusing effect in nano-suspension and half-charge vortex light beam in a self-focusing photorefractive crystal, ' Ph. D. diss, Department of Physics, National Taiwan University (2014). [18] E. Greenfield, J. Nemirovsky, R. El-Ganainy, D. N. Christodoulides, and M. Segev, 'Shockwave based nonlinear optical manipulation in densely scattering opaque suspensions, ' Opt. Express 21, 23785-23802 (2013). [19] Y. T. Pan, 'Observing the interaction of two light beams in a nano-suspension, ' M. S. thesis, Department of Physics, National Taiwan University (2016). | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/19253 | - |
dc.description.abstract | 本實驗在探討雷射光在奈米懸浮液中產生的非線性效應,我們將波長532nm的綠光雷射聚焦在裝有聚苯乙烯(Polystyrene)奈米懸浮液中,利用光的散射力及奈米球粒子與溶液間黏滯力推動奈米粒子形成流場,觀察光的自聚焦效應,並用波長632nm的氦氖雷射架設干涉儀,由干涉條紋的偏移可大略推估該區域折射率的變化。
為了更了解內部的物理機制,我們做了以下幾個實驗,首先我們在玻璃槽容器的不同位置進行實驗,觀察在靠近容器邊界流場對稱性被破壞時的現象,試著找出自聚焦效應較佳的條件。由於流體在不同溫度下會有不同的黏滯係數(Viscosity),一般流體黏滯係數會隨溫度升高而下降,就水而言在10°C時的黏滯係數約是30°C時的1.6倍,因此我們改變奈米懸浮液的溫度,從9°C改變到40°C,觀察不同溫度下對雷射光自聚焦效應造成的影響。 雷射光在奈米懸浮液中傳播時會自然的繞射,我們改變不同的入射光束和功率大小,找出適合的條件使自聚焦效應平衡繞射現象,讓光束在出射面和入射面時的大小相同,即空間光孤子現象(Optical Spatial Soliton),綜合上述實驗,我們發現在距離容器底部1.0mm處自聚焦效果清楚穩定,在改變溫度的實驗下在29.8°C時比起9.8°C自聚焦效應變化劇烈,而在入射光束半高寬13µm,功率約300mW的條件下得到空間光孤子的現象,綜合以上結果嘗試推論奈米懸浮液內部理論模型。 | zh_TW |
dc.description.abstract | This thesis presents the research on nonlinear optical effect in nanosuspensions. A continuous wave laser (wavelength at 532nm) is launched into a cuvette filled with a suspension of Polystyrene nanoparticles. Optical scattering force and viscosity will drive a flow in the nanoparticle suspension. The flow and the light beam can concentrate the nanoparticles and self-focus the laser beam. We use the He-Ne laser (wavelength at 632nm) to obtain the local refractive index change by interference.
In order to understand the physical mechanism, we conduct several experiments. We launch the laser beam at different positions of the cuvette and observe the phenomena near the boundary when the flow symmetry is destroyed. We try to find better conditions for self-focusing. The viscosity of water decreases as temperature rises, as it is about 1.6 times at 10°C than at 30°C. We conduct the experiment from 9°C to 40°C, and observe how the temperature affects the results. Laser beam has a natural tendency to diffracts as it propagates. We change different beam waists and power to find the suitable conditions in which self-focusing balances diffraction, in which the beam diameter remains invariant during propagation, in other word, spatial solitons form. By these experiment results, we come up a hypothesis to explain the formation of the nanoparticle-concentration self-focusing mechanism. | en |
dc.description.provenance | Made available in DSpace on 2021-06-08T01:50:43Z (GMT). No. of bitstreams: 1 ntu-105-R00245018-1.pdf: 4138379 bytes, checksum: e513d4ddaf329d3e0ddb30c772bc492b (MD5) Previous issue date: 2016 | en |
dc.description.tableofcontents | 致謝 I
中文摘要 II Abstract III 圖目錄 VI 表目錄 VIII 第一章 簡介 1 1.1 研究動機 1 1.2 自聚焦效應與空間光孤子 1 1.3 光的散射力與梯度力 3 1.4 流體的黏滯力與邊界層 5 第二章 奈米懸浮液的自聚焦效應 7 2.1 散射力對奈米懸浮液的作用 7 2.2 奈米懸浮液的自聚焦效應隨時間演變 11 2.3 不同入射光束在奈米懸浮液中的自聚焦效應 15 第三章 邊界對自聚焦效應之影響 18 3.1 實驗裝置 18 3.2 容器底部對自聚焦效應的影響 20 3.3 容器兩側邊界對自聚焦效應的影響 23 3.4 容器傾斜對自聚焦效應的影響 27 3.5 結果與討論 30 3.6 結論 34 第四章 溫度對自聚焦效應之影響 35 4.1 實驗裝置 35 4.2 實驗結果與討論 37 第五章 奈米懸浮液中的空間光孤子 44 5.1 實驗裝置 44 5.2 實驗結果與討論 45 第六章 總結與未來目標 53 參考文獻 55 | |
dc.language.iso | zh-TW | |
dc.title | 利用光的散射力在奈米懸浮液中產生非線性效應 | zh_TW |
dc.title | Nonlinear effects in nanosuspensions by optical scattering force | en |
dc.type | Thesis | |
dc.date.schoolyear | 104-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 朱士維,江宏仁 | |
dc.subject.keyword | 奈米懸浮液,自聚焦效應,散射力,空間光孤子, | zh_TW |
dc.subject.keyword | nanosuspensions,self-focusing effect,scattering force,spatial soliton, | en |
dc.relation.page | 56 | |
dc.identifier.doi | 10.6342/NTU201601174 | |
dc.rights.note | 未授權 | |
dc.date.accepted | 2016-07-27 | |
dc.contributor.author-college | 理學院 | zh_TW |
dc.contributor.author-dept | 應用物理研究所 | zh_TW |
顯示於系所單位: | 應用物理研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-105-1.pdf 目前未授權公開取用 | 4.04 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。