Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 生物機電工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/19248
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor江昭皚(Joe-Air Jiang)
dc.contributor.authorKun-Chang Kuoen
dc.contributor.author郭昆璋zh_TW
dc.date.accessioned2021-06-08T01:50:31Z-
dc.date.copyright2016-08-03
dc.date.issued2016
dc.date.submitted2016-07-27
dc.identifier.citation王琬靈。2010。綠色交通大躍進–國外機場節能減碳簡介。臺北:行政院經濟部能源局。網址:http://energymonthly.tier.org.tw/outdatecontent.asp?ReportIssue=201001&Page=17。上網日期:2016-05-13。
中央通訊社。2016。假耕作真種電 3家綠能設施容許被撤。臺北:中央通訊社。網址:http://www.chinatimes.com/realtimenews/20160312003182-260410。上網日期:2016-05-10。
方怡丹、林春良。2012。國內設施園藝產業發展現況與展望。出自〝精密設施工程與植物工場實用化技術研討會專輯〞,25–33。行政院農委員會臺南區農改場編印。臺南:行政院農委員會臺南區農改場。
台灣電力公司。2015。再生能源發電效益。臺北:台灣電力公司。網址:http://www.taipower.com.tw/content/new_info/new_info-b32.aspx?LinkID=8。上網日期:2016-05-13。
台灣電力公司。2016a。核能發電績效:現況與歷年績效。臺北:台灣電力公司。網址:http://www.taipower.com.tw/content/new_info/new_info-b60.aspx?LinkID=7。上網日期:2016-05-13。
台灣電力公司。2016b。核能發電績效:核能的減碳效益。臺北:台灣電力公司。網址:http://www.taipower.com.tw/content/new_info/new_info-b60_2.aspx?LinkID=7。上網日期:2016-05-13。
台灣電力公司。2016c。火力發電概況:火力發電歷年占比。臺北:台灣電力公司。網址:http://www.taipower.com.tw/content/new_info/new_info-b12.aspx?LinkID=6。上網日期:2016-06-3。
行政院主計總處。2010。99年農林漁牧業普查統計結果。臺北:行政院主計總處。網址:http://www.dgbas.gov.tw/public/data/dgbas04/bc1/public/agr3.html。上網日期:2016-05-13。
行政院法務部。2009。再生能源發展條例。臺北:行政院法務部。網址:http://law.moj.gov.tw/LawClass/LawAll.aspx?PCode=J0130032。上網日期:2016-05-10。
行政院法務部。2014。申請農業用地作農業設施容許使用審查辦法。臺北:行政院法務部。網址:http://law.moj.gov.tw/LawClass/LawHistory.aspx?PCode=M0020022。上網日期:2016-05-10。
行政院經濟部。2012。陽光屋頂百萬座。臺北:行政院經濟部。網址:http://mrpv.org.tw/page/overview。上網日期:2016-05-10。
行政院經濟部。2015。中華民國一百零五年度再生能源電能躉購費率及其計算公式。臺北:行政院經濟部。網址:https://web3.moeaboe.gov.tw/ECW/populace/Law/Content.aspx?menu_id=2977。上網日期:2016-05-12。
行政院農委會。2014。法規內容檢視:申請農業用地作農業設施容許使用審查辦法。臺北:行政院農委會。網址:http://talis.coa.gov.tw/alris/LawDetail.asp?tID=2013。上網日期:2016-05-10。
行政院農委會漁業署。2012。行政院農業委員會漁業署補助養殖業設置太陽光電發電設備作業計畫。高雄:行政院農委會漁業署。網址:https://www.fa.gov.tw/cht/LawsRuleFisheries/content.aspx?id=286&chk=e573afde-e143-49f6-ba51-c80f67e6d0c0¶m=pn%3D16。上網日期:2016-05-12。
林明仁、洪東奇。2008。農政與農情188期:訂定農業用溫室標準圖樣及其結構計算書簡介。臺北:行政院農委會。網址:http://www.coa.gov.tw/view.php?catid=13673。上網日期:2016-05-11。
林嘉興、張林仁。1991。簡易溫室環境對葡萄生育之影響。出自〝園藝作物產期調節研討會專集 II〞,193–211。臺灣省臺中區農業改良場編印。臺中:行政院農委會臺中區農業改良場。
張邦彥、曾鍾湧、鄧羽彤、范力達、洪豪志、周立強。2013。陽光利用型溫室之植物工場節(潔)能系統工程技術開發。出自〝 教育部產業先進設備人才培育計畫〞。臺北:2013產業先進設備專題實作競賽。
富陽光電。2010。安裝實績:建築一體型。桃園:富陽光電股份有限公司。網址:http://www.sunwellsolar.com/。上網日期:2016-05-10。
嘉義縣政府。2015。消保新聞:農地設置太陽能光電板,農民請謹慎了解勿受騙。嘉義:嘉義縣政府。網址:http://www.cyhg.gov.tw/wSite/ct?xItem=9525&ctNode=14988&mp=11。上網日期:2016-05-13。
Abdallah, S., and S. Nijmeh. 2004. Two axes sun tracking system with PLC control. Energy Conversion and Management 45: 1931-1939.
Abdallah, S., and O. Badran. 2008. Sun tracking system for productivity enhancement of solar still. Desalination 220: 669-676.
Abu-Khader, M., O. Badran, and S. Abdallah. 2008. Evaluating multi-axes sun-tracking system at different modes of operation in Jordan. Renewable & Sustainable Energy Reviews 12: 864-873.
Al Tarabsheh, A., I. Etier, and A. Nimrat. 2012. Energy Yield of Tracking PV Systems in Jordan. International Journal of Photoenergy 2012: 5 pages.
Alawaji, S. 2001. Evaluation of solar energy research and its applications in Saudi Arabia - 20 years of experience. Renewable & Sustainable Energy Reviews 5: 59-77.
Arent, D. J., A. Wise, and R. Gelman. 2011. The status and prospects of renewable energy for combating global warming. Energy Econ. 33(4): 584–593.
Bakos, G. 2006. Design and construction of a two-axis Sun tracking system for parabolic trough collector (PTC) efficiency improvement. Renewable Energy 31: 2411-2421.
Balenzategui, J., and F. Chenlo. 2005. Measurement and analysis of angular response of bare and encapsulated silicon solar cells. Solar Energy Materials and Solar Cells 86: 53-83.
Borowy, B. S. and Z. M. Salameh. 1996. Methodology for optimally sizing the combination of a battery bank and PV array in a wind/PV hybrid system. IEEE Trans. Energy Convers. 11(2): 367–375.
Bose, B. K., P. M. Szczeny, and R. L. Steigerwald. 1985. Microcomputer control of a residential photovoltaic power conditioning system. IEEE Trans. Ind. Appl. IA-21(5): 1182–1191.
Carrero, C., J. Rodríguez, D. Ramírez, and C. Platero. 2010. Simple estimation of PV modules loss resistances for low error modeling. Renew. Energy 35(5): 1103–1108.
Chang, C. C. 2002. The potential impact of climate change on Taiwan’s agriculture. Agric. Econ. 27(1): 51–64.
Chang, C. C., C. C. Chen, and B. Mccarl. 2012. Evaluating the economic impacts of crop yield change and sea level rise induced by climate change on Taiwan's agricultural sector. Agric. Econ. 43(2): 205–214.
Chang, T. 2009. Output energy of a photovoltaic module mounted on a single-axis tracking system. Applied Energy 86: 2071-2078.
Chang, T. 2009. Performance study on the east-west oriented single-axis tracked panel. Energy 34: 1530-1538.
Chang, Y. W., T. S. Lin, J. C. Wang, J. J. Chou, K. C. Liao, and J. A. Jiang. 2011. The effect of temperature distribution on the vertical cultivation in plant factories with a WSN-based environmental monitoring system. In 'Proc. 2011 International Conference on Agricultural and Natural Resources Engineering (ANRE 2011)', 234–240. Singapore.
Chong, K., and C. Wong. 2009. General formula for on-axis sun-tracking system and its application in improving tracking accuracy of solar collector. Solar Energy 83: 298-305.
Close, J., J. Ip, and K. H. Lam. 2006. Water recycling with PV-powered UV-LED disinfection. Renew. Energy 31(11): 1657–1664.
Cucumo, M., D. Kaliakatsos, and V. Marinelli. 1997. General calculation methods for solar trajectories. Renewable Energy 11: 223-234.
Drury, E., A. Lopez, P. Denholm, and R. Margolis. 2014. Relative performance of tracking versus fixed tilt photovoltaic systems in the USA. Progress in Photovoltaics: Research and Applications 22(12): 1302–1315.
Duffie, J. and W. Beckman. 2013. Solar engineering of thermal processes. John Wiley & Sons, Inc. New Jersey. 4th ed., 12–20.
Eke, R., and A. Senturk. 2012. Performance comparison of a double-axis sun tracking versus fixed PV system. Solar Energy 86(9): 2665–2672.
Eke, R. and A. Senturk. 2013. Monitoring the performance of single and triple junction amorphous silicon modules in two building integrated photovoltaic (BIPV) installations. Appl. Energy 109: 154–162.
Ekren, O. and B. Y. Ekren. 2010. Size optimization of a PV/wind hybrid energy conversion system with battery storage using simulated annealing. Appl. Energy 87(2): 592–598.
Enslin, J. H. R., M. S. Wolf, D. B. Snyman, and W. Sweigers. 1997. Integrated photovoltaic maximum power point tracking converter. IEEE Trans. Ind. Electron. 44(6): 769–773.
Fang, W. and R. C. Jao. 2000. A Review on Artificial Lighting of Tissue Cultures and Transplants. In 'Proc. International symposium on Transplant production in closed system for solving the global issues on environmental conservation, food, resources and energy', Chiba, Japan.
Fanney, A., B. Dougherty, and M. Davis. 2009. Comparison of Predicted to Measured Photovoltaic Module Performance. Journal of Solar Energy Engineering-Transactions of the Asme 131: 0210111-02101110.
Freeman, D., 2010. Introduction to Photovoltaic Systems Maximum Power Point Tracking, Texas Instruments, Application Report.
Ghosh, H. R., N. C. Bhowmik, and M. Hussain. 2010. Determining seasonal optimum tilt angles, solar radiations on variously oriented, single and double axis tracking surfaces at Dhaka. Renew. Energy 35(6): 1292–1297.
Gow, J. A. and C. D. Manning. 2000. Controller arrangement for boost converter systems sourced from solar photovoltaic arrays or other maximum power sources. Proc. Inst. Electr. Eng.–Electr. Power Appl. 147(1): 15–20.
Heslop, S. and I. MacGill. 2014. Comparative analysis of the variability of fixed and tracking photovoltaic systems. Solar Energy 107: 351–364.
Hiyama, T., S. Kouzuma, and T. Imakubo. 1995. Identification of optimal operating point of PV modules using neural network for real time maximum power tracking control. IEEE Trans. Energy Convers. 10(2): 360–367.
Hiyama, T. and K. Kitabayashi. 1997. Neural network based estimation of maximum power generation from PV module using environmental information. IEEE Trans. Energy Convers. 12(3): 241–247.
Hua, C. C., J. R. Lin, and C. M. Shen. 1998. Implementation of a DSP-controlled photovoltaic system with peak power tracking. IEEE Trans. Ind. Electron. 45(1): 99–107.
Huang, B. J., P. E. Yang, Y. P. Lin, B. Y. Lin, H. J. Chen, R. C. Lai, and J. S. Cheng. 2011. Solar cell junction temperature measurement of PV module. Sol. Energy 85(2): 388–392.
Huld, T., T. Cebecauer, M. Šúri, and E. Dunlop. 2010. Analysis of one-axis tracking strategies for PV systems in Europe. Progress in Photovoltaics: Research and Applications 18: 183-194.
Huld, T., G. Friesen, A. Skoczek, R. P. Kenny, T. Sample, M. Field, and E. D. Dunlop. 2011. A power-rating model for crystalline silicon PV modules. Sol. Energy Mater. Sol. Cells 95(12): 3359–3369.
Huld, T., M. Šúri, and E. Dunlop. 2008. Comparison of potential solar electricity output from fixed-inclined and two-axis tracking photovoltaic modules in Europe. Progress in Photovoltaics: Research and Applications 16: 47-59.
Hussein, K. H., I. Muta, T. Hoshino, and M. Osakada. 1995. Maximum photovoltaic power tracking: An algorithm for rapidly changing atmosphere conditions. Proc. Inst. Elect. Eng.–Gener., Transmiss., Distrib. 142(1): 59–64.
International Energy Agency. 2015. WORLD CO2 EMISSIONS FROM FUEL COMBUSTION DATABASE DOCUMENTATION. IEA World CO2 Emissions from Fuel Combustion database. Paris, France: IEA CO2 emissions statistics. Available at: http://wds.iea.org/wds/pdf/Worldco2_Documentation.pdf. Accessed 13 May 2016.
Jacobson, M. 2008. Review of solutions to global warming, air pollution, and energy security. Energy & Environmental Science 2: 148-173.
Jagoda, K., R. Lonseth, A. Lonseth, and T. Jackman. 2011. Development and commercialization of renewable energy technologies in Canada: An innovation system perspective. Renewable Energy 36: 1266-1271.
Jiang, J. A., J. C. Wang, K. C. Kuo, Y. L. Su, J. C. Shieh, and J. J. Chou. 2012a. Analysis of the junction temperature and thermal characteristics of photovoltaic modules under various operation conditions. Energy 44(1): 292–301.
Jiang, J. A., Y. T. Liang, J. C. Wang, Y. L. Su, K. C. Kuo, and J. C. Shieh. 2012b. A novel analytical model for determining the maximum power point of thin film photovoltaic module. Prog. Photovoltaics DOI: 10.1002/pip.2263.
Katti, P. K. and M. K. Khedkar. 2007. Alternative energy facilities based on site matching and generation unit sizing for remote area power supply. Renew. Energy 32(8): 1346–1366.
Kelly, N., and T. Gibson. 2009. Improved photovoltaic energy output for cloudy conditions with a solar tracking system. Solar Energy 83: 2092-2102.
Kreith, F. and J. Kreider. 1978. Principles of solar engineering. McGraw- Hill. New York. 1st ed.
Kuo, K. C., J. C. Wang, Y. L. Su, J. J. Chou, and J. A. Jiang. 2014. A novel power benefit prediction approach for two-axis sun-tracking type photovoltaic systems based on semiconductor theory. Progress in Photovoltaic: Research and Applications 22: 885–902.
Kuo, Y. C., T. J. Liang, and J. F. Chen. 2001. Novel maximum-power-point-tracking controller for photovoltaic energy conversion system. IEEE Trans. Ind. Electron. 48(3): 594–601.
Kwon, J. M., K. H. Nam, and B. H. Kwon. 2006. Photovoltaic power conditioning system with line connection. IEEE Trans. Ind. Electron. 53(4): 1048–1054.
Liao, C. C. 2010. Genetic k-means algorithm based RBF network for photovoltaic MPP prediction. Energy 35(2): 529–536.
Li, H. W. D. and J. C. Lam. 2001. Evaluation of lighting performance in office buildings with daylighting controls. Energy Build. 33(8): 793–803.
Li, Z. M., X. Y. Liu, and R. S. Tang. 2010. Optical performance of inclined south-north single-axis tracked solar panels. Energy 35(6): 2511–2516.
Li, Z. M., X. Y. Liu, and R.S. Tang. 2011. Optical performance of vertical single-axis tracked solar panels. Renewable Energy 36(1): 64–68.
Li, X. W., X. S. Zhang, and S. Quan. 2011. Single-stage and double-stage photovoltaic driven regeneration for liquid desiccant cooling system. Appl. Energy 88(12): 4908–4917.
Lin, Y. C., S. L. Huang, and W. W. Budd. 2013. Assessing the environmental impacts of high-altitude agriculture in Taiwan: A Driver-Pressure-State-Impact-Response (DPSIR) framework and spatial emergy synthesis. Ecol. Indic. 32: 42–50.
Lins, M., L. Oliveira, A. da Silva, L. Rosa, and A. Pereira. 2012. Performance assessment of Alternative Energy Resources in Brazilian power sector using Data Envelopment Analysis. Renewable & Sustainable Energy Reviews 16: 898-903.
Lorenzo, E., M. Perez, A. Ezpeleta, and J. Acedo. 2002. Design of tracking photovoltaic systems with a single vertical axis. Progress in Photovoltaics: Research and Applications 10: 533-543.
Martin, N. and J. M. Ruiz. 2001. Calculation of the PV modules angular losses under field conditions by means of an analytical model. Sol. Energy Mater. Sol. Cells 70(1): 25–38.
MOEABOE, 2011. CO2 electricity emissions factor 2011: Bureau of Energy, Ministry of Economic Affairs, Taiwan. Available at: www.taipower.com.tw. Accessed 20 May 2013.
Maatallah, T., S. El Alimi, and S. Nassrallah. 2011. Performance modeling and investigation of fixed, single and dual-axis tracking photovoltaic panel in Monastir city, Tunisia. Renewable and Sustainable Energy Reviews 15(8): 4053–4066.
Martin, G. D. 2006. Energy, and Global Warming. Earth Interactions 10: 9.
Masato, S. A., and S. Nobuo. 2002. Influence of the Global Warming on Tropical Cyclone Climatology An Experiment with the JMA Global Model. Journal of the Meteorological Society of Japan 80: 249-272.
Mousazadeh, H., A. Keyhani, A. Javadi, H. Mobli, K. Abrinia, and A. Sharifi. 2009. A review of principle and sun-tracking methods for maximizing solar systems output. Renewable & Sustainable Energy Reviews 13: 1800-1818.
Mulcué-Nieto, L. and L.Mora-López. 2014. A new model to predict the energy generated by a photovoltaic system connected to the grid in low latitude countries. Solar Energy 107: 423–442.
Mutoh, N., M. Ohno, and T. Inoue. 2006. A method for MPPT control while searching for parameters corresponding to weather conditions for PV generation systems. IEEE Trans. Ind. Electron. 53(4): 1055–1065.
Nema, P., R. K. Nema, and S. Rangnekar. 2010. Minimization of green house gases emission by using hybrid energy system for telephony base station site application. Renew. Sust. Energ. Rev. 14(6): 1635–1639.
Østergaard, P. A. 2009. Reviewing optimisation criteria for energy systems analyses of renewable energy integration. Energy 34(9): 1236–1245.
Perpiñan, O. 2009. Statistical analysis of the performance and simulation of a two-axis tracking PV system. Solar Energy 83: 2074-2085.
Perpiñan, O., E. Lorenzo, M. Castro, and R. Eyras. 2009. Energy payback time of grid connected PV systems: Comparison between tracking and fixed systems. Progress in Photovoltaics: Research and Applications 17: 137-147.
Powercom. 2010. PPV-216M6 216Wp Multicrystalline silicon phtovoltaic module. Available at: http://www.pcmups.com.tw/eB/html/product/show.php?num=66&root=9&kind=9&page=1&keyword= Accessed 14 June 2016.
Rauschenbach, H. S. 1980. Solar cell array design handbook: The Principles and Technology of Photovoltaic Energy Conversion. New York: Van Nostrand Reinhold Co.
Sakaki, K. and K. Yamada. 1997. CO2 mitigation by new energy systems. Energy Conv. Manag. 38: S655–S660.
Santarelli, M., M. Calì, and S. Macagno. 2004. Design and analysis of stand-alone hydrogen energy systems with different renewable sources. Int. J. Hydrog. Energy 29(15): 1571–1586.
Scarpa, V. V. R., S. Buso, and G. Spiazzi. 2009. Low-complexity MPPT technique exploiting the PV Module MPP locus characterization. IEEE Trans. Ind. Electron. 56(5): 1531–1538.
Sefa, I., M. Demirtas, and I. Colak. 2009. Application of one-axis sun tracking system. Energy Conversion and Management 50: 2709-2718.
Senpinar, A. and M. Cebeci. 2011. Evaluation of power output for fixed and two-axis tracking PVarrays. Applied Energy 92: 677–685.
Shakun, J., P. Clark, F. He, S. Marcott, A. Mix, Z. Liu, B. Otto-Bliesner, A. Schmittner, and E. Bard. 2012. Global warming preceded by increasing carbon dioxide concentrations during the last deglaciation. Nature 484: 49-U1506.
Shoeman, J. J. and J. D. van Wyk. 1982. A simplified maximal power controller for terrestrial photovoltaic panel arrays. In 'Proc. 13th IEEE Power Electronics Specialists Conference', 361–367. Cambridge, MA, U.S.A.: IEEE.
Simón‐Martín, M., C. Alonso‐Tristán, and M. Díez‐Mediavilla. 2014. Sun‐trackers profitability analysis in Spain. Progress in Photovoltaics: Research and Applications 22(9): 1010–1022.
Six, J., S. Ogle, F. Jay Breidt, R. Conant, A. Mosier, and K. Paustian. 2004. The potential to mitigate global warming with no-tillage management is only realized when practised in the long term. Global Change Biology 10: 155-160.
Sopitpan, S., P. Changmuang, and S. Panyakeow. 2001. Monitoring and data analysis of a PV system connected to a grid for home applications. Sol. Energy Mater. Sol. Cells 67(1–4): 481–490.
Sullivan, C. R. and M. J. Powers. 1993. A high-efficiency maximum power point tracker for photovoltaic arrays in a solar-powered race vehicle. In 'Proc. 24th IEEE Power Electronics Specialists Conference', 574–580. Seattle, WA, U.S.A.: IEEE.
Sun, L., L. Lu, H. Yang. 2012. Optimum design of shading-type building-integrated photovoltaic claddings with different surface azimuth angles. Appl. Energy 90(1): 233–240.
Sun Well Solar Corporation. 2010. References: BIPV. Sun Well Solar Corporation. Available at: http://www.sunwellsolar.com/. Accessed 10 May 2016.
Sungur, C. 2009. Multi-axes sun-tracking system with PLC control for photovoltaic panels in Turkey. Renewable Energy 34: 1119-1125.
Sze, S. M. 1981. Physics of semiconductor devices, 2nd ed. New York: Wiley.
Sze, S. M. And K. K. Ng. 2006. Physics of semiconductor devices, 3rd ed. New York: Wiley.
Takigawa, K., N. Okada, N. Kuwabara, A. Kitamura, and F. Yamamoto. 2003. Development and performance test of smart power conditioner for value-added PV application. Sol. Energy Mater. Sol. Cells 75(3–4): 547–555.
Tang, R. S. and Y. M. Yu. 2010. Feasibility and optical performance of one axis three positions sun-tracking polar-axis aligned CPCs for photovoltaic applications. Sol. Energy 84(9): 1666–1675.
Thiyagu, S., Z. Pei, and M. Jhong. 2012. Amorphous silicon nanocone array solar cell. Nanoscale Research Letters 7: 1-6.
Tomson, T. 2008. Discrete two-positional tracking of solar collectors. Renewable Energy 33: 400-405.
Wang, Y., W. Tian, J. Ren, L. Zhu, and Q. Wang. 2006. Influence of a building’s integrated-photovoltaics on heating and cooling loads. Appl. Energy 83(9): 989–1003.
Wang, C. and R. G. Prinn. 2010. Potential climatic impacts and reliability of very large-scale wind farms. Atmos. Chem. Phys. 10(4): 2053–2061.
Wang, J. C., J. .C Shieh, Y. L. Su, K. C. Kuo, Y. W. Chang, Y. T. Liang, J. J. Chou, K. C. Liao, and J. A. Jiang. 2011. A novel method for the determination of dynamic resistance for photovoltaic modules. Energy 36(10): 5968–5974.
Wang, J. C., Y. L. Su, J. C. Shieh, and J. A. Jiang. 2011. High-accuracy maximum power point estimation for photovoltaic arrays. Solar Energy Materials and Solar Cells 95(3): 843–851.
Wang, J. C., Y. L. Su, K. C. Kuo, J. C. Shieh, and J. A. Jiang. 2015. Toward multiple maximum power point estimation of photovoltaic systems based on semiconductor theory. Progress in Photovoltaics: Research and Applications 23(7): 847–861.
Wang, S. H., S. L. Huang, and W. W. Budd. 2012. Resilience analysis of the interaction of between typhoons and land use change. Landsc. Urban Plan. 106(4): 303–315.
Wasynzczuk, O. 1983. Dynamic behavior of a class of photovoltaic power systems. IEEE Trans. Power App. Syst. PAS-102(9): 3031–3037.
Yamada, K., H. Komiyama, K. Kato, and A. Inaba. 1995. Evaluation of photovoltaic energy systems in terms of economics, energy, and CO2 emissions. Energy Conv. Manag. 36(6–9): 819–822.
Zogou, O. and H. Stapountzis. 2012. Flow and heat transfer inside a PV/T collector for building application. Appl. Energy 91(1): 103–115.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/19248-
dc.description.abstract太陽光電系統之設置形式基本上分為固定式、單軸追日式與雙軸追日式等,不同設置型式之系統發電產量皆有顯著之差異。其中,固定式系統之太陽能模組設置傾斜角也會影響系統輸出效能。關於上述不同設置條件之系統發電量評估,在產學界上一直是個令人感到興趣的議題、其量化數值卻尚無完整理論之分析與支持。在本論文中,首先以半導體理論基礎建立了太陽能電池模型,探討其太陽入射角度、電氣參數與發電效能之關係;進一步套用此模型並整合太陽運動軌跡演算法於各不同設置形式之光電系統,並進行長時間之實驗佐證,可有效與精確地估算各不同系統之年發電產量。最後,應用此演算法則提出一項改良型太陽光電系統之設計,應用於國內溫、網室等農業設施做發電量估算,包含了不同斜度屋頂型態之設施;並進一步分析減碳效益與附加經濟效益評估,可提供國內農業主管機關、溫網室農民業者與光電系統業者,客觀與量化之研究數據,達成兼顧農地農用與綠能種電雙贏的目標。zh_TW
dc.description.abstractThe construction type of photovoltaic (PV) systems contains the fixed-type (FT), the single-axis tracking type (SASTT) and the dual-axis tracking type (DASTT) systems. The energy harvested by each type of PV systems are significant different. In addition to the effect of the types of PV systems, the tilt angle of a PV module that includes an FT system also affects the output power of the module. The assessment of energy harvested by different construction conditions of PV systems is an interesting topic in the PV industry and academia, but there is no comprehensive theory to support the quantitative numerical analysis of the assessment. In this study, a theoretical model of PV modules was first established to investigate the relationship between the performance of PV modules, and the solar incident angle and the electrical parameters. Furthermore, this model integrated with the solar trajectory on various construction types of PV systems. The long-term experimental results show that the proposed model can effectively and accurately evaluate the annual energy harvested by the PV systems. Finally, an improved PV system design was proposed, which can be applied to agricultural facilities for energy harvested assessment, such as greenhouses and screenhouses. The proposed method can also provide objective and quantitative information for agricultural authorities, owners of agricultural facilities, and PV system installers about the carbon reduction and additional economic benefits to achieve a win-win outcome for all parties.en
dc.description.provenanceMade available in DSpace on 2021-06-08T01:50:31Z (GMT). No. of bitstreams: 1
ntu-105-D99631007-1.pdf: 8546978 bytes, checksum: 65ccf3f902995f183020390a6e7464f2 (MD5)
Previous issue date: 2016
en
dc.description.tableofcontents口試委員會審定書
誌謝….……. i
中文摘要….. iii
Abstract……. iv
Table of Contents v
List of Illustrations ix
List of Tables ………………………………………………………………………… xv
Chapter 1 Introduction 1
1.1 Overview 1
1.2 The PV modules and arrays 2
1.3 Sun-tracking type PV systems 3
1.4 Contributions of this dissertation 5
1.4.1 Theoretical modeling of PV modules 6
1.4.2 Assessment of energy harvest capability 7
1.4.3 Improved PV systems designed for agricultural facilities 9
Chapter 2 Literature Review 11
2.1 Overview 11
2.2 The PV modules and MPP methods 12
2.3 Sun-tracking type PV systems 14
2.4 Agricultural facilities with PV systems 24
Chapter 3 Materials and Methods 30
3.1 Overview 30
3.2 The theoretical base of PV modules 31
3.3 The proposed assessment method 39
3.3.1 Mathematical preparation 40
3.3.2 Sun trajectory 42
3.3.3 Relation between Voc and incident angle 46
3.3.4 Relation between Isc and incident angle 49
3.3.5 Power ratio and Energy ratio 51
3.3.6 Data base established in a year 52
3.3.7 Different types of PV systems 55
3.3.8 FT system with a tilt angle of 0° 55
3.3.9 FT system with a tilt angle of 23.5° 55
3.3.10 SASTT system 56
3.3.11 DASTT system 56
3.4 Experimental setup 65
3.4.1 Hardware architectures of phase 1 65
3.4.2 Control system 68
3.4.3 Data logging system 72
3.4.4 Hardware architectures of phase 2 75
3.4.5 Comparison of energy harvested for the FT system with β = 23.5° and the SASTT system 80
3.4.6 Comparison of energy harvested between the FT system with β = 0° and the FT system with β = 23.5° 85
3.5 Integration with agricultural facilities 87
Chapter 4 Results and Discussion 93
4.1 Overview 93
4.2 Direct-prediction method for the MPP estimation 94
4.3 Energy ratio of FT systems to DASTT systems 100
4.4 Energy ratio of FT systems to SASTT systems 108
4.5 Energy ratio of FT systems at different tilt angles 111
4.6 Economic benefit analysis of FT systems with various tilt angles 114
4.7 Improved PV system design for agricultural facilities 117
4.7.1 Improvement of the FT PV system 118
4.7.2 Influences of the PV module’s tilt angle of the FT PV system 124
4.7.3 Estimation of the system scale in the domestic greenhouse market 127
4.7.4 The benefit estimation of carbon reduction in the domestic greenhouse market utilizing the improved PV system 131
4.7.5 Economic benefit estimation to greenhouses and PV installers 133
Chapter 5 Applications of Energy Harvest Enhancement 137
5.1 The topology of the proposed PVPC system 139
5.2 The mathematical basis of the designed inverter 141
5.2.1 The direct prediction method (DPM) for MPP 142
5.2.2 The duty ratio control of the inverter 143
5.2.3 The gating control scheme for the designed DC-AC inverter 148
5.2.4 The proposed hybrid MPPT strategy 152
5.2.5 The control scheme of the proposed hybrid MPPT method 154
5.3 Motivation of the proposed VST 158
5.4 How the VST works 162
5.5 Summary 170
Chapter 6 Conclusions and Future Works 173
References..... 179
Appendixlist of symbols 190
Publication List 193
dc.language.isoen
dc.title應用半導體理論於太陽光電系統發電效能之估算、提升與應用之研究zh_TW
dc.titleThe energy harvest capability of photovoltaic systems based on semiconductor theory: assessment, enhancement, and applicationen
dc.typeThesis
dc.date.schoolyear104-2
dc.description.degree博士
dc.contributor.oralexamcommittee蕭瑛東(Ying-Tung Hsiao),倪澤恩(Tzer-En Nee),李建興(Chien-Hsing Lee),黃振康(Chen-Kang Huang),周呈霙(Cheng-Ying Chou)
dc.subject.keyword太陽光電系統,追日式系統,半導體理論,日照入射角度,發電效能評估,zh_TW
dc.subject.keywordphotovoltaic (PV) system,sun-tracking type (STT) system,p-n junction semiconductor theory,solar incident angle,assessment of energy harvested,en
dc.relation.page197
dc.identifier.doi10.6342/NTU201601364
dc.rights.note未授權
dc.date.accepted2016-07-28
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept生物產業機電工程學研究所zh_TW
顯示於系所單位:生物機電工程學系

文件中的檔案:
檔案 大小格式 
ntu-105-1.pdf
  未授權公開取用
8.35 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved