請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/19242完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 林敏聰(Minn-Tsong Lin) | |
| dc.contributor.author | Po-Ya Yang | en |
| dc.contributor.author | 楊博亞 | zh_TW |
| dc.date.accessioned | 2021-06-08T01:50:16Z | - |
| dc.date.copyright | 2016-08-03 | |
| dc.date.issued | 2016 | |
| dc.date.submitted | 2016-07-27 | |
| dc.identifier.citation | [1] A. Manchon, H. C. Koo, J. Nitta, S. M. Frolov, and R. A. Duine. New perspec- tives for Rashba spin-orbit coupling. Nature Materials, 14(9):871–882, Septem- ber 2015.
[2] Xiao-Liang Qi and Shou-Cheng Zhang. Topological insulators and supercon- ductors. Reviews of Modern Physics, 83(4):1057–1110, October 2011. [3] Z. K. Liu, J. Jiang, B. Zhou, Z. J. Wang, Y. Zhang, H. M. Weng, D. Prab- hakaran, S.-K. Mo, H. Peng, P. Dudin, T. Kim, M. Hoesch, Z. Fang, X. Dai, Z. X. Shen, D. L. Feng, Z. Hussain, and Y. L. Chen. A stable three-dimensional topological Dirac semimetal Cd3As2. Nature Materials, 13(7):677–681, July 2014. [4] K. Ishizaka, M. S. Bahramy, H. Murakawa, M. Sakano, T. Shimojima, T. Sonobe, K. Koizumi, S. Shin, H. Miyahara, A. Kimura, K. Miyamoto, T. Okuda, H. Namatame, M. Taniguchi, R. Arita, N. Nagaosa, K. Kobayashi, Y. Murakami, R. Kumai, Y. Kaneko, Y. Onose, and Y. Tokura. Giant Rashba- type spin splitting in bulk BiTeI. Nature Materials, 10(7):521–526, July 2011. [5] S. V. Eremeev, I. A. Nechaev, Yu. M. Koroteev, P. M. Echenique, and E. V. Chulkov. Ideal Two-Dimensional Electron Systems with a Giant Rashba-Type Spin Splitting in Real Materials: Surfaces of Bismuth Tellurohalides. Physical Review Letters, 108(24):246802, June 2012. [6] J. E. Ho man, K. McElroy, D.-H. Lee, K. M. Lang, H. Eisaki, S. Uchida, and J. C. Davis. Imaging Quasiparticle Interference in Bi2Sr2CaCu2O8+δ. Science, 297(5584):1148–1151, August 2002. [7] G. Bihlmayer, O. Rader, and R. Winkler. Focus on the Rashba e ect. New Journal of Physics, 17(5):050202, 2015. [8] G. Dresselhaus. Spin-Orbit Coupling E ects in Zinc Blende Structures. Physical Review, 100(2):580–586, October 1955. [9] E. I. Rashba. Symmetry of energy bands in crystals of wurtzite type: I. symme- try of bands disregarding spin-orbit interaction. Sov. Phys.-Solid State, 1:368– 76, 1959. [10] E. I. Rashba. Symmetry of energy bands in crystals of wurtzite type: II. Symmetry of bands including spin-orbit interaction. Fiz. Tverd. Tela: Collected Papers, 2:162–80, 1959. [11] Fusayoshi J. Ohkawa and Yasutada Uemura. Quantized Surface States of a Narrow-Gap Semiconductor. Journal of the Physical Society of Japan, 37(5): 1325–1333, November 1974. [12] Supriyo Datta and Biswajit Das. Electronic analog of the electro-optic modu- lator. Applied Physics Letters, 56(7):665–667, February 1990. [13] S. LaShell, B. A. McDougall, and E. Jensen. Spin Splitting of an Au(111) Surface State Band Observed with Angle Resolved Photoelectron Spectroscopy. Physical Review Letters, 77(16):3419–3422, October 1996. [14] Yu. M. Koroteev, G. Bihlmayer, J. E. Gayone, E. V. Chulkov, S. Blugel, P. M. Echenique, and Ph. Hofmann. Strong Spin-Orbit Splitting on Bi Surfaces. Physical Review Letters, 93(4):046403, July 2004. [15] J. I. Pascual, G. Bihlmayer, Yu. M. Koroteev, H.-P. Rust, G. Ceballos, M. Hans- mann, K. Horn, E. V. Chulkov, S. Blugel, P. M. Echenique, and Ph. Hofmann. Role of Spin in Quasiparticle Interference. Physical Review Letters, 93(19): 196802, November 2004. [16] Christian R. Ast, Jurgen Henk, Arthur Ernst, Luca Moreschini, Mihaela C. Falub, Daniela Pacile, Patrick Bruno, Klaus Kern, and Marco Grioni. Gi- ant Spin Splitting through Surface Alloying. Physical Review Letters, 98(18): 186807, May 2007. [17] A. Varykhalov, J. Sanchez-Barriga, A. M. Shikin, W. Gudat, W. Eberhardt, and O. Rader. Quantum Cavity for Spin due to Spin-Orbit Interaction at a Metal Boundary. Physical Review Letters, 101(25):256601, December 2008. [18] Gabriel Landolt, Sergey V. Eremeev, Oleg E. Tereshchenko, Stefan Mu , Bartosz Slomski, Konstantin A. Kokh, Masaki Kobayashi, Thorsten Schmitt, Vladimir N. Strocov, Jurg Osterwalder, Evgueni V. Chulkov, and J. Hugo Dil. Bulk and surface Rashba splitting in single termination BiTeCl. New Journal of Physics, 15(8):085022, 2013. [19] S. V. Eremeev, I. P. Rusinov, I. A. Nechaev, and E. V. Chulkov. Rashba split surface states in BiTeBr. New Journal of Physics, 15(7):075015, 2013. [20] Lin Dong, Lei Jiang, and Han Pu. Fulde–Ferrell pairing instability in spin–orbit coupled Fermi gas. New Journal of Physics, 15(7):075014, 2013. [21] Di Xiao, Ming-Che Chang, and Qian Niu. Berry phase e ects on electronic properties. Reviews of Modern Physics, 82(3):1959–2007, July 2010. [22] J. Wunderlich, A. C. Irvine, Jairo Sinova, B. G. Park, L. P. Zarbo, X. L. Xu, B. Kaestner, V. Novak, and T. Jungwirth. Spin-injection Hall e ect in a planar photovoltaic cell. Nature Physics, 5(9):675–681, September 2009. [23] Hyun Cheol Koo, Jae Hyun Kwon, Jonghwa Eom, Joonyeon Chang, Suk Hee Han, and Mark Johnson. Control of Spin Precession in a Spin-Injected Field E ect Transistor. Science, 325(5947):1515–1518, September 2009. [24] B. Andrei Bernevig and Oskar Vafek. Piezo-magnetoelectric e ects in p-doped semiconductors. Physical Review B, 72(3):033203, July 2005. [25] A. Manchon and S. Zhang. Theory of nonequilibrium intrinsic spin torque in a single nanomagnet. Physical Review B, 78(21):212405, December 2008. [26] M. Z. Hasan and C. L. Kane. Colloquium : Topological insulators. Reviews of Modern Physics, 82(4):3045–3067, November 2010. [27] M. Born and R. Oppenheimer. Zur Quantentheorie der Molekeln. Annalen der Physik, 389(20):457–484, January 1927. [28] L. H. Thomas. The calculation of atomic elds. Mathematical Proceedings of the Cambridge Philosophical Society, 23(05):542–548, January 1927. [29] P. Hohenberg and W. Kohn. Inhomogeneous Electron Gas. Physical Review, 136(3B):B864–B871, November 1964. [30] W. Kohn and L. J. Sham. Self-Consistent Equations Including Exchange and Correlation E ects. Physical Review, 140(4A):A1133–A1138, November 1965. [31] R. O. Jones and O. Gunnarsson. The density functional formalism, its appli- cations and prospects. Reviews of Modern Physics, 61(3):689–746, July 1989. [32] John P. Perdew and Yue Wang. Pair-distribution function and its coupling- constant average for the spin-polarized electron gas. Physical Review B, 46(20): 12947–12954, November 1992. [33] J. Bardeen. Tunnelling from a Many-Particle Point of View. Physical Review Letters, 6(2):57–59, January 1961. [34] A.V. Shevelkov, E.V. Dikarev, R.V. Shpanchenko, and B.A. Popovkin. Crystal Structures of Bismuth Tellurohalides BiTeX (X = Cl, Br, I) from X-Ray Powder Di raction Data. Journal of Solid State Chemistry, 114(2):379–384, February 1995. [35] Vladimir A. Kulbachinskii, Vladimir G. Kytin, Alexey A. Kudryashov, Alexei N. Kuznetsov, and Andrei V. Shevelkov. On the electronic structure and thermoelectric properties of BiTeBr and BiTeI single crystals and of BiTeI with the addition of BiI3 and CuI. Journal of Solid State Chemistry, 193:154– 160, September 2012. [36] G. Kresse and J. Hafner. Ab-initio molecular dynamics for liquid metals. Phys- ical Review B, 47(1):558–561, January 1993. [37] G. Kresse and J. Hafner. Ab-initio molecular-dynamics simulation of the liquid- metal-amorphous-semiconductor transition in germanium. Physical Review B, 49(20):14251–14269, May 1994. [38] G. Kresse and J. Furthmuller. E ciency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Computational Materials Science, 6(1):15–50, July 1996. [39] G. Kresse and J. Furthmuller. E cient iterative schemes for ab initio total- energy calculations using a plane-wave basis set. Physical Review B, 54(16): 11169–11186, October 1996. [40] P. E. Blochl. Projector augmented-wave method. Physical Review B, 50(24): 17953–17979, December 1994. [41] Sebastian Fiedler, Thomas Bathon, Sergey V. Eremeev, Oleg E. Tereshchenko, Konstantin A. Kokh, Evgueni V. Chulkov, Paolo Sessi, Hendrik Bentmann, Matthias Bode, and Friedrich Reinert. Termination-dependent surface prop- erties in the giant-Rashba semiconductors BiTeX (X = Cl, Br, I). Physical Review B, 92(23):235430, December 2015. [42] J. I. Pascual, G. Bihlmayer, Yu. M. Koroteev, H.-P. Rust, G. Ceballos, M. Hans- mann, K. Horn, E. V. Chulkov, S. Blugel, P. M. Echenique, and Ph. Hofmann. Role of Spin in Quasiparticle Interference. Physical Review Letters, 93(19): 196802, November 2004. [43] Pedram Roushan. Visualizing Surface States of Topological Insulators with Scanning Tunneling Microscopy. PhD thesis, PRINCETON UNIVERSITY, 2011. [44] L. Petersen and P. Hedegard. A simple tight-binding model of spin–orbit split- ting of sp-derived surface states. Surface Science, 459(1–2):49–56, July 2000. [45] Pedram Roushan, Jungpil Seo, Colin V. Parker, Y. S. Hor, D. Hsieh, Dong Qian, Anthony Richardella, M. Z. Hasan, R. J. Cava, and Ali Yazdani. Topological surface states protected from backscattering by chiral spin texture. Nature, 460(7259):1106–1109, August 2009. [46] Cheng-Rong Hsing, Ching Cheng, Jyh-Pin Chou, Chun-Ming Chang, and Ching-Ming Wei. Van der Waals interaction in a boron nitride bilayer. New Journal of Physics, 16(11):113015, November 2014. [47] E. Mostaani, D. Drummond, N. and I. Fal’ko, V. ̇Quantum Monte Carlo Cal- culation of the Binding Energy of Bilayer Graphene. Physical Review Letters, 115(11):115501, September 2015. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/19242 | - |
| dc.description.abstract | 碲鉍⻧化物 (bismuth tellurohalides) 是擁有巨大 Rashba 效應的半導體,存在於 其帶有相反極性的兩端面中,帶有的自旋-動量垂直關係 (spin-momentum locked) 的載子,有應用在自旋電子學裝置的潛力。我們使用密度泛函方法,研究溴碲化 鉍的碲端面的晶格結構、表面電子組態。並且,藉由討論在倒空間等能量電子 組態分佈 (constant energy contours) 所有可能的態轉換,我們模擬出準粒子干涉 (quasiparticle interference) 條紋。結合狀態密度 (joint density of states) 和自旋散 射機率 (spin scattering probability) 分別是沒有考慮、有考慮自旋版本的準粒子干 涉。最後,比較模擬和實驗的準粒子干涉條紋,發現自旋不守恆的反向散射,不 存在於溴碲化鉍的碲端面上。 | zh_TW |
| dc.description.abstract | Bismuth Tellurohalides are semiconductors with a giant Rashba e ect. They have two oppositely polarised surfaces with two-dimensional spin-momentum locked he- lical charge carriers, which are good candidates to achieve the goal of spin control in novel spintronic devices. Within the framework of density functional theory, we study the band structure of the Te-termination of ordered phase bismuth telluro- bromide, BiTeBr. Considering all the possible parings of initial and nal states in the constant energy contours (CEC), we further simulate the quasiparticle interfer- ence (QPI) patterns. By excluding or including the helical spin texture, there are actually two versions of simulated QPI patterns, joint density of states (JDOS) and spin scattering probability (SSP). Finally, we compare the simulated phenomena with measured tunnelling spectro-microscopy maps. We show that backscattering with opposite spin is absent in this system. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-08T01:50:16Z (GMT). No. of bitstreams: 1 ntu-105-R03222015-1.pdf: 19896874 bytes, checksum: eb472816d7b19a4954e014b328fae1f9 (MD5) Previous issue date: 2016 | en |
| dc.description.tableofcontents | 1 Overview 1
2 Introduction 3 2.1 RashbaE ectonTwoDimensionalElectronGas . . . . . . . . . . . 3 2.2 The Development about the Research of Spin-Orbit Coupling . . . . 4 3 Experimental Techniques and Apparatus 7 3.1 DensityFunctionalTheory........................ 7 3.1.1 Many-ElectronGroundStateProblem . . . . . . . . . . . . . 7 3.1.2 Variational Method in the Searching of Ground State . . . . . 8 3.1.3 Thomas-FermiModel....................... 9 3.1.4 Hohenberg-KohnTheorems ................... 11 3.1.5 Kohn-ShamEquations...................... 12 3.1.6 Exchange-CorrelationFunctionals. . . . . . . . . . . . . . . . 13 3.2 ScanningTunnelingMicroscopy ..................... 15 3.2.1 TunnelingModelofSTM .................... 15 3.2.2 ScanningTunnelingSpectroscopy................ 16 3.2.3 Ultra-High Vacuum Low-Temperature STM . . . . . . . . . . 17 3.3 SamplePreparation............................ 17 4 About the Material BiTeBr 19 4.1 CrystalStructureofBiTeBr ....................... 19 4.1.1 Theoretical Relaxation of Lattice Structure . . . . . . . . . . 20 4.1.2 Lattice Structure from STM Experiments . . . . . . . . . . . 22 4.1.3 SurfaceCalculationonBiTeBr ................. 23 4.2 ElectronicStructureofBiTeBr ..................... 28 4.2.1 Spin-OrbitCouplingandBandStructure. . . . . . . . . . . . 28 4.2.2 Electronic Structure from STS Experiments . . . . . . . . . . 29 5 Simulation of Quasiparticle Interference Patterns 31 5.1 Quasiparticle Interference Pattern Measured by STM . . . . . . . . . 32 5.1.1 ElasticScatteringandStandingWaves . . . . . . . . . . . . . 32 5.1.2 Conductance Modulation Measured by STS . . . . . . . . . . 33 5.2 ConstantEnergyContours........................ 35 5.3 JointDensityofStatesandConvolutionMethod. . . . . . . . . . . . 37 5.3.1 JointDensityofStates...................... 37 5.3.2 AboutConvolution........................ 37 5.3.3 ConvolutionMethodonCEC .................. 39 5.4 Spin-IncludedSimulatedQPI ...................... 42 5.4.1 SpinScatteringProbability ................... 42 5.4.2 SpinInformationfromVASP .................. 42 5.4.3 SpinorandSSP.......................... 43 5.5 DiscussionoftheData .......................... 46 5.5.1 Comparison between Simulated and Measured QPI Patterns . 46 5.5.2 Discussion of the in-plane and out-of-plane Components of Spin 48 5.5.3 Possibility to Acquire More Information by Using Spin-Polarized STM................................ 50 6 Conclusions 52 Appendices 54 A Comparison between Exchange-Correlation Functionals 55 B Proof to the SSP Formula of Spin Angles 58 C Dealing with the Central Peak from Self-Convolution Methods 60 Bibliography 62 | |
| dc.language.iso | en | |
| dc.title | 利用第一原理計算模擬研究在巨大Rashba半導體溴碲化鉍上的準粒子干涉 | zh_TW |
| dc.title | First-Principle-Calculations and Simulations of Quasiparticle
Interference at the Surface of a Giant Rashba Semiconductor BiTeBr | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 104-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.coadvisor | 魏金明(Ching-Ming Wei) | |
| dc.contributor.oralexamcommittee | 唐毓慧(Yu-Hui Tang) | |
| dc.subject.keyword | Rashba 效應,溴碲化鉍,掃描式穿隧電子顯微鏡,掃描式穿隧電子能譜,密度泛函理論,準粒子干涉, | zh_TW |
| dc.subject.keyword | Rashba effect,BiTeBr,scanning tunnelling microscopy,scanning tunnelling spectroscopy,density functional theory,quasi-particle interference, | en |
| dc.relation.page | 67 | |
| dc.identifier.doi | 10.6342/NTU201601347 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2016-07-28 | |
| dc.contributor.author-college | 理學院 | zh_TW |
| dc.contributor.author-dept | 物理學研究所 | zh_TW |
| 顯示於系所單位: | 物理學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-105-1.pdf 未授權公開取用 | 19.43 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
