請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/19238完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 林敏聰 | |
| dc.contributor.author | Yi Tseng | en |
| dc.contributor.author | 曾奕 | zh_TW |
| dc.date.accessioned | 2021-06-08T01:50:05Z | - |
| dc.date.copyright | 2016-08-03 | |
| dc.date.issued | 2016 | |
| dc.date.submitted | 2016-07-28 | |
| dc.identifier.citation | [1] S. Jeon, B. B. Zhou, A. Gyenis, B. E. Feldman, I. Kimchi, A. C. Potter, Q. D. Gibson, R. J. Cava, A. Vishwanath, and A. Yazdani. Landau quantization and quasiparticle interference in the three-dimensional Dirac semimetal Cd<sub>3</sub>As<sub>2</sub>. Nature Materials, 13(9):851-856, 2014.
[2] M. Neupane, S.-Y. Xu, R. Sankar, N. Alidoust, G. Bian, C. Liu, I. Belopolski, T.-R. Chang, H.-T. Jeng, H. Lin, A. Bansil, F. C. Chou, and M. Z. Hasan. Observation of a three-dimensional topological Dirac semimetal phase in highmobility Cd<sub>3</sub>As<sub>2</sub>. Nature Communications, 5:3786, 2014. [3] P. E. Bl öchl. Projector augmented-wave method. Physical Review B, 50(24):17953-17979, 1994. [4] M. N. Ali, Q. Gibson, S. Jeon, B. B. Zhou, A. Yazdani, and R. J. Cava. The Crystal and Electronic Structures of Cd<sub>3</sub>As<sub>2</sub>, the Three-Dimensional Electronic Analogue of Graphene. Inorganic Chemistry, 53(8):4062-4067, 2014. [5] S.-T. Guo, R. Sankar, Y.-Y. Chien, T.-R. Chang, H.-T. Jeng, G.-Y. Guo, F. C. Chou, and W.-L. Lee. Large transverse Hall-like signal in topological Dirac semimetal Cd<sub>3</sub>As<sub>2</sub>. Scientific Reports, 6:27487, 2016. [6] A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim. The electronic properties of graphene. Reviews of Modern Physics, 81(1):109-162, 2009. [7] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov. Two-dimensional gas of massless Dirac fermions in graphene. Nature, 438(7065):197-200, 2005. [8] Y. Zhang, Y.-W. Tan, H. L. Stormer, and P. Kim. Experimental observation of the quantum Hall e ect and Berry's phase in graphene. Nature, 438(7065):201-204, 2005. [9] C. L. Kane and E. J. Mele. Quantum Spin Hall E ect in Graphene. Physical Review Letters, 95(22):226801, 2005. [10] A. A. Burkov and L. Balents. Weyl Semimetal in a Topological Insulator Multilayer. Physical Review Letters, 107(12):127205, 2011. [11] G. B. Halász and L. Balents. Time-reversal invariant realization of the Weyl semimetal phase. Physical Review B, 85(3):035103, 2012. [12] S. M. Young, S. Zaheer, J. C. Y. Teo, C. L. Kane, E. J. Mele, and A. M. Rappe. Dirac Semimetal in Three Dimensions. Physical Review Letters, 108(14):140405, 2012. [13] Z. Wang, Y. Sun, X.-Q. Chen, C. Franchini, G. Xu, H. Weng, X. Dai, and Z. Fang. Dirac semimetal and topological phase transitions in A<sub>3</sub>Bi (A = Na , K, Rb). Physical Review B, 85(19):195320, 2012. [14] Z. Wang, H. Weng, Q. Wu, X. Dai, and Z. Fang. Three-dimensional Dirac semimetal and quantum transport in Cd<sub>3</sub>As<sub>2</sub>. Physical Review B, 88(12):125427, 2013. [15] Z. K. Liu, B. Zhou, Y. Zhang, Z. J. Wang, H. M. Weng, D. Prabhakaran, S.-K. Mo, Z. X. Shen, Z. Fang, X. Dai, Z. Hussain, and Y. L. Chen. Discovery of a Three-Dimensional Topological Dirac Semimetal, Na<sub>3</sub>Bi. Science, 343(6173):864-867, 2014. [16] Z. K. Liu, J. Jiang, B. Zhou, Z. J. Wang, Y. Zhang, H. M. Weng, D. Prabhakaran, S.-K. Mo, H. Peng, P. Dudin, T. Kim, M. Hoesch, Z. Fang, X. Dai, Z. X. Shen, D. L. Feng, Z. Hussain, and Y. L. Chen. A stable three dimensional topological Dirac semimetal Cd<sub>3</sub>As<sub>2</sub>. Nature Materials, 13(7):677-681, 2014. [17] S. Borisenko, Q. Gibson, D. Evtushinsky, V. Zabolotnyy, Bernd B'uchner, and Robert J. Cava. Experimental Realization of a Three-Dimensional Dirac Semimetal. Physical Review Letters, 113(2):027603, 2014. [18] Y. Zhang, B. Zhou, Y. Kim, Z. Hussain, Z.-X. Shen, Y. Chen, and S.-K. Mo. Molecular beam epitaxial growth of a three-dimensional topological Dirac semimetal Na<sub>3</sub>Bi. Applied Physics Letters, 105(3):031901, 2014. [19] H. Yi, Z. Wang, C. Chen, Y. Shi, Y. Feng, A. Liang, Z. Xie, S. He, J. He, Y. Peng, X. Liu, Y. Liu, L. Zhao, G. Liu, X. Dong, J. Zhang, M. Nakatake, M. Arita, K. Shimada, H. Namatame, M. Taniguchi, Z. Xu, C. Chen, X. Dai, Z. Fang, and X. J. Zhou. Evidence of Topological Surface State in Three-Dimensional Dirac Semimetal Cd<sub>3</sub>As<sub>2</sub>. Scientific Reports, 4:6106, 2014. [20] S.-Y. Xu, C. Liu, S. K. Kushwaha, R. Sankar, J. W. Krizan, I. Belopolski, M. Neupane, G. Bian, N. Alidoust, T.-R. Chang, H.-T. Jeng, C.-Y. Huang, W.-F. Tsai, H. Lin, P. P. Shibayev, F. C. Chou, R. J. Cava, and M. Z. Hasan. Observation of Fermi arc surface states in a topological metal. Science, 347(6219):294-298, 2015. [21] S. K. Kushwaha, J. W. Krizan, B. E. Feldman, A. Gyenis, M. T. Randeria, J. Xiong, S.-Y. Xu, N. Alidoust, I. Belopolski, T. Liang, M. Z. Hasan, N. P. Ong, A. Yazdani, and R. J. Cava. Bulk crystal growth and electronic characterization of the 3D Dirac semimetal Na<sub>3</sub>Bi. APL Materials, 3(4):041504, 2015. [22] M. Neupane, S.-Y Xu, N. Alidoust, R. Sankar, I. Belopolski, D. S. Sanchez, G. Bian, C. Liu, T.-R Chang, H.-T. Jeng, B.Wang, G. Chang, H. Lin, A. Bansil, F. C. Chou, and M. Z. Hasan. Surface versus bulk Dirac state tuning in a threedimensional topological Dirac semimetal. Physical Review B, 91(24):241114, 2015. [23] R. Sankar, M. Neupane, S.-Y. Xu, C. J. Butler, I. Zeljkovic, I. Panneer Muthuselvam, F.-T. Huang, S.-T. Guo, Sunil K. Karna, M.-W. Chu, W. L. Lee, M.-T. Lin, R. Jayavel, V. Madhavan, M. Z. Hasan, and F. C. Chou. Large single crystal growth, transport property, and spectroscopic characterizations of three-dimensional Dirac semimetal Cd<sub>3</sub>As<sub>2</sub>. Scientific Reports, 5:12966, 2015. [24] M. T. Edmonds, J. Hellerstedt, K. M. O'Donnell, A. Tadich, and M. S. Fuhrer. Molecular Doping the Topological Dirac Semimetal Na<sub>3</sub>Bi across the Charge Neutrality Point with F4-TCNQ. ACS Applied Materials & Interfaces, 8(25):16412-16418, 2016. [25] W. J. Turner. Physical Properties of Several II-V Semiconductors. Physical Review, 121(3):759-767, 1961. [26] D. P. Spitzer, G. A. Castellion, and G. Haacke. Anomalous Thermal Conductivity of Cd<sub>3</sub>As<sub>2</sub> and the Cd<sub>3</sub>As<sub>2</sub>-Zn<sub>3</sub>As<sub>2</sub> Alloys. Journal of Applied Physics, 37(10):3795, 1966. [27] S. I. Radautsan, E. K. Arushanov, and G. P. Chuiko. The conduction band of cadmium arsenide. physica status solidi (a), 20(1):221-226, 1973. [28] T. Liang, Q. Gibson, M. N. Ali, M. Liu, R. J. Cava, and N. P. Ong. Ultrahigh mobility and giant magnetoresistance in the Dirac semimetal Cd<sub>3</sub>As<sub>2</sub>. Nature Materials, 14(3):280-284, 2014. [29] L. P. He, X. C. Hong, J. K. Dong, J. Pan, Z. Zhang, J. Zhang, and S. Y. Li. Quantum Transport Evidence for the Three-Dimensional Dirac Semimetal Phase in Cd3As2. Physical Review Letters, 113(24):246104, 2014. [30] E. Zhang, Y. Liu, W. Wang, C. Zhang, P. Zhou, Z.-G. Chen, J. Zou, and F. Xiu. Magnetotransport Properties of Cd<sub>3</sub>As<sub>2</sub> Nanostructures. ACS Nano, 9(9):8843-8850, 2015. [31] J. Cao, S. Liang, C. Zhang, Y. Liu, J. Huang, Z. Jin, Z.-G. Chen, Z. Wang, Q. Wang, J. Zhao, S. Li, X. Dai, J. Zou, Z. Xia, L. Li, and F. Xiu. Landau level splitting in Cd<sub>3</sub>As<sub>2</sub> under high magnetic fields. Nature Communications, 6:7779, 2015. [32] Y. Liu, C. Zhang, X. Yuan, T. Lei, C. Wang, D. Di Sante, A. Narayan, L. He, S. Picozzi, S. Sanvito, R. Che, and F. Xiu. Gate-tunable quantum oscillations in ambipolar Cd<sub>3</sub>As<sub>2</sub> thin films. NPG Asia Materials, 7(10):e221, 2015. [33] H. Li, H. He, H.-Z. Lu, H. Zhang, H. Liu, R. Ma, Z. Fan, S.-Q. Shen, and J. Wang. Negative magnetoresistance in Dirac semimetal Cd<sub>3</sub>As<sub>2</sub>. Nature Communications, 7:10301, 2016. [34] L.-X. Wang, C.-Z. Li, D.-P. Yu, and Z.-M. Liao. Aharonov-Bohm oscillations in Dirac semimetal Cd<sub>3</sub>As<sub>2</sub> nanowires. Nature Communications, 7:10769, 2016. [35] D. Neubauer, J. P. Carbotte, A. A. Nateprov, A. L öhle, M. Dressel, and A. V. Pronin. Interband optical conductivity of the [001]-oriented Dirac semimetal Cd<sub>3</sub>As<sub>2</sub>. Physical Review B, 93(12):121202, 2016. [36] H. Pan, K. Zhang, Z. Wei, B. Zhao, J. Wang, M. Gao, L. Pi, M. Han, F. Song, X. Wang, B. Wang, and R. Zhang. Quantum oscillation and nontrivial transport in the Dirac semimetal Cd<sub>3</sub>As<sub>2</sub> nanodevice. Applied Physics Letters, 108(18):183103, 2016. [37] L. Aggarwal, A. Gaurav, G. S. Thakur, Z. Haque, A. K. Ganguli, and G. Sheet. Unconventional superconductivity at mesoscopic point contacts on the 3D Dirac semimetal Cd<sub>3</sub>As<sub>2</sub>. Nature Materials, 15(1):32-37, 2015. [38] H. Wang, H. Wang, H. Liu, H. Lu, W. Yang, S. Jia, X.-J. Liu, X. C. Xie, J. Wei, and J. Wang. Observation of superconductivity induced by a point contact on 3D Dirac semimetal Cd<sub>3</sub>As<sub>2</sub> crystals. Nature Materials, 15(1):38-42, 2015. [39] S. Zhang, Q. Wu, L. Schoop, M. N. Ali, Y. Shi, N. Ni, Q. Gibson, S. Jiang, V. Sidorov, W. Yi, J. Guo, Y. Zhou, D. Wu, P. Gao, D. Gu, C. Zhang, S. Jiang, K. Yang, A. Li, Y. Li, X. Li, J. Liu, X. Dai, Z. Fang, R. J. Cava, L. Sun, and Z. Zhao. Breakdown of three-dimensional Dirac semimetal state in pressurized Cd<sub>3</sub>As<sub>2</sub>. Physical Review B, 91(16):165133, 2015. [40] M. Stackelberg and R. Paulas. Untersuchengen an deu Phosphiden und Arseniden des Zinks und Cadmius. Das Zn<sub>3</sub>P<sub>2</sub>-Gitter. Z. Phys. Chem., Abt. B, (28):427, 1935. [41] G. A. Steigmann and J. Goodyear. The crystal structure of Cd<sub>3</sub>As<sub>2</sub>. Acta Crystallographica Section B Structural Crystallography and Crystal Chemistry, 24(8):1062-1067, 1968. [42] G. Kresse and J. Hafner. Ab initio molecular dynamics for open-shell transition metals. Physical Review B, 48(17):13115-13118, November 1993. [43] G. Kresse and J. Furthm üller. E ciency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Computational Materials Science, 6(1):15-50, 1996. [44] G. Binnig and H. Rohrer. Scanning tunneling microscopy. Surface Science, 126:236-244, 1983. [45] R. Z. Huang, V. S. Stepanyuk, A. L. Klavsyuk, W. Hergert, P. Bruno, and J. Kirschner. Atomic relaxations and magnetic states in a single-atom tunneling junction. Physical Review B, 73(15):153404, 2006. [46] J. Terso and D. R. Hamann. Theory of the scanning tunneling microscope. Physical Review B, 31(2):805-813, 1985. [47] J. Bardeen. Tunnelling from a Many-Particle Point of View. Physical Review Letters, 6(2):57-59, 1961. [48] I. Giaever. Energy Gap in Superconductors Measured by Electron Tunneling. Physical Review Letters, 5(4):147 148, 1960. [49] J. R. Oppenheimer. Three Notes on the Quantum Theory of Aperiodic E ects. Physical Review, 31(1):66-81, 1928. [50] J. Terso and D. R. Hamann. Theory and Application for the Scanning Tunneling Microscope. Physical Review Letters, 50(25):1998-2001, 1983. [51] C. Julian Chen. Introduction to Scanning Tunneling Microscopy. Oxford University Press, New York, 1993. [52] Neil W. Ashcroft and N. David Mermin. Solid State Physics. Saunders College Press, 1st edition, 1976. [53] L. H. Thomas. The calculation of atomic fields. Mathematical Proceedings of the Cambridge Philosophical Society, 23(05):542, 1927. [54] E. Fermi. Un Metodo Statistico per la Determinazione di alcune Prioprietà dell'Atomo. Rendiconti Accademia Nazionale Lincei, 6:602-607, 1927. [55] Richard M. Martin. Electronic Structure. CAMBRIDGE, 2004. [56] P. Hohenberg and W. Kohn. Inhomogeneous Electron Gas. Physical Review, 136(3B):B864-B871, 1964. [57] W. Kohn and L. J. Sham. Self-Consistent Equations Including Exchange and Correlation E ects. Physical Review, 140(4A):A1133-A1138, 1965. [58] J. P. Perdew, K. Burke, and M. Ernzerhof. Generalized Gradient Approximation Made Simple. Physical Review Letters, 77(18):3865-3868, 1996. [59] G. Kresse and D. Joubert. From ultrasoft pseudopotentials to the projector augmented-wave method. Physical Review B, 59(3):1758-1775, 1999. [60] D. R. Hamann, M. Schlüter, and C. Chiang. Norm-Conserving Pseudopotentials. Physical Review Letters, 43(20):1494-1497, 1979. [61] C.-Z. Li, R. Zhu, X. Ke, J.-M. Zhang, L.-X. Wang, L. Zhang, Z.-M. Liao, and D.-P. Yu. Synthesis and Photovoltaic Properties of Cd<sub>3</sub>As<sub>2</sub> Faceted Nanoplates and Nano-Octahedrons. Crystal Growth & Design, 15(7):3264-3270, 2015. [62] Z.-G. Chen, C. Zhang, Y. Zou, E. Zhang, L. Yang, M. Hong, F. Xiu, and J. Zou. Scalable Growth of High Mobility Dirac Semimetal Cd<sub>3</sub>As<sub>2</sub> Microbelts. Nano Letters, 15(9):5830-5834, 2015. [63] G. Kresse and J. Furthm üller. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Physical Review B, 54(16):11169-11186, 1996. [64] H. J. Monkhorst and J. D. Pack. Special points for Brillouin-zone integrations. Physical Review B, 13(12):5188-5192, 1976. [65] M. J. Aubin, L. G. Caron, and J. P. Jay-Gerin. Band structure of cadmium arsenide at room temperature. Physical Review B, 15(8):3872-3878, 1977. [66] L. G. Caron, J. P. Jay-Gerin, and M. J. Aubin. Energy-band structure of Cd<sub>3</sub>As<sub>2</sub> at low temperatures and the dependence of the direct gap on temperature and pressure. Physical Review B, 15(8):3879-3887, 1977. [67] M. Methfessel and A. T. Paxton. High-precision sampling for Brillouin-zone integration in metals. Physical Review B, 40(6):3616-3621, 1989. [68] O. Jepson and O. K. Anderson. The electronic structure of h.c.p. Ytterbium. Solid State Communications, 9(20):1763-1767, 1971. [69] G. Lehmann and M. Taut. On the Numerical Calculation of the Density of States and Related Properties. physica status solidi (b), 54(2):469-477, 1972. [70] H. Jin, Y. Dai, Y.-D. Ma, X.-R. Li, W. Wei, L. Yu, and B.-B. Huang. The electronic and magnetic properties of transition-metal element doped threedimensional topological Dirac semimetal in Cd<sub>3</sub>As<sub>2</sub>. J. Mater. Chem. C, 3(15):3547-3551, 2015. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/19238 | - |
| dc.description.abstract | 被稱作「三維石墨烯材料」的狄拉克半金屬,在近年來因具有相對論性狄拉克費米態之特性,在新穎材料特性與元件應用領域的潛力上,吸引了學術圈的注意。若在狄拉克半金屬材料結構內,引入時間反演與空間反轉對稱的破壞,則結構內因對稱性下守恆的拓樸狄拉克粒子態被預測會分裂成一對具自旋極化的外耳費米子態,而此種外耳半金屬對於新穎傳輸現象的實踐上,可視為一大躍進。外耳費米子態被比喻為倒空間晶格內的「磁單極」,並因此在近年來受到科學家的矚目。目前被預測符合狄拉克半金屬特性的材料中,主要有砷化鎘和納化鉍,而我們針對前者較穩定的化性,進行了一系列的研究。砷化鎘材料目前已被證實具有許多別於傳統材料的特性,例如負巨磁阻、超高載子遷移率、應力導致之電性態相變,甚至近年來也有跟超導相關的討論。儘管以上諸多特點,很多都跟它本身的晶格排列有很大的關係,然而也正是那複雜的材料結構,讓科學家對於砷化鎘的原子模型,始終缺乏較為完整的理解。在我們的工作當中,透過掃描穿隧顯影以及密度泛函理論的第一原理計算,我們針對砷化鎘材料的(112)斷面進行徹底且縝密的研究,包含它表面的層狀結構和原子組態。除此之外,透過一個重新定義的單位晶格,我們成功詮釋一組首次觀測而得的表面晶格結構,並理解到此種結果跟原子模型、電性結構,以及它對於已發現之非傳統型傳輸現象間,有什麼樣的物理連結。總結來說,我們的成果給出了第一個針對砷化鎘材料表面的複雜結構,以及電子組態特性的完整詮釋,並且清楚指出這些特性在應用端上的可能性。 | zh_TW |
| dc.description.abstract | Dirac semimetals (DSM), three dimensional analogues of ultra-relativistic fermion systems like graphene, have been all the rage recently owing to their novel properties and potential in device application. By breaking time-reversal or spatial inversion symmetry, many believe the merged pair of symmetry-protected Dirac points in DSM would become spin-polarized Weyl nodes in Weyl semimetals (WSM), responsible for unconventional Fermi-arc state. Described as magnetic monopole in momentum-space, it has dragged much attention from scientists recently. Predicted DSM candidates include Cd<sub>3</sub>As<sub>2</sub> and Na<sub>3</sub>Bi, and we particularly focus on the former one for its chemical stability. Several features of Cd<sub>3</sub>As<sub>2</sub> have been published already, such as giant magnetoresistance, ultrahigh mobility, pressure-induced phase transition, and even possible superconductivity recently. Most of these fascinating features are derived from the unique crystalline structure, though, few reports focus on it due to the complexity and lack of well-defined understanding of surface properties. Here, we perform a combined investigation of scanning tunneling microscopy (STM) and density functional theory (DFT) on Cd<sub>3</sub>As<sub>2</sub> and characterize the cleaved (112) plane in detail, including atomic lattice and step-terrace morphology, and it agrees with previously proposed structure. In addition, a redefined unit cell is introduced to explain an unexpected surface morphology on (112) cleavage plane, revealing intrinsic bulk-like termination with defect-modified electronic configuration, and it shows direct evidence on some of the reported unconventional transport behavior. Therefore, our work comes with the very first detailed surface study on the sophisticated structure and non-trivial electronic properties of Cd<sub>3</sub>As<sub>2</sub>, and leads to a clear connection with device applications. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-08T01:50:05Z (GMT). No. of bitstreams: 1 ntu-105-R03222041-1.pdf: 31373753 bytes, checksum: ed0a8200db5289fcec5ee9aeb572878f (MD5) Previous issue date: 2016 | en |
| dc.description.tableofcontents | Contents
Acknowledgements viii 1 Introduction 2 2 Scanning Tunnelling Microscopy and Spectroscopy 7 2.1 Overview . . . . . . . . . . . . . . . . . . . . . 7 2.2 Principle of STM . . . . . . . . . . . . . . . . . 8 2.2.1 Origin . . . . . . . . . . . . . . . . . . . . . 8 2.2.2 Bardeen's Method . . . . . . . . . . . . . . . . 10 2.2.3 Tersoff-Hamann Model . . . . . . . . . . . . . . 12 2.3 Measurement . . . . . . . . . . . . . . . . . . . 13 2.3.1 Topography . . . . . . . . . . . . . . . . . . . 13 2.3.2 Local Density of States (LDOS) . . . . . . . . . 14 2.4 Apparatus . . . . . . . . . . . . . . . . . . . . 15 2.5 Sample Preparation . . . . . . . . . . . . . . . . 19 3 Density Functional Theory 21 3.1 Overview . . . . . . . . . . . . . . . . . . . . . 21 3.2 Theoretical Background . . . . . . . . . . . . . . 22 3.3 Approximation Methods of Exchange and Correlation .26 3.4 Pseudopotentials . . . . . . . . . . . . . . . . . 26 4 Results and Analysis 29 4.1 Experimental Results of STM and STS . . . . . . . 29 4.2 Re-oriented Structural Model . . . . . . . . . . . 32 4.3 First-principles Calculation Results . . . . . . . 34 4.3.1 Calculated Partial Charge Density . . . . . . . .36 4.3.2 Calculated LDOS . . . . . . . . . . . . . . . . .38 5 Conclusion 42 Bibliography 43 | |
| dc.language.iso | en | |
| dc.title | 以掃描穿隧顯影及第一原理計算對三維狄拉克半金屬砷化鎘的表面性質探討 | zh_TW |
| dc.title | Surface Characterization of 3-D Dirac Semimetal Cd<sub>3</sub>As<sub>2</sub> Using a Combined Scanning Tunneling Microscopy and First-principles Calculation Approach | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 104-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 魏金明,唐毓慧,林文欽,莊天明 | |
| dc.subject.keyword | 掃描穿隧顯影,掃描穿隧能譜,狄拉克半金屬,密度泛函理論, | zh_TW |
| dc.subject.keyword | Scanning Tunneling Microscopy,Scanning Tunneling Spectroscopy,Dirac Semimetal,Density Functional Theory, | en |
| dc.relation.page | 50 | |
| dc.identifier.doi | 10.6342/NTU201601386 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2016-07-28 | |
| dc.contributor.author-college | 理學院 | zh_TW |
| dc.contributor.author-dept | 物理學研究所 | zh_TW |
| 顯示於系所單位: | 物理學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-105-1.pdf 未授權公開取用 | 30.64 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
