請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/19237完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 林敏聰(Minn-Tsong Lin) | |
| dc.contributor.author | Mei-Fang Wang | en |
| dc.contributor.author | 王美芳 | zh_TW |
| dc.date.accessioned | 2021-06-08T01:50:03Z | - |
| dc.date.copyright | 2016-08-24 | |
| dc.date.issued | 2016 | |
| dc.date.submitted | 2016-07-28 | |
| dc.identifier.citation | [1] G. A. Somerjai. Chemistry in Two Dimensions: Surfaces. Cornell University Press, Ithaca, NY, 1981.
[2] Y. L. Chen, J.-H. Chu, J. G. Analytis, Z. K. Liu, K. Igarashi, H.-H. Kuo, X. L. Qi, S. K. Mo, R. G. Moore, D. H. Lu, M. Hashimoto, T. Sasagawa, S. C. Zhang, I. R. Fisher, Z. Hussain, and Z. X. Shen. Massive Dirac Fermion on the Surface of a Magnetically Doped Topological Insulator. Science, 329(5992):659–662, August 2010. [3] Xiao-Liang Qi Xi Dai Zhong Fang Haijun Zhang, Chao-Xing Liu and ShouCheng Zhang. Topological insulators in Bi2Se3, Bi2Te3 and Sb2Te3 with a single dirac cone on the surface. Nature Physics, 5(6):438–442, June 2009. [4] Y. L. Chen, J. G. Analytis, J.-H. Chu, Z. K. Liu, S.-K. Mo, X. L. Qi, H. J. Zhang, D. H. Lu, X. Dai, Z. Fang, S. C. Zhang, I. R. Fisher, Z. Hussain, and Z.X. Shen. Experimental realization of a three-dimensional topological insulator, Bi2Te3. Science, 325(5937):178–181, 2009. [5] K. v. Klitzing, G. Dorda, and M. Pepper. New Method for High-Accuracy Determination of the Fine-Structure Constant Based on Quantized Hall Resistance. Physical Review Letters, 45(6):494–497, August 1980. [6] Joel E. Moore. The birth of topological insulators. Nature, 464(7286):194–198, March 2010. [7] M. Z. Hasan and C. L. Kane. Colloquium: Topological insulators. Rev. Mod. Phys., 82(4):3045–3067, November 2010. [8] Xiao-Liang Qi and Shou-Cheng Zhang. The quantum spin Hall effect and topological insulators. Physics Today, 63(1):33–38, January 2010. [9] Yoichi Ando. Topological Insulator Materials. Journal of the Physical Society of Japan, 82(10):102001, October 2013. [10] B. A. Bernevig, T. L. Hughes, and S.-C. Zhang. Quantum Spin Hall Effect and Topological Phase Transition in HgTe Quantum Wells. Science, 314(5806):1757–1761, December 2006. [11] D. Hsieh, D. Qian, L. Wray, Y. Xia, Y. S. Hor, R. J. Cava, and M. Z. Hasan. A topological Dirac insulator in a quantum spin Hall phase. Nature, 452(7190):970–974, April 2008. [12] Y. Xia, D. Qian, D. Hsieh, L. Wray, A. Pal, H. Lin, A. Bansil, D. Grauer, Y. S. Hor, R. J. Cava, and M. Z. Hasan. Observation of a large-gap topologicalinsulator class with a single dirac cone on the surface. Nat Phys, 5(6):398–402, 2009. [13] D. Hsieh, Y. Xia, D. Qian, L. Wray, F. Meier, J. H. Dil, J. Osterwalder, L. Patthey, A. V. Fedorov, H. Lin, A. Bansil, D. Grauer, Y. S. Hor, R. J. Cava, and M. Z. Hasan. Observation of Time-Reversal-Protected Single-Dirac-Cone Topological-Insulator States in Bi2Te3 and Sb2Te3. Physical Review Letters, 103(14), September 2009. [14] Oleg V. Yazyev, Joel E. Moore, and Steven G. Louie. Spin Polarization and Transport of Surface States in the Topological Insulators Bi2Se3 and Bi2Te3 from First Principles. Physical Review Letters, 105(26), December 2010. [15] J. G. Checkelsky, Y. S. Hor, M.-H. Liu, D.-X. Qu, R. J. Cava, and N. P. Ong. Quantum Interference in Macroscopic Crystals of Nonmetallic Bi2Se3. Physical Review Letters, 103(24), December 2009. [16] Zhanybek Alpichshev, J. G. Analytis, J.-H. Chu, I. R. Fisher, Y. L. Chen, Z. X. Shen, A. Fang, and A. Kapitulnik. STM Imaging of Electronic Waves on the Surface of Bi2Te3: Topologically Protected Surface States and Hexagonal Warping Effects. Physical Review Letters, 104(1), January 2010. [17] Zhi Ren, A. A. Taskin, Satoshi Sasaki, Kouji Segawa, and Yoichi Ando. Large bulk resistivity and surface quantum oscillations in the topological insulator Bi2Te2Se. Physical Review B, 82(24), December 2010. [18] Y. S. Hor, A. Richardella, P. Roushan, Y. Xia, J. G. Checkelsky, A. Yazdani, M. Z. Hasan, N. P. Ong, and R. J. Cava. p-type Bi2Se3 for topological insulator and low-temperature thermoelectric applications. Physical Review B, 79(19), May 2009. [19] Wonhee Ko, Insu Jeon, Hyo Won Kim, Hyeokshin Kwon, Se-Jong Kahng, Joonbum Park, Jun Sung Kim, Sung Woo Hwang, and Hwansoo Suh. Atomic and electronic structure of an alloyed topological insulator, Bi1.5Sb0.5Te1.7Se1.3. Scientific Reports, 3, September 2013. [20] Lan Chen Xiaoyue He, Hui Li and Kehui Wu. Substitution-induced spin-splitted surface states in topological insulator (Bi1xSbx)2Te3. Scientific Reports, 5:8830, March 2015. [21] D.-X. Qu, Y. S. Hor, J. Xiong, R. J. Cava, and N. P. Ong. Quantum oscillations and hall anomaly of surface states in the topological insulator Bi2Te3. Science, 329(5993):821–824, August 2010. [22] C. L. Kane and E. J. Mele. Z2 topological orde and the quantum spin hall effect. Physical Review Letters, 95(14), September 2005. [23] Pedram Roushan, Jungpil Seo, Colin V. Parker, Y. S. Hor, D. Hsieh, Dong Qian, Anthony Richardella, M. Z. Hasan, R. J. Cava, and Ali Yazdani. Topological surface states protected from backscattering by chiral spin texture. Nature, 460(7259):1106–1109, August 2009. [24] Paolo Sessi, Felix Reis, Thomas Bathon, Konstantin A. Kokh, Oleg E. Tereshchenko, and Matthias Bode. Signatures of Dirac fermion-mediated magnetic order. Nature Communications, 5:5349, October 2014. [25] G. Binnig, H. Rohrer, Ch. Gerber, and E. Weibel. Surface Studies by Scanning Tunneling Microscopy. Physical Review Letters, 49(1):57–61, July 1982. [26] J. Bardeen. Tunnelling from a Many-Particle Point of View. Physical Review Letters, 6(2):57–59, January 1961. [27] Seizo Nakajima. The crystal structure of Bi2Te3-xSex. Journal of Physics and Chemistry of Solids, 24(3):479–485, 1963. [28] I. Horcas, R. Fernndez, J. M. Gmez-Rodrguez, J. Colchero, J. Gmez-Herrero, and A. M. Baro. Wsxm: A software for scanning probe microscopy and a tool for nanotechnology. Review of Scientific Instruments, 78(1):013705, 2007. [29] Chris Mann, Damien West, Ireneusz Miotkowski, Yong P. Chen, Shengbai Zhang, and Chih-Kang Shih. Mapping the 3d surface potential in Bi2Se3. Nature Communications, 4, 2013. [30] L. Xue, P. Zhou, C. X. Zhang, C. Y. He, G. L. Hao, L. Z. Sun, and J. X. Zhong. First-principles study of native point defects in Bi2Se3. AIP Advances, 3(5):052105, 2013. [31] D. O. Scanlon, P. D. C. King, R. P. Singh, A. de la Torre, S. McKeown Walker, G. Balakrishnan, F. Baumberger, and C. R. A. Catlow. Controlling Bulk Conductivity in Topological Insulators: Key Role of Anti-Site Defects. Advanced Materials, 24(16):2154–2158, April 2012. [32] Shuang Jia, Huiwen Ji, E. Climent-Pascual, M. K. Fuccillo, M. E. Charles, Jun Xiong, N. P. Ong, and R. J. Cava. Low-carrier-concentration crystals of the topological insulator Bi2Te2Se. Physical Review B, 84(23), December 2011. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/19237 | - |
| dc.description.abstract | 拓撲絕緣體的研究在近十年來受到各研究領域的關注,不僅是因為有別於傳統絕緣體的物理特性,近年來已經有許多在三維拓撲絕緣體的研究,利用角解析光電子能譜或是掃描式穿隧顯微鏡的研究都有指出Bi2Se3和Bi2Te3都擁有相對大的能隙以及狄拉克錐,因此拓撲絕緣體具有極高的潛力可控制自旋偏振電流,然而晶體內部的缺陷會使得材料具有N型或P型的特性,並導致表面態與內部導電態重疊,使得費米能接橫跨的是內部價帶或導電帶而不是表面態,造成在自旋電子元件應用上的困難。
本論文的主題即是研究利用原子代換產生的合金三元碲鉍化物(Bi2Te3-xSex)探討是否能改善拓撲表面態的電性,掃描式穿隧顯微鏡是一種高精密的表面電性感測系統,可以量測材料表面形貌以及電子的局部態密度,利用掃描式穿隧顯微鏡以及掃描式穿隧能譜的技術可以幫助解析三元碲鉍化物的晶體結構與呈現能帶結構在不同碲/硒比例的變化,發現碲與硒之間的替換會導致五層結構中的最外層與中間層有原子雜亂排列的結構,這個雜亂排列的結構不但影響到三元碲鉍化物的能帶分布,也抑制原本在Bi2Se3和Bi2Te3內部缺陷的產生,進而降低內部導電性增進三元碲鉍化物的電性傳輸能力,更進一步的原因與解釋分析都會在此論文中提及。 | zh_TW |
| dc.description.abstract | Topological insulators get wide attention in these 10 years not only because of its non-trivial physics properties, but also high potential of application in spintronic devices. There have been many researches on 3D topological insulators such as Bi2Se3 and Bi2Te3 using angle-resolved photoemission spectroscopy (ARPES) or scanning tunneling microscopy and spectroscopy (STM and STS) indicating most of them host big bulk energy gaps and a spin-helical Dirac cone. Therefore, topological insulators have powerful potential for controlling spin polarized electrons. However, uncontrolled defects in crystal render materials as p-type or n-type or make surface states overlap with bulk band states. That means the Fermi level crosses over valance band or conduction band which is disadvantageous for applying spin-polarized electrons. In order to exploit the ideal Dirac cone and use spin-polarized electrons more efficiently, the Fermi level has to lie at topological surface states without any other spin independent state. Doping metal atoms or substitution could be the solution. In this work, ternary tetradymite Bi2Te3-xSex which are between p-type Bi2Te3 and n-type Bi2Se3 have been investigated by STM. STM is a very powerful surface electron sensitive tool which is suitable for probing surface morphology and local density of states. The techniques of STM and STS were used to investigate the crystal structures and demonstrate the evolution of band structure under different ratio of selenium (Se) and tellurium (Te). The substitution of Se and Te causes disorder in the outer layer or the center layer of the quintuple layer (QL). The random substitution affects the electronic structure and suppress inducing bulk conductance defects that may improve electronic properties very well. And further, the reasons for and result of substitution influences on band structure are also discussed in this work. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-08T01:50:03Z (GMT). No. of bitstreams: 1 ntu-105-R03222024-1.pdf: 58617852 bytes, checksum: 6980f0a02651843b7f961d7b92b82caa (MD5) Previous issue date: 2016 | en |
| dc.description.tableofcontents | 1 Introduction 1
2 Fundamentals 4 2.1 Introduction to Topological Insulator 4 2.1.1 Quantum Spin Hall State 4 2.1.2 3D Topological Insulators 6 2.2 Theory of Scanning Tunneling Microscopy 8 2.2.1 One-dimensional model 8 2.2.2 Tersoff-Hamann theory 10 3 Apparatus 12 3.1 Low Temperature STM Chamber 12 3.1.1 Pumping System 14 3.1.2 Principle of Scanning Tunneling Microscopy 15 3.1.3 Lock-in Amplifier 17 3.2 X-Ray Photoelectron Spectroscopy 18 3.2.1 Beamline BL09A1 in NSRRC 19 3.2.2 Principle of X-Ray Photoelectron Spectroscopy 20 4 Determining Crystal Structure of Ternary Tetradymite 22 4.1 Scanning Tunneling Microscopy Topography 22 4.2 X-ray Photoelectron Spectroscopy Result 27 5 Substitution influence on Band structure of Ternary Tetradymite 31 5.1 Band Structure of Bi2Se3 ans Bi2Te3 31 5.2 Differential Conductivity Curve of Ternary Tetradymite 34 6 Conclusion 39 Appendix 41 A MATLAB code for XPS model 41 Bibliography 45 | |
| dc.language.iso | en | |
| dc.title | 利用掃描式穿隧顯微技術研究三元碲鉍化物的晶體結構與能帶變化 | zh_TW |
| dc.title | Investigating Crystal Structure and Evolution of Band Structure of Ternary Tetradymite Using Scanning Tunneling Microscopy | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 104-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 林文欽(Wen-Chin Lin),莊天明(Tien-Ming Chuang),雷曼(Raman Sankar) | |
| dc.subject.keyword | 掃描式穿隧顯微鏡,掃描式穿隧能譜,拓撲絕緣體,三元碲鉍化物, | zh_TW |
| dc.subject.keyword | scanning tunneling microscopy,scanning tunneling spectroscopy,topological insula-tor,ternary tetradymite, | en |
| dc.relation.page | 48 | |
| dc.identifier.doi | 10.6342/NTU201601382 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2016-07-28 | |
| dc.contributor.author-college | 理學院 | zh_TW |
| dc.contributor.author-dept | 物理學研究所 | zh_TW |
| 顯示於系所單位: | 物理學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-105-1.pdf 未授權公開取用 | 57.24 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
