Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 生物機電工程學系
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/19221
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield???ValueLanguage
dc.contributor.advisor郭彥甫(Yan-Fu Kuo)
dc.contributor.authorShu-Yao Nienen
dc.contributor.author粘書耀zh_TW
dc.date.accessioned2021-06-08T01:49:25Z-
dc.date.copyright2020-08-21
dc.date.issued2020
dc.date.submitted2020-08-17
dc.identifier.citationBewley, A., Ge, Z., Ott, L., Ramos, F., Upcroft, B. (2016, September). Simple online and realtime tracking. In 2016 IEEE International Conference on Image Processing (ICIP) (pp. 3464-3468). IEEE.
Caubet, Y., Richard, F. J. (2015). NEIGHBOUR-IN: Image processing software for spatial analysis of animal grouping. ZooKeys, (515), 173.
Cheng, D., Rong, T., Cao, G. (2019, August). Density Map Estimation for Crowded Chicken. In International Conference on Image and Graphics (pp. 432-441). Springer, Cham.
Colles, F. M., Cain, R. J., Nickson, T., Smith, A. L., Roberts, S. J., Maiden, M. C., Lunn, D., Dawkins, M. S. (2016). Monitoring chicken flock behaviour provides early warning of infection by human pathogen Campylobacter. Proceedings of the Royal Society B: Biological Sciences, 283(1822), 20152323.
Council of Agriculture, Executive Yuan, Taiwan. (2019). Agricultural Statistics Yearbook 2018. Taipei, Taiwan: Council of Agriculture, Executive Yuan.
Deng, J., Dong, W., Socher, R., Li, L. J., Li, K., Fei-Fei, L. (2009, June). Imagenet: A large-scale hierarchical image database. In 2009 IEEE conference on computer vision and pattern recognition (pp. 248-255). Ieee.
Everingham, M., Van Gool, L., Williams, C. K., Winn, J., Zisserman, A. (2010). The pascal visual object classes (voc) challenge. International journal of computer vision, 88(2), 303-338.
Fawcett, T. (2006). An introduction to ROC analysis. Pattern recognition letters, 27(8), 861-874.
Fernández, A. P., Norton, T., Tullo, E., van Hertem, T., Youssef, A., Exadaktylos, V., ... Berckmans, D. (2018). Real-time monitoring of broiler flock's welfare status using camera-based technology. Biosystems Engineering, 173, 103-114.
Food and Agriculture Organization of the United Nations. (2020). FAOSTAT. Available at http://www.fao.org/faostat/en/?#data. Accessed 12 August 2020.
Fukushima, K. (1980). Neocognitron: A self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position. Biological cybernetics, 36(4), 193-202.
Girshick, R., Radosavovic, I., Gkioxari, G., Dollár, P., He, K. (2018). Detectron. https://github.com/facebookresearch/detectron.
He, K., Zhang, X., Ren, S., Sun, J. (2016). Deep Residual Learning for Image Recognition. CVPR, 770-778.
He, K., Gkioxari, G., Dollár, P., Girshick, R. (2017). Mask r-cnn. In Proceedings of the IEEE international conference on computer vision (pp. 2961-2969).
Huang, C. T. (2015). The Restructuring Policy of Agro-Manpower and Farmland in Taiwan, ROC. FFTC Agricultural Policy Platform.
Kalman, R. E. (1960). A new approach to linear filtering and prediction problems.
Kashiha, M., Pluk, A., Bahr, C., Vranken, E., Berckmans, D. (2013). Development of an early warning system for a broiler house using computer vision. Biosystems Engineering, 116(1), 36-45.
Kuhn, H. W. (1955). The Hungarian method for the assignment problem. Naval research logistics quarterly, 2(1‐2), 83-97.
LeCun, Y., Boser, B., Denker, J. S., Henderson, D., Howard, R. E., Hubbard, W., Jackel, L. D. (1989). Backpropagation applied to handwritten zip code recognition. Neural computation, 1(4), 541-551.
Leroy, T., Vranken, E., Van Brecht, A., Struelens, E., Sonck, B., Berckmans, D. (2006). A computer vision method for on-line behavioral quantification of individually caged poultry. Transactions of the ASABE, 49(3), 795-802.
Lin, T. Y., Dollár, P., Girshick, R., He, K., Hariharan, B., Belongie, S. (2017). Feature pyramid networks for object detection. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (pp. 2117-2125).
Manning, C. D., Manning, C. D., Schütze, H. (1999). Foundations of statistical natural language processing. MIT press.
Milan, A., Schindler, K., Roth, S. (2013). Challenges of ground truth evaluation of multi-target tracking. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops (pp. 735-742).
Neubeck, A., Van Gool, L. (2006, August). Efficient non-maximum suppression. In 18th International Conference on Pattern Recognition (ICPR'06) (Vol. 3, pp. 850-855). IEEE.
Pu, H., Lian, J., Fan, M. (2018). Automatic recognition of flock behavior of chickens with convolutional neural network and kinect sensor. International Journal of Pattern Recognition and Artificial Intelligence, 32(07), 1850023.
Redmon, J., Divvala, S., Girshick, R., Farhadi, A. (2016). You only look once: Unified, real-time object detection. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 779-788).
Redmon, J., Farhadi, A. (2018). Yolov3: An incremental improvement. arXiv preprint arXiv:1804.02767.
Ren, S., He, K., Girshick, R., Sun, J. (2015). Faster r-cnn: Towards real-time object detection with region proposal networks. In Advances in neural information processing systems (pp. 91-99).
Ristani, E., Solera, F., Zou, R., Cucchiara, R., Tomasi, C. (2016, October). Performance measures and a data set for multi-target, multi-camera tracking. In European Conference on Computer Vision (pp. 17-35). Springer, Cham.
Tzutalin. LabelImg. (2015). Git code. https://github.com/tzutalin/labelImg.
Van Rossum, G., Drake Jr, F. L. (1995). Python tutorial (p. 130). Amsterdam, The Netherlands: Centrum voor Wiskunde en Informatica.
Wang, J., Wang, N., Li, L., Ren, Z. (2019). Real-time behavior detection and judgment of egg breeders based on YOLO v3. Neural Computing and Applications, 1-11.
Zhang, H., Chen, C. (2020, June). Design of Sick Chicken Automatic Detection System Based on Improved Residual Network. In 2020 IEEE 4th Information Technology, Networking, Electronic and Automation Control Conference (ITNEC) (Vol. 1, pp. 2480-2485). IEEE.
Zhuang, X., Zhang, T. (2019). Detection of sick broilers by digital image processing and deep learning. Biosystems Engineering, 179, 106-116.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/19221-
dc.description.abstract雞肉是國人飲食中的重要蛋白質攝取來源。在2018年,雞肉產品占臺灣畜牧業總銷售產值的26.32%,是國內相當重要的農業經濟來源。然而雞隻容易因為熱緊迫、打架與生病等原因而減少活動量,進而出現活動力低下的雞隻,因此早期偵測雞隻的活動力對於家禽養殖相當重要。在傳統的管理方式下,飼主以人工巡邏雞舍是每日必須進行的工作。但對於雞隻數量龐大的商業雞舍而言,以傳統管理方式相當耗時、勞力密集且仰賴飼主經驗,此外管理上的失誤可能造成疾病發生與利益損失。故本研究採取使用嵌入式影像蒐集系統、深度學習模型與物件追蹤演算法進行商業雞舍中的雞隻活動力監測。在此研究中,利用自製的嵌入式系統以每秒五幀的頻率來獲取雞舍內的雞隻影片,並透過更快速區域生成卷積神經網路(Faster R-CNN)進行影片中每幀影像的雞隻偵測及定位,接著使用空間分布指數(SDI)量化雞隻影像中的空間分布情形,最後利用SORT演算法與訓練模型所生成的邊界框進行雞隻的軌跡預測及活動力判斷。研究中的Faster R-CNN模型在雞隻偵測上達到90.96%的平均精度(AP),此外SDI的表現可預估影像中雞隻的分布情形。另外SORT演算法在多物件追蹤準確度(MOTA)、多物件追蹤精確度(MOTP)與識別F1值(IDF1)則分別可達到92.1%、84.4%與89.5%。而雞隻軌跡與運動量的分析結果則可以做為尋找活動力低下雞隻的參考。zh_TW
dc.description.abstractChicken is a major source of dietary protein. In 2018, chicken production accounted for 26.32% of total animal husbandry sales in Taiwan. Chickens may reduce their movements and become inactive when they suffered from heat stress, injured in fights, or infected by diseases. Thus, early detecting the activity levels of chickens is essential to chicken farming. Conventionally, chicken farm patrol is a routine for chicken farm owners to monitor the activity levels of chickens. A typical chicken farm usually contains thousands of chickens, making patrol laborious and time-consuming. Also, naked-eye observation may be prone to error due to fatigue. This work proposed to detect the activity levels of chickens in a commercial chicken farm using embedded systems, deep learning, and tracking algorithm. In this study, embedded systems were designed to acquire the videos of the chicken farm. A faster region-based convolutional neural network (Faster R-CNN) was developed to detect and localize the chickens in the frames of videos. The spatial dispersion of chickens in images were quantified using spatial distribution index (SDI). Simple online and realtime tracking (SORT) was subsequently used to track chickens and to identify the activity levels of chickens using the locations provided by the CNN model. The trained Faster R-CNN model reached an AP of 90.96% in chicken detection. The performance of SDI could evaluate the distribution of chickens in images. SORT reached an MOTA of 92.1%, an MOTP of 84.4%, and an IDF1 of 89.5% for ID metrics. The trajectories and movements of chicken could be the standard for finding inactive chickens.en
dc.description.provenanceMade available in DSpace on 2021-06-08T01:49:25Z (GMT). No. of bitstreams: 1
U0001-1708202016110000.pdf: 3208521 bytes, checksum: aa56a6762ae6f19efd29e6606b427bfa (MD5)
Previous issue date: 2020
en
dc.description.tableofcontentsACKNOWLEDGEMENTS i
摘要 ii
ABSTRACT iii
TABLE OF CONTENTS iv
LIST OF FIGURES vi
LIST OF TABLES viii
CHAPTER 1. INTRODUCTION 1
1.1 Background 1
1.2 Objectives 1
1.3 Organization 2
CHAPTER 2. LITERATURE REVIEW 3
2.1 Image-processing-based approaches for chicken detection 3
2.2 Animal detection and tracking using deep learning 4
CHAPTER 3. MATERIALS AND METHODS 5
3.1 Experimental site 5
3.2 Image collection and annotation 6
3.3 Automated chicken detection 7
3.4 Spatial dispersion of chicken 9
3.5 Automated chicken tracking 9
CHAPTER 4. RESULTS AND DISCUSSION 11
4.1 Training loss of Faster R-CNN model 11
4.2 The performance of chicken detection 11
4.3 Spatial dispersion of chicken 14
4.4 The performance of chicken tracking 16
4.5 Chicken movement 20
CHAPTER 5. CONCLUSION 22
REFERENCES 23
dc.language.isoen
dc.title利用深度卷積神經網路於商業雞舍進行雞隻活動力偵測zh_TW
dc.titleAutomatic detecting the activity levels of chickens in commercial chicken farm using deep convolutional neural networksen
dc.typeThesis
dc.date.schoolyear108-2
dc.description.degree碩士
dc.contributor.oralexamcommittee鄭文皇(Wen-Huang Cheng),花凱龍(Kai-Lung Hua),謝廣文(Kuang-Wen Hsieh),林美峰(Mei-Fong Lin)
dc.subject.keyword雞隻活動力,雞隻追蹤,卷積神經網路,深度學習,嵌入式系統,物件偵測,空間分布,zh_TW
dc.subject.keywordActivity levels of chicken,Chicken tracking,Convolutional neural network,Deep learning,Embedded system,Object detection,Spatial dispersion,en
dc.relation.page26
dc.identifier.doi10.6342/NTU202003789
dc.rights.note未授權
dc.date.accepted2020-08-18
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept生物機電工程學系zh_TW
Appears in Collections:生物機電工程學系

Files in This Item:
File SizeFormat 
U0001-1708202016110000.pdf
  Restricted Access
3.13 MBAdobe PDF
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved