Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 公共衛生學院
  3. 流行病學與預防醫學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/19203
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳秀熙(Hsiu-Hsi Chen)
dc.contributor.authorJheng-Wang Leeen
dc.contributor.author李政旺zh_TW
dc.date.accessioned2021-06-08T01:48:41Z-
dc.date.copyright2016-08-26
dc.date.issued2016
dc.date.submitted2016-08-02
dc.identifier.citationAdair, L. S., Gultiano, S., & Suchindran, C. (2011). 20-year trends in Filipino women's weight reflect substantial secular and age effects. J Nutr, 141(4), 667-673. doi:10.3945/jn.110.134387
Ahn, S., Zhao, H., Tai-Seale, M., et al. (2012). The longitudinal effects of behavioral, health, and socio-demographic factors on body mass index among older Chinese adults. Int J Public Health, 57(2), 269-277. doi:10.1007/s00038-011-0249-5
Alinia, S., Hels, O., & Tetens, I. (2009). The potential association between fruit intake and body weight--a review. Obes Rev, 10(6), 639-647. doi:10.1111/j.1467-789X.2009.00582.x
Ball, K., & Crawford, D. (2005). Socioeconomic status and weight change in adults: a review. Soc Sci Med, 60(9), 1987-2010. doi:10.1016/j.socscimed.2004.08.056
Bellisle, F. (2004). Impact of the daily meal pattern on energy balance. Scandinavian Journal of Food & Nutrition, 48(3), 114-118. doi:10.1080/11026480410000454
Beydoun, M. A., & Wang, Y. (2008). How do socio-economic status, perceived economic barriers and nutritional benefits affect quality of dietary intake among US adults? Eur J Clin Nutr, 62(3), 303-313. doi:10.1038/sj.ejcn.1602700
Bonaccio, M., Bonanni, A. E., Di Castelnuovo, A., et al. (2012). Low income is associated with poor adherence to a Mediterranean diet and a higher prevalence of obesity: cross-sectional results from the Moli-sani study. BMJ Open, 2(6), e001685-e001685. doi:10.1136/bmjopen-2012-001685
Botoseneanu, A., & Liang, J. (2012). The effect of stability and change in health behaviors on trajectories of body mass index in older Americans: a 14-year longitudinal study. J Gerontol A Biol Sci Med Sci, 67(10), 1075-1084. doi:10.1093/gerona/gls073
Buckland, G., Bach, A., & Serra-Majem, L. (2008). Obesity and the Mediterranean diet: a systematic review of observational and intervention studies. Obes Rev, 9(6), 582-593. doi:10.1111/j.1467-789X.2008.00503.x
Buijsse, B., Feskens, E. J., Schulze, M. B., et al. (2009). Fruit and vegetable intakes and subsequent changes in body weight in European populations: results from the project on Diet, Obesity, and Genes (DiOGenes). Am J Clin Nutr, 90(1), 202-209. doi:10.3945/ajcn.2008.27394
Caballero, B. (2007). The global epidemic of obesity: an overview. Epidemiol Rev, 29, 1-5. doi:10.1093/epirev/mxm012
Chang, C. J., Wu, C. H., Chang, C. S., et al. (2003). Low body mass index but high percent body fat in Taiwanese subjects: implications of obesity cutoffs. Int J Obes Relat Metab Disord, 27(2), 253-259. doi:10.1038/sj.ijo.802197
Chang, W. C., Hsiao, C. F., Chang, H. Y., et al. (2006). Betel nut chewing and other risk factors associated with obesity among Taiwanese male adults. Int J Obes (Lond), 30(2), 359-363. doi:10.1038/sj.ijo.0803053
Chen, D. R., & Wen, T. H. (2010). Socio-spatial patterns of neighborhood effects on adult obesity in Taiwan: a multi-level model. Soc Sci Med, 70(6), 823-833. doi:10.1016/j.socscimed.2009.11.030
Chen, H. H., Chiu, Y. H., Luh, D. L., et al. (2004). Community-Based Multiple Screening Model: Design, Implementation, and Analysis of 42,387 Participants. CANCER, 100(8), 1734-1743. doi:10.1002/cncr.20171
Chen, M. W. (2006). The Association between Socioeconomic Status and Obesity: A study based on the 1st Nutrient and Health Survey in Taiwan. (Master), Tzu Chi University.
Cohen, A. K., Rai, M., Rehkopf, D. H., et al. (2013). Educational attainment and obesity: a systematic review. Obes Rev, 14(12), 989-1005. doi:10.1111/obr.12062
Connor Gorber, S., Tremblay, M., Moher, D., et al. (2007). A comparison of direct vs. self-report measures for assessing height, weight and body mass index: a systematic review. Obes Rev, 8(4), 307-326. doi:10.1111/j.1467-789X.2007.00347.x
Darmon, N., & Drewnowski, A. (2008). Does social class predict diet quality? Am J Clin Nutr, 87(5), 1107-1117.
Darmon, N., & Drewnowski, A. (2015). Contribution of food prices and diet cost to socioeconomic disparities in diet quality and health: a systematic review and analysis. Nutr Rev, 73(10), 643-660. doi:10.1093/nutrit/nuv027
Doll, R., & Hill, A. B. (1956). Lung cancer and other causes of death in relation to smoking; a second report on the mortality of British doctors. Br Med J, 2(5001), 1071-1081.
Drewnowski, A. (2009). Obesity, diets, and social inequalities. Nutr Rev, 67 Suppl 1, S36-39. doi:10.1111/j.1753-4887.2009.00157.x
Ezzati, M., Martin, H., Skjold, S., et al. (2006). Trends in national and state-level obesity in the USA after correction for self-report bias: analysis of health surveys. J R Soc Med, 99(5), 250-257. doi:10.1258/jrsm.99.5.250
Feng, X., & Wilson, A. (2015). Getting Bigger, Quicker? Gendered Socioeconomic Trajectories in Body Mass Index across the Adult Lifecourse: A Longitudinal Study of 21,403 Australians. PLoS One, 10(10), e0141499. doi:10.1371/journal.pone.0141499
Finucane, M. M., Stevens, G. A., Cowan, M. J., et al. (2011). National, regional, and global trends in body-mass index since 1980: systematic analysis of health examination surveys and epidemiological studies with 960 country-years and 9·1 million participants. The Lancet, 377(9765), 557-567. doi:10.1016/s0140-6736(10)62037-5
Fogelholm, M., & Kukkonen-Harjula, K. (2000). Does physical activity prevent weight gain - a systematic review. Obesity Reviews, 1(2), 95-111. doi:10.1046/j.1467-789x.2000.00016.x
Fried, Y., Laurence, G. A., Shirom, A., et al. (2013). The Relationship Between Job Enrichment and Abdominal Obesity: A Longitudinal Field Study of Apparently Healthy Individuals. Journal of Occupational Health Psychology, 18(4), 458-468. doi:10.1037/a0033730
Galobardes, B., Lynch, J., & Smith, G. D. (2007). Measuring socioeconomic position in health research. Br Med Bull, 81-82, 21-37. doi:10.1093/bmb/ldm001
Garrow, J. S., & Webster, J. (1985). Quetelet's index (W/H2) as a measure of fatness. International Journal of Obesity, 9(2), 147-153.
Giskes, K., Avendano, M., Brug, J., et al. (2010). A systematic review of studies on socioeconomic inequalities in dietary intakes associated with weight gain and overweight/obesity conducted among European adults. Obesity Reviews, 11(6), 413-429. doi:10.1111/j.1467-789X.2009.00658.x
Guerra, F., Stringhini, S., Vollenweider, P., et al. (2015). Socio-demographic and behavioural determinants of weight gain in the Swiss population. BMC Public Health, 15, 73. doi:10.1186/s12889-015-1451-9
Haththotuwa, R. N., Wijeyaratne, C. N., & Senarath, U. (2013). Worldwide Epidemic of Obesity Obesity: a ticking time bomb for reproductive health (pp. 3-11).
Howarth, L., Petrisko, Y., Furchner-Evanson, A., et al. (2010). Snack selection influences nutrient intake, triglycerides, and bowel habits of adult women: a pilot study. J Am Diet Assoc, 110(9), 1322-1327. doi:10.1016/j.jada.2010.06.002
HPA. (2014). Physical Assessments of Health. Retrieved from http://www.hpa.gov.tw/BHPNet/Web/HealthTopic/TopicArticle.aspx?No=201405260002&parentid=201405260001
HPA. (2015). Definition of Adult Obesity According to BMI and Waist Circumference. Retrieved from http://health99.hpa.gov.tw/OnlinkHealth/BMI.html
Hu, F. (2008). Measurements of Adiposity and Body Composition. In F. Hu (Ed.), Obesity Epidemiology (pp. 53–83). New York City: Oxford University Press.
Huang, C. J., Hu, H. T., Fan, Y. C., et al. (2010). Associations of breakfast skipping with obesity and health-related quality of life: evidence from a national survey in Taiwan. Int J Obes (Lond), 34(4), 720-725. doi:10.1038/ijo.2009.285
Hwang, Y. J. (2003). The Construction and Assessment of the “New Occupational Prestige and Socioeconomic Scores for Taiwan”: The Indigenization of the Social Science and Sociology of Education Research Bulletin of Educational Research, 49(4), 1-31.
Irala-Estevez, J. D., Groth, M., Johansson, L., et al. (2000). A systematic review of socio-economic differences in food habits in Europe: consumption of fruit and vegetables. Eur J Clin Nutr, 54(9), 706-714.
Keast, D. R., Nicklas, T. A., & O'Neil, C. E. (2010). Snacking is associated with reduced risk of overweight and reduced abdominal obesity in adolescents: National Health and Nutrition Examination Survey (NHANES) 1999-2004. Am J Clin Nutr, 92(2), 428-435. doi:10.3945/ajcn.2009.28421
Ko, Y. C., Huang, Y. L., Lee, C. H., et al. (1995). Betel quid chewing, cigarette smoking and alcohol consumption related to oral cancer in Taiwan. J Oral Pathol Med, 24(10), 450-453.
Ledoux, T. A., Hingle, M. D., & Baranowski, T. (2011). Relationship of fruit and vegetable intake with adiposity: a systematic review. Obes Rev, 12(5), e143-150. doi:10.1111/j.1467-789X.2010.00786.x
Lee, S. Y. (2007). Structural Equation Modeling: A Bayesian Approach: Wiley.
Li, J., Li, Y., Chen, J., et al. (2014). [The effects of lifestyle factors on the incidence of central obesity in Chinese adults aged 35-74 years]. Zhonghua Yu Fang Yi Xue Za Zhi, 48(7), 581-586.
Lin, W. Y., Pi-Sunyer, F. X., Liu, C. S., et al. (2009). Betel nut chewing is strongly associated with general and central obesity in Chinese male middle-aged adults. Obesity (Silver Spring), 17(6), 1247-1254. doi:10.1038/oby.2009.38
Ma, Y. S., Bertone, E. R., Stanek, E. J., et al. (2003). Association between eating patterns and obesity in a free-living US adult population. American Journal of Epidemiology, 158(1), 85-92. doi:10.1093/aje/kwg117
Matozinhos, F. P., Gomes, C. S., Andrade, A. C., et al. (2015). Neighbourhood environments and obesity among adults: A multilevel analysis of an urban Brazilian context. Prev Med Rep, 2, 337-341. doi:10.1016/j.pmedr.2015.04.019
McLaren, L. (2007). Socioeconomic status and obesity. Epidemiol Rev, 29, 29-48. doi:10.1093/epirev/mxm001
Moore, C. J., & Cunningham, S. A. (2012). Social position, psychological stress, and obesity: a systematic review. J Acad Nutr Diet, 112(4), 518-526. doi:10.1016/j.jand.2011.12.001
NCD-RisC, N. R. F. C. (2016). Trends in adult body-mass index in 200 countries from 1975 to 2014: a pooled analysis of 1698 population-based measurement studies with 19·2 million participants. The Lancet, 387(10026), 1377-1396. doi:10.1016/s0140-6736(16)30054-x
Ng, M., Fleming, T., Robinson, M., et al. (2014). Global, regional, and national prevalence of overweight and obesity in children and adults during 1980–2013: a systematic analysis for the Global Burden of Disease Study 2013. The Lancet, 384(9945), 766-781. doi:10.1016/s0140-6736(14)60460-8
O'Connor, L., Brage, S., Griffin, S. J., et al. (2015). The cross-sectional association between snacking behaviour and measures of adiposity: the Fenland Study, UK. Br J Nutr, 114(8), 1286-1293. doi:10.1017/S000711451500269X
Ouyang, Y., Wang, H., Su, C., et al. (2015). Why is there gender disparity in the body mass index trends among adults in the 1997-2011 China health and nutrition surveys? Asia Pacific Journal of Clinical Nutrition, 24(4), 692-700. doi:10.6133/apjcn.2015.24.4.06
Pischon, T., Boeing, H., Hoffmann, K., et al. (2008). General and abdominal adiposity and risk of death in Europe. N Engl J Med, 359(20), 2105-2120. doi:10.1056/NEJMoa0801891
Prince, S. A., Kristjansson, E. A., Russell, K., et al. (2011). A multilevel analysis of neighbourhood built and social environments and adult self-reported physical activity and body mass index in Ottawa, Canada. Int J Environ Res Public Health, 8(10), 3953-3978. doi:10.3390/ijerph8103953
Robert, S. A., & Reither, E. N. (2004). A multilevel analysis of race, community disadvantage, and body mass index among adults in the US. Social Science & Medicine, 59(12), 2421-2434. doi:10.1016/j.socscimed.2004.03.034
Sarrafzadegan, N., Talaei, M., Sadeghi, M., et al. (2014). Determinants of weight change in a longitudinal study of Iranian adults: Isfahan Cohort Study. Arch Iran Med, 17(8), 539-544. doi:014178/AIM.004
Schneider, H. J., Friedrich, N., Klotsche, J., et al. (2010). The predictive value of different measures of obesity for incident cardiovascular events and mortality. J Clin Endocrinol Metab, 95(4), 1777-1785. doi:10.1210/jc.2009-1584
Siahpush, M., Tibbits, M., Shaikh, R. A., et al. (2015). Dieting Increases the Likelihood of Subsequent Obesity and BMI Gain: Results from a Prospective Study of an Australian National Sample. Int J Behav Med, 22(5), 662-671. doi:10.1007/s12529-015-9463-5
Sobal, J., & Stunkard, A. J. (1989). Socioeconomic status and obesity: a review of the literature. Psychol Bull, 105(2), 260-275.
Stevens, G. A., Singh, G. M., Lu, Y., et al. (2012). National, regional, and global trends in adult overweight and obesity prevalences. Popul Health Metr, 10(1), 22. doi:10.1186/1478-7954-10-22
Suter, P. M. (2005). Is alcohol consumption a risk factor for weight gain and obesity? Crit Rev Clin Lab Sci, 42(3), 197-227. doi:10.1080/10408360590913542
Truswell, A. S. (2013). Medical history of obesity Nutrition and Medicine (Vol. 1).
Ullmann, S. H., Goldman, N., & Pebley, A. R. (2013). Contextual factors and weight change over time: a comparison between U.S. Hispanics and other population sub-groups. Soc Sci Med, 90, 40-48. doi:10.1016/j.socscimed.2013.04.024
van der Heijden, A. A., Hu, F. B., Rimm, E. B., et al. (2007). A prospective study of breakfast consumption and weight gain among U.S. men. Obesity (Silver Spring), 15(10), 2463-2469. doi:10.1038/oby.2007.292
Wang, Y., & Beydoun, M. A. (2009). Meat consumption is associated with obesity and central obesity among US adults. Int J Obes (Lond), 33(6), 621-628. doi:10.1038/ijo.2009.45
WHO. (2000). Obesity: preventing and managing the global epidemic.
WHO. (2004). Appropriate body-mass index for Asian populations and its implications for policy and intervention strategies. Lancet, 363(9403), 157-163. doi:10.1016/S0140-6736(03)15268-3
WHO. (2006). Global Database on Body Mass Index. Retrieved from http://www.assessmentpsychology.com/icbmi.htm
WHO. (2011). Waist Circumference and Waist-Hip Ratio: Report of a WHO Expert Consultation.
Xu, H. W., Short, S. E., & Liu, T. (2013). Dynamic relations between fast-food restaurant and body weight status: a longitudinal and multilevel analysis of Chinese adults. Journal of Epidemiology and Community Health, 67(3), 271-279. doi:10.1136/jech-2012-201157
Yeh, C. J., Chang, H. Y., & Pan, W. H. (2011). Time trend of obesity, the metabolic syndrome and related dietary pattern in Taiwan: from NAHSIT 1993-1996 to NAHSIT 2005-2008. Asia Pacific Journal of Clinical Nutrition, 20(2), 292-300.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/19203-
dc.description.abstract背景
雖然許多理論透過基於隨機分派試驗或者觀察性研究的介入計畫發展改善肥胖的指引(例如身體自我效能理論、計畫行為理論、跨理論模型,理性行為理論等);然而,這些介入計畫是否能夠成功推廣運用到其他場域、族群、國家或地區,事實上相當依賴當地導致肥胖的潛在流行病學因素。
許多研究探討導致肥胖的相關因子之間的關係,卻鮮少探究流行病學特徵與人口群體特徵影響肥胖相關因子的路徑關係。多數先前的研究透過傳統兩階段的迴歸模型檢視導致肥胖的相關因子之間的關聯性,但該方法並無法考量變數之間的中介過程。而從統計的觀點出發,在有限樣本之下,傳統的統計方法會產生多重比較和過度參數化的問題;更重要的是,傳統方法在分析上僅使用觀察變數而非潛在的因子。
目標
本研究的目標是應用以概似值為基礎以及貝氏取向的結構方程模式,試圖釐清導致肥胖的相關因子與錯綜複雜的社會流行病學特徵之間的關係,並以社區整合式篩檢資料進行分析;該資料提供多種癌症和慢性病的篩檢服務。進一步採用貝氏階層結構方程模型(Bayesian hierarchical SEM)同時考量個人、區域層級以及不同層級之間的交互作用對於肥胖的影響。
材料與方法
本研究利用2002至2010基隆社區整合式篩檢資料進行分析。基隆市社區整合式篩檢每年邀請20歲以上民眾參加,篩檢服務內容包括五項癌症及三項慢性病篩檢。人體生理相關檢測由通過訓練之公共衛生護士進行量測,量測項目包括身高、體重、腰圍、臀圍等。人口學特性、飲食行為、頻率及食物種類及攝取量、健康或不健康生活型態等則利用結構式問卷以面對面方式進行訪視並記錄。生化相關指標則於篩檢現場同時採8小時禁食血液進行生化檢驗。
本研究利用傳統多變量迴歸分析模式調整相關因素後,探討影響肥胖相關因子之變項。本研究利用探索性因素分析進行組成構面指標之探討,並進一步利用路徑分析模式進行構面與構面間之關聯性分析,以建立影響肥胖相關因子之結構方程模型。利用AIC及BIC模式檢定指標以挑選出以目前資料所表現最適之結構方程模型。進一步利用多階層貝氏結構方程模型同時考慮個人及地區層級之資料,探討相關構面對於肥胖相關因子的影響及不同層級之間的交互作用。
結果
本研究共有75077位成年人,包含30042位男性(49.54±16.06歲) 和45035位女性(46.58±14.4歲)。本研究透過個人特質、肥胖特徵、身體代謝指標、飲食型態和習慣,透過標準化的方法得到七個顯著的潛在因子:社經地位(SES)、健康動機(HM)、飲食型態(EP)、規律飲食(RD)、多樣性攝取(DI)、不健康習慣(UH)和肥胖相關生物標記(OB)。在考慮社經地位、健康動機、飲食型態和規律飲食間的相關後,得到研究中最佳的結構方程模型。模型中的路徑關係包含兩個層次、13條顯著的路徑關係。在第一層中,社經地位(SES)所直接影響規律飲食(RD)、多樣性攝取(DI)、和肥胖相關因子(OB)的路徑係數分別為-0.055、0.219和-0.078;由不健康習慣(UH)所直接影響的路徑係數分別為0.295、0.350和0.253;由飲食型態(EP)所直接影響的路徑係數分別為-0.080、0.149和0.074。而由健康動機(HM)所直接影響多樣性攝取和肥胖相關因子的路徑係數分別為-0.656和-0.311。在第二層的多樣性攝取(DI)以及規律飲食(RD)對肥胖相關因子(OB)的影響中,路徑係數分別為-0.359以及-0.024。
透過貝氏方法亦可得到相似的結果,不過更重要的是,貝氏階層結構方程模型指出區與區之間在肥胖相關因子的變異上有很強的隨機截距效果(基礎值的影響),且區域層級的社經地位與個人的層級的因子之間(例如健康動機等等)亦有顯著的交互作用關係。
結論
本研究透過七個潛在構面釐清導致肥胖的相關因子與錯綜複雜的社會流行病學特徵之間的關係,包含社會經濟地位、健康動機、不健康習慣、規律飲食、飲食型態、多樣性攝取和肥胖相關因子,且這七個潛在構面對於肥胖相關因子的效果亦受區域層級社經地位的脈絡因子所影響。貝氏階層結構方程模型及其應用在社會流行病學的資料分析上,提供在探討多階層潛在變數之間相互關係上的新典範,且對於肥胖相關因子的預防上有重要的意涵。
zh_TW
dc.description.abstractBackground
In spite of numerous theories, including physical self-efficacy theory, planned behavior theory, transtheoretical model, theory of reasoned action and so on, developed for the guidance of ameliorate obesity through intervention program either based on randomized controlled design or observational studies, whether the results of these intervention program can be generalized or applied to other settings, ethnics, countries, and areas is highly dependent on the underlying epidemiological causes leading to obesity in each of place.
Although a body of evidence on the relationship of each correlate to obesity has been documented, elucidating the pathway of how these epidemiological and population-based characteristics are connected and affect obesity-related markers has been barely addressed.
Most previous studies examined the relationship using the traditional two-state regression model, which cannot take intermediate process between variables into consideration. From the statistical viewpoint, traditional approach might have troubles in multiple comparisons and also over-parametrization given limited sample size. More importantly, only observed variables instead of latent contextual variables were implicated.
Aim
Our study aim was to apply likelihood-based and Bayesian-oriented structural equation model (SEM) to clarify the relationship interwoven with these socio-epidemiological characteristics leading to obesity-related phenotypes based on the community-based integrated screening data that offered various screening modalities for manifold cancers and chronic diseases. Bayesian hierarchical SEM was applied to assessing the influences among individual, district-level data (multilevel/ hierarchical), and interactions between latent constructs at different levels simultaneously.
Materials and Methods
The participants of Keelung Community-based Integrated Screening (KCIS) program during 2002 to 2010 were recruited for this study. Residents living in Keelung and aged 20 years or older have been invited to participate this program for mainly screening five neoplastic diseases and three non-neoplastic chronic diseases. Anthropometric measurements, including body weight, height, waist circumference and hip circumference, were measured by trained staff in each visitation. Information on demographic characteristics, dietary behaviors and intake diversity in frequency and quantity, health and unhealthy behaviors, and life styles were collected through face-to-face interview using a structured questionnaire conducted by trained interviewers. The biomarkers were also simultaneously collected and examined by central laboratory using the 8-hour fasting blood serum.
The traditional multivariate regression method was generally employed in the studies to examine the relationship between observed variables and obesity-related factors. The exploratory factor analysis was conducted to cluster the indicators for each constructs and the path analysis was employed to constitute the candidate structural equation model (SEM). Both criteria of Akaike’s information criterion (AIC) and Bayesian information criterion (BIC) were used for parsimonious model selection. We also conducted hierarchical Bayesian SEM to examine the main effect and interaction between district-level and individual information.
Results
The overall 75077 subjects aged 20 years and older were recruited as study population, including 30042(age 49.54±16.06 and 45035(age 46.58±14.4) for male and female respectively. Based on the personal characteristics, obesity traits, metabolic biomarkers, life style of eating patterns, and habits, 7 clusters with significant factor loadings were generated by standardized approach, including socioeconomic status (SES), health motivation (HM), eating patterns (EP), regular diet (RD), diverse intakes (DI), unhealthy habits (UH), and obesity-related biomarkers (OB), which was nominated as best SEM after taking the significant associations among SES, unhealthy habits, health motivation, and eating patterns into account. There were two main pathways identified from constituted the SEM with 13 significant pathways. For the first layer, the path coefficients from SES were -0.055, 0.219, and -0.078, from unhealthy habits were 0.295, 0.350, and 0.253, from eating patterns (EP) were -0.080, 0.149, and 0.074, to regular diet (RD), diverse intake (DI), and obesity-related factors, respectively. The path coefficients from health motivation were -0.656 and -0.311 on diverse intake (DI) and obesity-related biomarkers. For the second layer, including diverse intakes and regular diet, both path coefficients on obesity-related biomarkers were -0.359 and -0.024, respectively.
The similar findings were noted while Bayesian hierarchical SEM was used but , most importantly, there was a strong random intercept (baseline influence) effect of the variation of obesity-related phenotypes among districts and also significant interaction between district SES and other latent constructs (such as health motivation and so on).
Conclusion
Our study developed the seven latent constructs to clarify the relationship interwoven with these socio-epidemiological characteristics leading to obesity-related phenotypes, including socio-economic status (SES), health motivation (HM), unhealthy habit (UH), regular diet (RD), eating pattern (EP), diverse intakes (DI), and obesity-related phenotype (OB) and effect of these seven latent constructs on obesity-related phenotype was modified by the contextual factor of district SES. The development of Bayesian hierarchical SEM and its application to socio-epidemiological data here provide a new insight into a new paradigm on the pathway interplay with the underlying latent variables in multilevel, which has a significant implication for prevention of obesity-related phenotypes.
en
dc.description.provenanceMade available in DSpace on 2021-06-08T01:48:41Z (GMT). No. of bitstreams: 1
ntu-105-R03849011-1.pdf: 4809377 bytes, checksum: 2f53c5cf75bbfad81c01cb4575af2a3d (MD5)
Previous issue date: 2016
en
dc.description.tableofcontents口試委員審定書 i
摘要 ii
Abstract v
Figure and Table list xii
Chapter 1. Introduction 1
Chapter 2. Literature review 5
2.1 Definition of obesity 5
2.2 Prevalence trends in adult overweight and obesity from 1980 8
2.3 Causes of obesity and overweight 10
2.3.1 Contextual factors 11
2.3.2 Socioeconomic status 14
2.3.3 Physical activity 17
2.3.4 Food intakes 20
2.3.5 Dietary habits and life style 23
2.4 Mediators from socioeconomic status to overweight and obesity 29
2.5 Summary 32
Chapter 3. Materials and Methods 72
3.1 Study cohort 72
3.2 Study design and data collection 72
3.3 Variables and Data manipulation 73
3.4 Statistical analysis 78
3.4.1 Traditional mixed effect model 78
3.4.2 Structural Equation Model (SEM) 78
3.4.3 Latent growth curve model 90
3.4.4 Hierarchical Bayesian structural equation model with cross-level interaction 90
Chapter 4. Results 93
4.1 Descriptive statistics 93
4.2 Conventional analysis for obesity-related indicators 95
4.3 Confirmatory factor analysis and correlations 97
4.4 Best SEM selection 99
4.5 Factor loadings of SEM for measurement model 100
4.6 Path coefficients for the best SEM 101
4.7 Latent growth curve model 102
4.8 Hierarchical Bayesian SEM 103
4.9 Interaction between district SES and other latent constructs 104
4.10 Indicators change of obesity-related factors using repeated subjects 105
Chapter 5. Discussion 109
5.1 Empirical Findings 109
5.1.1 Usefulness of seven constructs (latent variables) 109
5.1.2 Measurement of seven latent constructs 114
5.2 Methodological development 114
5.3 Implication for prevention of obesity 115
5.4 Limitations 116
Chapter 6. Conclusions 120
Reference 121
dc.language.isoen
dc.title以階層結構方程模型探討社會流行病學相互關聯因子對於肥胖相關指標之影響zh_TW
dc.titleHierarchical Structural Equation Model for Pathways of Socio-epidemiological Correlates Leading to Obesity-related Indicatorsen
dc.typeThesis
dc.date.schoolyear104-2
dc.description.degree碩士
dc.contributor.coadvisor陳端容(Duan-Rung Chen)
dc.contributor.oralexamcommittee黃國晉(Kuo-Chin Huang),邱月暇(Sherry Yueh-Hsia Chiu)
dc.subject.keyword階層結構方程模型,潛在構面,層級間交互作用效果,社會流行病學,肥胖,zh_TW
dc.subject.keywordHierarchical structural equation model,latent constructs,interaction effects between levels,social epidemiology,obesity,en
dc.relation.page170
dc.identifier.doi10.6342/NTU201601684
dc.rights.note未授權
dc.date.accepted2016-08-02
dc.contributor.author-college公共衛生學院zh_TW
dc.contributor.author-dept流行病學與預防醫學研究所zh_TW
顯示於系所單位:流行病學與預防醫學研究所

文件中的檔案:
檔案 大小格式 
ntu-105-1.pdf
  未授權公開取用
4.7 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved