Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
  • 幫助
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 牙醫專業學院
  4. 臨床牙醫學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/19195
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳羿貞
dc.contributor.authorKai-Wen Yuen
dc.contributor.author游凱玟zh_TW
dc.date.accessioned2021-06-08T01:48:25Z-
dc.date.copyright2016-08-26
dc.date.issued2016
dc.date.submitted2016-08-02
dc.identifier.citationAl-Romaih K, Bayani J, Vorobyova J, Karaskova J, Park PC, Zielenska M et al. (2003). Chromosomal instability in osteosarcoma and its association with centrosome abnormalities. Cancer Genetics and Cytogenetics 144(2):91-99.
Aukkarasongsup P., Haruyama N., Matsumoto T., Shiga M., Moriyama K. (2013). Periostin inhibits hypoxia-induced apoptosis in human periodontal ligament cells via TGF-beta signaling. Biochemical and biophysical research communications 441(1):126-132.
Bolton K., Segal D., McMillan J., Sanigorski A., Broz I., Walder K. (2006). Periostin, a novel secreted protein involved in the pathogenesis of obesity and type 2 diabetes. 19th World Diabetes Congress 2012: Blackwell Publishing Ltd.
Bonnet N., Garnero P., Ferrari S. (2015). Periostin action in bone. Mol Cell Endocrinol.
Brunner D. FJ, Appl H., Schöffl H., Pfaller W., and Gstraunthaler G. (2010). Serum-free Cell Culture:The Serum-free Media Interactive. Online Database. ALTEX 27(1):53-62.
Chen Y.J., Chang M.C., Jane Yao C.C., Lai H.H., Chang J.Z., Jeng J.H. (2014). Mechanoregulation of osteoblast-like MG-63 cell activities by cyclic stretching. Journal of the Formosan Medical Association = Taiwan yi zhi 113(7):447-453.
Cheng E., Souza R.F., Spechler S.J. (2012). Tissue remodeling in eosinophilic esophagitis. American journal of physiology Gastrointestinal and liver physiology 303(11):G1175-1187.
Chiba M., Mitani H. (2004). Cytoskeletal changes and the system of regulation of alkaline phosphatase activity in human periodontal ligament cells induced by mechanical stress. Cell biochemistry and function 22(4):249-256.
Christoph Pautke MS, Tohomas Tischer, Andreas Kolki, Peter Neth, Wolf Mutschler and Stefan Milz (2004). Characterization of Osteosarcoma Cell Lines MG-63,
Saos-2 and U-2 OS in Comparison to Human Osteoblasts. Anticancer research 24(3743-3748.
Cobo T., Viloria C.G., Solares L., Fontanil T., Gonzalez-Chamorro E., De Carlos F. et al. (2016). Role of Periostin in Adhesion and Migration of Bone Remodeling Cells. PloS one 11(1):e0147837.
De Luna-Bertos E., Ramos-Torrecillas J., Garcia-Martinez O., Diaz-Rodriguez L., Ruiz C. (2012). Effect of aspirin on cell growth of human MG-63 osteosarcoma line. The Scientific World Journal.
Elmore S. (2007). Apoptosis: A Review of Programmed Cell Death. Toxicol Pathol 35(4): 495–516.
Galluzzi L., Maiuri M.C., Vitale I., Zischka H., Castedo M., Zitvogel L. et al. (2007). Cell death modalities: classification and pathophysiological implications. Cell death and differentiation 14(7):1237-1243.
Galluzzi L., Aaronson S.A., Abrams J., Alnemri E.S., Andrews D.W., Baehrecke E.H. et al. (2009). Guidelines for the use and interpretation of assays for monitoring cell death in higher eukaryotes. Cell death and differentiation 16(8):1093-1107.
Gillan L. MD, Fishman D.A., Gerbin C.S., Karlan B.Y., and Chang D.D. (2002). Periostin Secreted by Epithelial Ovarian Carcinoma Is a Ligand for Integrins and Promotes Cell Motility1. Cancer Research 62: 5358-5364.
Gusmão CVBd, Belangero WD (2009). How Do Bone Cells Sense Mechanical Loading? Revista Brasileira de Ortopedia (English Edition) 44(4):299-305.
Huang C.H., Tseng W.Y., Yao C.C., Jeng JH, Young T.H., Chen Y.J. (2010). Glucosamine promotes osteogenic differentiation of dental pulp stem cells through modulating the level of the transforming growth factor-beta type I receptor. Journal of cellular physiology 225(1):140-151.
Hughes-Fulford M (2004). Signal transduction and mechanical stress. Science Signaling 249:re12.
Idziorik T.E.J., Bels F.D., Ameisen J.C. (1995). YO PRO-1 permits cytofluorometric analysis of programmed cell death (apoptosis) without interfering with cell viability. Journal of Immunological Methods 185:249-258.
Jacobs C., Grimm S., Ziebart T., Walter C., Wehrbein H. (2013). Osteogenic differentiation of periodontal fibroblasts is dependent on the strength of mechanical strain. Archives of oral biology 58(7):896-904.
Jenneke K.N. CMS, J. Paul Veldhuijzen, Elisabeth H. Burger (1993). Effect of mechanical stimulation on the production of soluble bone factors in cultured fetal mouse calvariae. Cell and tissue research 271:513-517.
Kii I., Amizuka N., Minqi L., Kitajima S., Saga Y., Kudo A. (2006). Periostin is an extracellular matrix protein required for eruption of incisors in mice. Biochemical and biophysical research communications 342(3):766-772.
Lally C., Cahill P.A., Colombo A. (2008). An analysis of the strain field in biaxial Flexcell membranes for different waveforms and frequencies. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine 222(8):1235-1245.
Lavrik I.N., Golks A., Krammer P.H. (2005). Caspases: pharmacological manipulation of cell death. The Journal of clinical investigation 115(10):2665-2672.
Li B., Wang L., Chi B. (2013). Upregulation of periostin prevents P53-mediated apoptosis in SGC-7901 gastric cancer cells. Molecular biology reports 40(2):1677-1683.
Li G., Jin R., Norris R.A., Zhang L., Yu S., Wu F. et al. (2010). Periostin mediates vascular smooth muscle cell migration through the integrins alphavbeta3 and alphavbeta5 and focal adhesion kinase (FAK) pathway. Atherosclerosis 208(2):358-365.
Li X., Darzynkiewicz Z. (2000). Cleavage of Poly(ADP-ribose) polymerase measured in situ in individual cells: relationship to DNA fragmentation and cell cycle position during apoptosis. Experimental cell research 255(1):125-132.
Li X., Zhang, X.L., Shen G., Tang G.H. (2012). Effects of tensile forces on serum deprivation-induced osteoblast apoptosis: expression analysis of caspases, Bcl-2, and Bax. Chin Med J 125(14):2568-2573.
Liu S., Shi-Wen X., Kennedy L., Pala D., Chen Y., Eastwood M. et al. (2007). FAK is required for TGFβ-induced JNK phosphorylation in fibroblasts: implications for acquisition of a matrix-remodeling phenotype. Molecular biology of the cell 18(6):2169-2178.
Ma D., Zhang R., Sun Y., Rios H.F., Haruyama N., Han X. et al. (2011). A novel role of periostin in postnatal tooth formation and mineralization. The Journal of biological chemistry 286(6):4302-4309.
Matsuda N., Yokoyama K., Takeshita S., Watanabe M. (1998). Role of epidermal growth factor and its receptor in mechanical stress-induced differentiation of human periodontal ligament cells in vitro. Archives of oral biology 43(12):987-997.
Matsuda N. YY, S. Takeshita. M. Watanabe (1998). Role of epidermal growth factor and its receptor in mechanical stress-induced differential of human periodontal ligament cells in vitro. Archives of oral biology 43:987-997.
Matsui H., Fukuno N., Kanda Y., Kantoh Y., Chida T., Nagaura Y. et al. (2014). The expression of Fn14 via mechanical stress-activated JNK contributes to apoptosis induction in osteoblasts. The Journal of biological chemistry 289(10):6438-6450.
Morrow D., Sweeney C., Birney Y.A., Cummins P.M., Walls D, Redmond E.M. et al. (2005). Cyclic strain inhibits Notch receptor signaling in vascular smooth muscle cells in vitro. Circulation research 96(5):567-575.
Rios H., Koushik S.V., Wang H., Wang J., Zhou H.M., Lindsley A. et al. (2005). periostin null mice exhibit dwarfism, incisor enamel defects, and an early-onset periodontal disease-like phenotype. Molecular and cellular biology 25(24):11131-11144.
Rios H.F., Ma D., Xie Y., Giannobile W.V., Bonewald L.F., Conway S.J. et al. (2008). Periostin is essential for the integrity and function of the periodontal ligament during occlusal loading in mice. Journal of periodontology 79(8):1480-1490.
Sakoda S. S.H., Kitajima I. (1999). Mechanical stretching of human osteoblast-like cells stimulates bonemorphogenic proteins and macrophage colony-stimulating
factor productions. Pathophysiology 6:63-69.
Takayama I., Kudo A. (2012). Periostin in dental science. Japanese Dental Science Review 48(2):92-98.
Takeshita S., Kikuno R., Tezuka K., Amann E. (1993). Osteoblast-specific factor 2: cloning of a putative bone adhesion protein with homology with the insect protein fasciclin I. Biochem J 294:271-278.
Tanabe H., Takayama I., Nishiyama T., Shimazaki M., Kii I., Li M. et al. (2010). Periostin associates with Notch1 precursor to maintain Notch1 expression under a stress condition in mouse cells. PloS one 5(8):e12234.
Tanakaa S.M. LJ, Randall L. Duncana, Yokotab, Burrb D.B.,Turner C.H. (2003). Effects of broad frequency vibration on cultured osteoblasts. Journal of Biomechanics 36:73-80.
Telford W.G. KLE, and Fraker P.J. (1992). Comparative Evaluation of Several DNA Binding Dyes in the Detection of Apoptosis-Associated Chromatin Degradation by Flow Cytometry. Cytometry 13:137-143.
Wang L., Pan J., Wang T., Song M., Chen W. (2013). Pathological cyclic strain-induced apoptosis in human periodontal ligament cells through the RhoGDIalpha/caspase-3/PARP pathway. PloS one 8(10):e75973.
Wen W., Chau E., Jackson-Boeters L., Elliott C., Daley T.D., Hamilton D.W. (2010). TGF-ss1 and FAK regulate periostin expression in PDL fibroblasts. J Dent Res 89(12):1439-1443.
Weyts F.A., Bosmans B., Niesing R., van Leeuwen J.P., Weinans H. (2003). Mechanical control of human osteoblast apoptosis and proliferation in relation to differentiation. Calcified tissue international 72(4):505-512.
Wilde J., Yokozeki M., Terai K., Kudo A., Moriyama K. (2003). The divergent expression of periostin mRNA in the periodontal ligament during experimental tooth movement. Cell and tissue research 312(3):345-351.
Wlodkowic D., Telford W., Skommer J., Darzynkiewicz Z. (2011). Apoptosis and beyond: cytometry in studies of programmed cell death. Methods in cell biology 103:55-98.
Zhang Y.E. (2009a). Non-Smad pathways in TGF-beta signaling. Cell research 19(1):128-139.
Zhang Y.E. (2009b). Non-Smad pathways in TGF-β signaling. Cell research 19(1):128-139.
Ziegler U. (2004). Morphological Features of Cell Death. News in Physiological Sciences 19(3):124-128.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/19195-
dc.description.abstract適當的機械力刺激有助於骨細胞的增生和分化,過大的力量刺激則會造成細胞的傷害。Periostin為90kDa matricellular proteins的成員,存在於人體含豐富膠原蛋白的結締組織中,包括心臟瓣膜、肌腱、軟骨膜、骨膜和牙周組織等。近期研究已顯示在牙周組織因應機械性力量的變化過程中,Periostin對於組織重塑及維持結構平衡有其重要性,Periostin在細胞凋亡、增生、遷移也扮演了重要角色。 本研究以Adhesion test 及 Wound healing test觀察Periostin在MG-63類骨母細胞貼附及遷移所扮演的角色,並檢測其Periostin蛋白表現在不同程度週期性張力(5%或15%)及TGF-β調控下的反應。實驗方法是以Flexercell® Strain Unit 給予週期性張力,結果發現高強度刺激(15%)會造成細胞發生凋亡。以免疫螢光染色及流氏細胞儀等方式檢測及定量分析凋亡反應,並測量active caspase-3 及 cPARP 活性,以觀測細胞凋亡,並測試Periostin在拉力所引起細胞凋亡反應中所扮演的角色。本研究結果顯示Periostin有助於細胞貼附及遷移;低強度的週期性張力(5%, 0.1Hz)會刺激MG-63細胞Periostin蛋白的表現,而高強度的週期性張力或外加TGF-β抑制劑則會抑制其表現。此外,rhPOSTN會抑制高強度週期性張力所引起細胞凋亡反應及cPARP的表現。本研究證實不同強度的週期性張力對於MG-63類骨母細胞的Periostin蛋白表現具有不同的調控作用, Periostin有助於MG-63細胞貼附及遷移,並對高強度週期性拉力所引起細胞凋亡反應有抑制效果。zh_TW
dc.description.abstractPeriostin (POSTN), a disulfide-linked 90-kDa matricellular protein, is predominantly expressed in collagen-rich connective tissues such as heart valves, tendons, perichon-drium, periosteum, and periodontal ligament. Previous studies suggested that periostin is essential for connective tissue homeostasis and is important in maintaining the integrity and function of alveolar bone and periodontal ligament in respond to mechanical stress. The role of periostin in cell apoptosis, proliferation, and migration has been speculat-ed. While relevant mechanical loading is pivotal to proliferation and differentiation of osteoblasts, high-level stretch may damage cells or alter cellular responses. In the present study, we investigated the effects of periostin on cell migration and adhesion of MG-63 osteoblastic cells via cell attachment and wound healing test. We further checked the regulation of periostin protein expression with different amplitudes (5% and 15%) of mechanical stretch and TGF-β signaling. The phenomenon of mechanical stretch-induced apoptosis in MG-63 cells was initially assessed with PI, YO-PRO-1, and Hoechst 33342 fluorescence staining, followed by quantitative analysis with flow cy-tometry. Active caspase-3 and cPARP activities were evaluated to monitor a particular route of cell apoptosis. The results revealed that periostin enhanced the ability of migra-tion and adhesion of MG-63 cells. Periostin protein expression was induced by low-level mechanical stretch (5% elongation), while suppressed by high-level mechanical stretch (15% elongation) or TGF-β inhibitor (SB431542). The percentages of apoptotic cells ex-pressing cPARP protein were substantially increased when MG-63 cells were subjected to 15% cyclic mechanical stretch for 48 hrs. Moreover, the mechanical stretch-induced apoptosis was inhibited in the presence of exogenous rhPOSTN. In conclusion, our pre-sent study suggests that periostin could play a protective role thin mechanical stretch-induced apoptosis of osteoblastic cells.en
dc.description.provenanceMade available in DSpace on 2021-06-08T01:48:25Z (GMT). No. of bitstreams: 1
ntu-105-R02422010-1.pdf: 3701002 bytes, checksum: dc4de93f13804792f338bd5989b5bf6c (MD5)
Previous issue date: 2016
en
dc.description.tableofcontents口試委員會審定書 I
Acknowloedgement II
Abstract IV
摘要 VI
Table of Contents VII
List of Tables X
List of Figures XI
Chapter I Introduction 1
1.1 Mechanical stretch and orthodontic treatment modalities 1
1.2 Mechanotransduction and signaling pathways 1
1.3 Experimental modes of mechanical stimulation in vitro 2
Chapter II Literature Review 3
2.1 Osteogenic response to mechanical strain 3
2.2 Characteristics of MG-63 osteoblastic cells and human osteoblasts 3
2.3 Effects of high-level mechanical stretch on cell cycle of MG-63 cells 4
2.4 Biologic role of Periostin 5
2.5 Effects of periostin in bone and dental tissues 6
2.6 Apoptosis and Necrosis 7
2.7 Periostin and its anti-apoptotic effect 7
Chapter III Aim and Hypothesis 9
Chapter IV Materials and Methods 10
4.1 MG-63 osteoblastic cell culture and treatment 10
4.2 Flexercell tension plus system and cyclic mechanical stretch 10
4.3 Treatment of MG-63 cells with TGF-β¸ Periostin¸ or Staurosproine 11
4.3.1 Recombinant Human Periostin (rhPOSTN) 11
4.3.2 TGF-β 11
4.3.3 Staurosporine 12
4.4 Immunofluorescence stain 12
4.5 Immunoblotting 13
4.5.1 Protein extraction 13
4.5.2 Determination of protein concentrations 13
4.5.3 Western blot 13
4.6 Flow cytometry 14
4.6.1 Analysis of cellular apoptosis 14
4.7 Wound healing test 15
4.8 Adhesion test 16
4.9 Image Analysis and Statistical Analysis 16
Chapter V Results 17
5.1 rhPOSTN enhanced adhesion and migration ability of MG-63 osteoblastic cells 17
5.2 TGF-β signaling pathway is involved with the periostin expression in MG-63 cells 18
5.3 Cyclic mechanical stretch affected cellular morphology and alignment of MG-63 cells 18
5.4 Effects of low-level and high-level mechanical stretch on periostin expression in MG-63 cells 19
5.5 Analysis of mechanical stretch-induced apoptosis in MG-63 cells by YO-PRO-1, PI and Hoeschst 33342 staining 19
5.6 Intensity of apoptotic signal in the central/ peripheral zone of culture well 20
5.7 Effects of cyclic mechanical stretch of square waveform and ½ sine waveform 21
5.8 Analysis and quantification of mechanical stretch-induced apoptosis by flow cytometry 22
5.9 Analysis of cPARP and active caspase-3 protein level by flow cytometry 22
Chapter VI Discussion 24
6.1 rhPOSTN enhanced migration and adesion ability of MG-63 osteoblastic cells 24
6.2 TGF-β signaling pathway is involved with the periostin expression in MG-63 cells 24
6.3 Cyclic mechanical stretch affected cellular morphology and alignment of MG-63 cells 26
6.4 Effects of low-level and high-level mechanical stretch on periostin expression in MG-63 cells 27
6.5 Analysis of mechanical stretch-induced apoptosis in MG-63 cells by YO-PRO-1, PI and Hoeschst 33342 staining 29
6.6 Effects of cyclic mechanical stretch of square waveform and ½ sine waveform 32
6.7 Analysis and quantification of mechanical stretch-induced apoptosis by flow cytometry 33
Chapter VII Conclusion 36
Chapter VIII Future work 38
Chapter IX Appendix (Tables & Figures) 39
References 60
dc.language.isoen
dc.titlePeriostin對機械拉力造成MG-63類骨細胞凋亡反應的
影響
zh_TW
dc.titleEffects of periostin on mechanical stretch-induced apoptosis
in MG-63 osteoblastic cells
en
dc.typeThesis
dc.date.schoolyear104-2
dc.description.degree碩士
dc.contributor.coadvisor鄭景暉
dc.contributor.oralexamcommittee姚宗珍,楊台鴻
dc.subject.keywordMG-63 類骨細胞,periostin,週期性張力刺激,細胞凋亡,細胞貼附,zh_TW
dc.subject.keywordMG-63 cells,periostin,cyclic tensional force,apoptosis,adhesion,en
dc.relation.page66
dc.identifier.doi10.6342/NTU201601789
dc.rights.note未授權
dc.date.accepted2016-08-03
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept臨床牙醫學研究所zh_TW
顯示於系所單位:臨床牙醫學研究所

文件中的檔案:
檔案 大小格式 
ntu-105-1.pdf
  目前未授權公開取用
3.61 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved