Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 分子醫學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/19189
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor徐立中(Li-Chung Hsu)
dc.contributor.authorYun-Yun Youngen
dc.contributor.author楊昀芸zh_TW
dc.date.accessioned2021-06-08T01:48:07Z-
dc.date.copyright2016-08-26
dc.date.issued2016
dc.date.submitted2016-08-03
dc.identifier.citationAkira, S., and Takeda, K. (2004). Toll-like receptor signalling. Nature reviews Immunology 4, 499-511.
Akira, S., Uematsu, S., and Takeuchi, O. (2006). Pathogen recognition and innate immunity. Cell 124, 783-801.
Carballo, E., Lai, W.S., and Blackshear, P.J. (1998). Feedback inhibition of macrophage tumor necrosis factor-alpha production by tristetraprolin. Science 281, 1001-1005.
Carl, V.S., Gautam, J.K., Comeau, L.D., and Smith, M.F., Jr. (2004). Role of endogenous IL-10 in LPS-induced STAT3 activation and IL-1 receptor antagonist gene expression. Journal of leukocyte biology 76, 735-742.
Cassatella, M.A., Meda, L., Gasperini, S., Calzetti, F., and Bonora, S. (1994). Interleukin 10 (IL-10) upregulates IL-1 receptor antagonist production from lipopolysaccharide-stimulated human polymorphonuclear leukocytes by delaying mRNA degradation. The Journal of experimental medicine 179, 1695-1699.
Chang, C. (2012). The role of Zcchc6 in the innate immune response. In Institute of Molecular Medicine (National Taiwan University).
Chang, H.M., Triboulet, R., Thornton, J.E., and Gregory, R.I. (2013). A role for the Perlman syndrome exonuclease Dis3l2 in the Lin28-let-7 pathway. Nature 497, 244-248.
de Veer, M.J., Holko, M., Frevel, M., Walker, E., Der, S., Paranjape, J.M., Silverman, R.H., and Williams, B.R. (2001). Functional classification of interferon-stimulated genes identified using microarrays. Journal of leukocyte biology 69, 912-920.
Deng, L., Wang, C., Spencer, E., Yang, L., Braun, A., You, J., Slaughter, C., Pickart, C., and Chen, Z.J. (2000). Activation of the IkappaB kinase complex by TRAF6 requires a dimeric ubiquitin-conjugating enzyme complex and a unique polyubiquitin chain. Cell 103, 351-361.
Durbin, J.E., Hackenmiller, R., Simon, M.C., and Levy, D.E. (1996). Targeted disruption of the mouse Stat1 gene results in compromised innate immunity to viral disease. Cell 84, 443-450.
Fitzgerald, K.A., McWhirter, S.M., Faia, K.L., Rowe, D.C., Latz, E., Golenbock, D.T., Coyle, A.J., Liao, S.M., and Maniatis, T. (2003a). IKKepsilon and TBK1 are essential components of the IRF3 signaling pathway. Nature immunology 4, 491-496.
Fitzgerald, K.A., Rowe, D.C., Barnes, B.J., Caffrey, D.R., Visintin, A., Latz, E., Monks, B., Pitha, P.M., and Golenbock, D.T. (2003b). LPS-TLR4 signaling to IRF-3/7 and NF-kappaB involves the toll adapters TRAM and TRIF. The Journal of experimental medicine 198, 1043-1055.
Gallouzi, I.E., and Wilusz, J. (2013). A DIStinctively novel exoribonuclease that really likes U. The EMBO journal 32, 1799-1801.
Gao, J.J., Filla, M.B., Fultz, M.J., Vogel, S.N., Russell, S.W., and Murphy, W.J. (1998). Autocrine/paracrine IFN-alphabeta mediates the lipopolysaccharide-induced activation of transcription factor Stat1alpha in mouse macrophages: pivotal role of Stat1alpha in induction of the inducible nitric oxide synthase gene. Journal of immunology 161, 4803-4810.
Hacker, H., and Karin, M. (2006). Regulation and function of IKK and IKK-related kinases. Science's STKE : signal transduction knowledge environment 2006, re13.
Hacker, H., Redecke, V., Blagoev, B., Kratchmarova, I., Hsu, L.C., Wang, G.G., Kamps, M.P., Raz, E., Wagner, H., Hacker, G., et al. (2006). Specificity in Toll-like receptor signalling through distinct effector functions of TRAF3 and TRAF6. Nature 439, 204-207.
Heo, I., Ha, M., Lim, J., Yoon, M.J., Park, J.E., Kwon, S.C., Chang, H., and Kim, V.N. (2012). Mono-uridylation of pre-microRNA as a key step in the biogenesis of group II let-7 microRNAs. Cell 151, 521-532.
Hoshino, K., Takeuchi, O., Kawai, T., Sanjo, H., Ogawa, T., Takeda, Y., Takeda, K., and Akira, S. (1999). Cutting edge: Toll-like receptor 4 (TLR4)-deficient mice are hyporesponsive to lipopolysaccharide: evidence for TLR4 as the Lps gene product. Journal of immunology 162, 3749-3752.
Iyer, S.S., Ghaffari, A.A., and Cheng, G. (2010). Lipopolysaccharide-mediated IL-10 transcriptional regulation requires sequential induction of type I IFNs and IL-27 in macrophages. Journal of immunology 185, 6599-6607.
Janeway, C.A., Jr., and Medzhitov, R. (2002). Innate immune recognition. Annual review of immunology 20, 197-216.
Jenkins, J.K., Malyak, M., and Arend, W.P. (1994). The effects of interleukin-10 on interleukin-1 receptor antagonist and interleukin-1 beta production in human monocytes and neutrophils. Lymphokine and cytokine research 13, 47-54.
Jones, M.R., Quinton, L.J., Blahna, M.T., Neilson, J.R., Fu, S., Ivanov, A.R., Wolf, D.A., and Mizgerd, J.P. (2009). Zcchc11-dependent uridylation of microRNA directs cytokine expression. Nature cell biology 11, 1157-1163.
Kagan, J.C., and Medzhitov, R. (2006). Phosphoinositide-mediated adaptor recruitment controls Toll-like receptor signaling. Cell 125, 943-955.
Karin, M. (1995). The regulation of AP-1 activity by mitogen-activated protein kinases. The Journal of biological chemistry 270, 16483-16486.
Kim, B., Ha, M., Loeff, L., Chang, H., Simanshu, D.K., Li, S., Fareh, M., Patel, D.J., Joo, C., and Kim, V.N. (2015). TUT7 controls the fate of precursor microRNAs by using three different uridylation mechanisms. The EMBO journal 34, 1801-1815.
Kovarik, P., Stoiber, D., Novy, M., and Decker, T. (1998). Stat1 combines signals derived from IFN-gamma and LPS receptors during macrophage activation. The EMBO journal 17, 3660-3668.
Kuhn, R., Lohler, J., Rennick, D., Rajewsky, K., and Muller, W. (1993). Interleukin-10-deficient mice develop chronic enterocolitis. Cell 75, 263-274.
Laity, J.H., Lee, B.M., and Wright, P.E. (2001). Zinc finger proteins: new insights into structural and functional diversity. Current opinion in structural biology 11, 39-46.
Li, S., Strelow, A., Fontana, E.J., and Wesche, H. (2002). IRAK-4: a novel member of the IRAK family with the properties of an IRAK-kinase. Proceedings of the National Academy of Sciences of the United States of America 99, 5567-5572.
Liang, J., Wang, J., Azfer, A., Song, W., Tromp, G., Kolattukudy, P.E., and Fu, M. (2008). A novel CCCH-zinc finger protein family regulates proinflammatory activation of macrophages. The Journal of biological chemistry 283, 6337-6346.
Lim, J., Ha, M., Chang, H., Kwon, S.C., Simanshu, D.K., Patel, D.J., and Kim, V.N. (2014). Uridylation by TUT4 and TUT7 marks mRNA for degradation. Cell 159, 1365-1376.
Lu, Y.C., Yeh, W.C., and Ohashi, P.S. (2008). LPS/TLR4 signal transduction pathway. Cytokine 42, 145-151.
Lubas, M., Damgaard, C.K., Tomecki, R., Cysewski, D., Jensen, T.H., and Dziembowski, A. (2013). Exonuclease hDIS3L2 specifies an exosome-independent 3'-5' degradation pathway of human cytoplasmic mRNA. The EMBO journal 32, 1855-1868.
Malecki, M., Viegas, S.C., Carneiro, T., Golik, P., Dressaire, C., Ferreira, M.G., and Arraiano, C.M. (2013). The exoribonuclease Dis3L2 defines a novel eukaryotic RNA degradation pathway. The EMBO journal 32, 1842-1854.
Martin, G., and Keller, W. (2007). RNA-specific ribonucleotidyl transferases. RNA (New York, NY) 13, 1834-1849.
Matsushita, K., Takeuchi, O., Standley, D.M., Kumagai, Y., Kawagoe, T., Miyake, T., Satoh, T., Kato, H., Tsujimura, T., Nakamura, H., et al. (2009). Zc3h12a is an RNase essential for controlling immune responses by regulating mRNA decay. Nature 458, 1185-1190.
Medzhitov, R., Preston-Hurlburt, P., and Janeway, C.A., Jr. (1997). A human homologue of the Drosophila Toll protein signals activation of adaptive immunity. Nature 388, 394-397.
Minoda, Y., Saeki, K., Aki, D., Takaki, H., Sanada, T., Koga, K., Kobayashi, T., Takaesu, G., and Yoshimura, A. (2006). A novel Zinc finger protein, ZCCHC11, interacts with TIFA and modulates TLR signaling. Biochemical and biophysical research communications 344, 1023-1030.
Mogensen, T.H. (2009). Pathogen recognition and inflammatory signaling in innate immune defenses. Clinical microbiology reviews 22, 240-273, Table of Contents.
Mosser, D.M., and Zhang, X. (2008). Interleukin-10: new perspectives on an old cytokine. Immunological reviews 226, 205-218.
O'Neill, L.A., Golenbock, D., and Bowie, A.G. (2013). The history of Toll-like receptors - redefining innate immunity. Nature reviews Immunology 13, 453-460.
Rabani, M., Levin, J.Z., Fan, L., Adiconis, X., Raychowdhury, R., Garber, M., Gnirke, A., Nusbaum, C., Hacohen, N., Friedman, N., et al. (2011). Metabolic labeling of RNA uncovers principles of RNA production and degradation dynamics in mammalian cells. Nature biotechnology 29, 436-442.
Rhen, T., and Cidlowski, J.A. (2005). Antiinflammatory action of glucocorticoids--new mechanisms for old drugs. The New England journal of medicine 353, 1711-1723.
Rissland, O.S., Mikulasova, A., and Norbury, C.J. (2007). Efficient RNA polyuridylation by noncanonical poly(A) polymerases. Molecular and cellular biology 27, 3612-3624.
Semper, C., Leitner, N.R., Lassnig, C., Parrini, M., Mahlakoiv, T., Rammerstorfer, M., Lorenz, K., Rigler, D., Muller, S., Kolbe, T., et al. (2014). STAT1beta is not dominant negative and is capable of contributing to gamma interferon-dependent innate immunity. Molecular and cellular biology 34, 2235-2248.
Shen, Y.-R. (2012). The functional role of ZCCHC6 in TLR4-mediated immune responses. In Institute of Molecular Medicine (National Tawian University).
Shuai, K., Stark, G.R., Kerr, I.M., and Darnell, J.E., Jr. (1993). A single phosphotyrosine residue of Stat91 required for gene activation by interferon-gamma. Science 261, 1744-1746.
Varinou, L., Ramsauer, K., Karaghiosoff, M., Kolbe, T., Pfeffer, K., Muller, M., and Decker, T. (2003). Phosphorylation of the Stat1 transactivation domain is required for full-fledged IFN-gamma-dependent innate immunity. Immunity 19, 793-802.
Wang, C., Deng, L., Hong, M., Akkaraju, G.R., Inoue, J., and Chen, Z.J. (2001). TAK1 is a ubiquitin-dependent kinase of MKK and IKK. Nature 412, 346-351.
Wesche, H., Henzel, W.J., Shillinglaw, W., Li, S., and Cao, Z. (1997). MyD88: an adapter that recruits IRAK to the IL-1 receptor complex. Immunity 7, 837-847.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/19189-
dc.description.abstractUpon pathogen infection, inflammatory cytokines are induced to mount an inflammatory response to defend against pathogens. However, while impaired innate immunity renders the host more vulnerable to pathogenic infection, exceed and prolonged inflammation can cause many diseases. Thereby, anti-inflammatory cytokines, such as IL-10, are expressed at later stage of inflammation to counteract the effects of pro-inflammatory cytokines. To reach a disease-free state, the balance between inflammatory and anti-inflammatory responses must be spatially and temporally controlled. Previously our lab identified Zcchc6 (TUT7), a terminal uridylyltransferase, which was upregulated in murine macrophages upon Lipopolysaccharides (LPS) stimulation. Deprivation of Zcchc6 in macrophages resulted in downregulations of pro-inflammatory cytokines such as IL-6, IL12b and IFNβ, and an upregulation of anti-inflammatory cytokine IL-10. In the study we focus on how Zcchc6 regulates IL-10 expression upon LPS challenge. We found that Zcchc6 does not modulate IL-10 mRNA stability. Rather, Zcchc6 regulates IL-10 transcription. In addition, we demonstrated that STAT1, which is also induced by LPS, binds to the IL-10 promoter upon TLR4 engagement. STAT1 mRNA stability is increased in Zcchc6-deficient macrophages. Our results strongly suggest that Zcchc6 modulates STAT1 mRNA stability, which leads to regulation of IL-10 transcription in response to LPS.en
dc.description.provenanceMade available in DSpace on 2021-06-08T01:48:07Z (GMT). No. of bitstreams: 1
ntu-105-R03441015-1.pdf: 2617903 bytes, checksum: d9a8a2cb9ce5f10eab2a89d677df065a (MD5)
Previous issue date: 2016
en
dc.description.tableofcontents口試委員會審定書 i
Acknowledgement ii
摘要 iii
Abstract iv
Contents v
Introduction 1
Toll-like receptor 4 (TLR4) and signaling 3
Zinc-finger containing proteins and their regulatory roles in TLR4-triggered immune responses 5
Zinc finger CCHC domain containing 6 (Zcchc6)/Terminal uridylyltransferase 7 (TUT7) 7
The function of Zcchc6 in TLR4-driven immune response 9
Specific aim 11
Materials and Methods 12
Reagents 12
Plasmids 12
Mice 13
Cell culture and transfection 13
Bone Marrow Derived Macrophages (BMDMs) preparation 14
shRNA-mediated gene silencing and lentiviral infection 15
Immunoblotting 16
Cytosolic and nuclear fractionation 17
Enzyme-Linked ImmunoSorbent Assay (ELISA) 17
Total RNA extraction and reverse transcription quantitative PCR (RT-QPCR) 18
mRNA stability assay 20
RNA immunoprecipitation 20
Chromatin immunoprecipitation 21
Electrophoretic mobility shift assay (EMSA) 23
Statistical analysis 24
Results 25
Zcchc6 is induced upon TLR4 activation and is involved in regulation of TLR4-driven cytokine productions 25
STAT1 is involved in Zcchc6-mediated IL-10 expression upon LPS stimulation 26
STAT1 is a novel transcription factor involved in IL-10 transcription in response to LPS 27
Zcchc6 regulates STAT1 mRNA stability 29
Zcchc6 plays dual regulatory roles in the induction of IL-10 expression in response to LPS 30
Dis3l2, an exonucleus, upregulates STAT1 mRNA but downregulates IL-10 mRNA upon LPS stimulation 31
Zcchc11 and Zcchc6 differentially regulates inflammatory cytokines upon LPS stimulation 32
Discussion 35
Figure 1. 41
Figure 2. 43
Figure 3. 44
Figure 4. 47
Figure 5. 48
Figure 6. 49
Figure 7. 51
Figure 8. 52
Figure 9. 53
Figure 10. 54
Figure 11. 55
Figure 12. 57
Figure 13. 58
Figure 14. 59
Figure 15. 61
Supplementary Figure 1. 62
Supplementary Figure 2. 64
Reference 65
dc.language.isoen
dc.title一個終端尿苷醯轉移酶調控TLR4誘導Interleukin-10的機轉zh_TW
dc.titleThe Mechanism of a Terminal Uridyly Transferase in the regulation of TLR4-triggered Interleukin-10en
dc.typeThesis
dc.date.schoolyear104-2
dc.description.degree碩士
dc.contributor.oralexamcommittee譚婉玉(Woan-Yuh Tarn),詹世鵬(Shih-Peng Chan),蔡欣佑(Hsin-Yue Tsai)
dc.subject.keyword發炎反應,第四型類鐸受體,終端尿?醯轉移?,介白素-10,zh_TW
dc.subject.keywordInflammation,TLR4,Terminal Uridylytransferase,Interleukin-10,en
dc.relation.page72
dc.identifier.doi10.6342/NTU201601806
dc.rights.note未授權
dc.date.accepted2016-08-03
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept分子醫學研究所zh_TW
顯示於系所單位:分子醫學研究所

文件中的檔案:
檔案 大小格式 
ntu-105-1.pdf
  未授權公開取用
2.56 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved