請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/19164完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 張培仁(Pei-Zen Chang) | |
| dc.contributor.author | Fu-Lin Jian | en |
| dc.contributor.author | 簡福臨 | zh_TW |
| dc.date.accessioned | 2021-06-08T01:47:14Z | - |
| dc.date.copyright | 2016-08-31 | |
| dc.date.issued | 2016 | |
| dc.date.submitted | 2016-08-08 | |
| dc.identifier.citation | [1] G.S.K. Wong, T.F.W. Embleton, “AIP Handbook of Condenser Microphones: Theory, Calibration, and Measurements”, AIP Press, New York, 1995.
[2] C.-W. Tan, and J. Miao, “Analytical modeling for bulk-micromachined condenser microphone”, The Journal of the Acoustical Society of America, Vol. 120, issue 2, pp. 750-761, 2006. [3] Eargle, J., “The Microphone Book”, Focal Press, Woburn, MA, pp. 22-49, 2001. [4] Dehé, A., “Silicon Microphone Development and Application”, Sensors and Actuators A, Vol. 133, pp. 283-287, 2007. [5] Frederiksen, E., “Low-frequency Calibration of acoustical measurement systems”, B&K Technical Review, no. 4, 1981. [6] F. V. Hunt, “Electroacoustic: The Analysis of Transduction and its Historical Background”, Acoustical Society of America, 1982, Chap. 6, pp. 168-212. [7] W.-J. Wang, R.-M. Lin, Q.-B. Zou, and X.-X. Li, “Modeling and Characterization of a Silicon Condenser Microphone”, Journal of Micromechanics and Microengineering, Vol. 14, Number 3. 2003 [8] M. Rossi, “Acoustics and Electroacoustics”, Artech House, Norwood, 1988. [9] Feng, C., Zhao, Y. P. and Liu, D. Q., “Squeeze Film Effects in MEMS Devices with Perforated Plates for Small Amplitude Vibration”, Microsystem Technologies, Vol. 13, No. 7, pp, 625-633, 2006. [10] J. Liu, D. T. Martin, K. Kadirve, T. Nishida, L. Cattafesta, M. Sheplak, B. P. Mann, “Nonlinear model and system idenitification of a capacitive dual-backplate MEMS microphone”, Journal of Sound and Vibration, Vol. 309, pp. 276-292, 2008. [11] A. J. Zuckerwar, “Theoretical response of condenser microphones”, The Journal of the Acoustical Society of America, Vol. 64, Issue 5, 1978. [12] S. C. Thompson, J. L. LoPresti, E. M. Ring, H. G. Nepomuceno, J. J. Beard, William J. Ballad and Elmer V. Carlson, “Noise in miniature microphones”, The Journal of the Acoustical Society of America, Vol. 111, Issue 2, 2001. [13] D. Homentcovschi and R. N. Miles, “Modeling of viscous damping of perforated planar microstructures. Applications in acoustics”, The Journal of the Acoustical Society of America, Vol. 116, Issue 5, 2004. [14] M. Sheploak and J. Dugundji, “Large Deflections of Clamped Circular Plates Under Initial Tension and Transitions to Membrane Behavior”, Journal of Applied Mechanics, Vol. 65, Issue 1, 1998. [15] S S Mohite, H. Kesari, V. R. Sonti and R. Pratap, “Analytical solutions for the stiffness and damping coefficients of squeeze films in MEMS devices with perforated back plates”, Journal of Micromechanics and Microengineering, Vol. 15, Number 11, 2005. [16] M. Goto, Y. Iguchi, K. Ono and A. Ando, “High-Performance Condenser Microphone With Single-Crystalline Silicon Diaphragm and Backplate”, IEEE Sensors Journal, Vol. 7, Issue 1, pp. 4-10, 2007 [17] M. Pedersen, W. Olthuis, and P. Bergveld, “High-performance condenser microphone with fully integrated CMOS amplifier and DC-DC voltage converter”, Journal of Microelectromechanical Systems, Vol. 7, Issue 4, pp. 387-394, 1998., [18] J. Bergqvist, “Finite-element modelling and characterization of a silicon condenser microphone with a highly perforated backplate”, Sensors and Actuators A: Physical, Vol. 39, Issue 3, pp. 191-200, 1993. [19] H. A. C. Tilmans, “Equivalent circuit representation of electromechanical transducers: I. Lumped-parameter systems”, Journal of Micromechanics and Microengineering, Vol. 6, Number 1, 1995. [20] H. A. C. Tilmans, “Equivalent circuit representation of electromechanical transducers: II. Distributed-parameter systems”, Journal of Micromechanics and Microengineering, Vol.7, Number 4, 1997. [21] J.-Y. Chen, Y.-C. Hsu, S.-S. Lee, T. Mukherjee, and G. K. Fedder, “Modeling and simulation of a condenser microphone”, Sensors and Actuators A: Physical, Vol. 145-146, pp. 224-230, 2007. [22] M. Füldner, A. Dehé, and R. Lerch, “Analytical Analysis and Finite Element Simulation of Advanced Membranes for Silicon Microphones”, IEEE Sensors Journal, Vol. 5, Issue 5, pp. 857-863, 2005. [23] M. Pedersen, “A polymer condenser micorphone realised on silicon containing preprocessed integrated circuits”, 1997 [24] W. P. Eaton, F. Bitsie, J. H. Smith and D. W. Plummer, “A New Analytical Solution for Diaphragm Deflection and its Application to a Surface-Micromachined Pressure Sensor”, 1999. [25] S. Timoshenko and S. Woinowsky-Krieger, “Theory of plates and shells”, 1959. [26] D. T. Martin, J. Liu, K. Kadirvel, R. M. Fox, M. Sheplak, and T. Nishida, “A Micromachined Dual-Backplate Capacitive Microphone for Aeroacoustic Measurements”, Journal of Microelectromechanical Systems, Vol. 16, Issue 6, pp. 1289-1302, 2007. [27] J. Liu, D. T. Martin, K. Kadirvel, T. Nishida, M. Sheplak and B. P. Mann, “Nonlinear Identification of a Capacitive dual-backplate MEMS Microphone”, 20th Biennial Conference on Mechanical Vibration and Noise, Vol. 1, pp. 441-451, 2005. [28] S. Chowdhury, M. Ahmadi and W. C. Miller, “Nonlinear Effects in MEMS Capacitive Microphone Design”, MEMS, NANO and Smart Systems, pp. 297-302, 2003. [29] C. Gibbons and R. N. Miles, “Design of A Biomimetic Directional Microphone Diaphragm”, Proc. of IMECE Intern.l Mechanical Engineering Congress and Exposition, November 5-10, 2000. Orlando, Florida, 2000, pp. 1-7. [30] S. D. Senturia, “Microsystems Design”, Kluwer Academic Publishers, 2000. [31] J. Pons-Nin, A. Rodriguez and L. M. Castaner, “Voltage and Pull-in in Current Drive of electrostatic Actuators', Journal of Microelectromechanical Systems, Vol. 11, No. 3, pp. 196-205, Jun. 2002. [32] Veijola,T., “Compact Models for Squeezed-Film Dampers with Inertial and Rarefied Gas Effects”, Journal of Micromechanics and Microengineering, Vol. 14, pp. 1109-1118, 2004. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/19164 | - |
| dc.description.abstract | 隨著近年來行動電子產品的流行,如筆記型電腦和智慧型手機等,微機電麥克風具有體積小與高性能的特性,非常適合應用於消費性電子產品中。微機電麥克風的結構包括振膜、背板孔洞、空氣間隔與背腔,本研究以等效的機械模型方式描述麥克風振膜的振動行為,並結合電容的電靈敏度完成電容式麥克風的模型。本研究透過最佳化背板電極的分布面積來提升傳統平坦式背板結構電容式麥克風的性能,包含麥克風的靈敏度、訊雜比與總諧波失真,並且提出一階梯式結構的背板,藉由改變階梯式結構的幾何尺寸,研究其對麥克風性能的影響,對於階梯背板的結構進行最佳化,以得到最佳的麥克風性能,並且比較階梯式背板結構與傳統平坦式背板結構對於麥克風性能的影響。 | zh_TW |
| dc.description.abstract | In recent years, the mobile devices are popular such as notebooks and smart phones. MEMS microphones with small size and high performance are ideal for consumer electronics products. MEMS microphone’s structure including the diaphragm, the acoustic holes of backplate, the air gap and the back chamber. This study describes vibration behavior of the microphone diaphragm by the equivalent mechanical model and combines the electrical sensitivity of the capacitance to complete the condenser microphone model. This study improve the microphone performance including the sensitivity, signal-to-noise ratio and total harmonic distortion by optimizing the electrode area of the backplate. We present a stepped structure of the backplate, and study the effects of the microphone performance by changing the geometry of the stepped structure. We optimize the geometry of the stepped structure to get the best performance of the microphone, and compare the microphone performance between the stepped backplate and the traditional flat backplate. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-08T01:47:14Z (GMT). No. of bitstreams: 1 ntu-105-R03543041-1.pdf: 3300517 bytes, checksum: b6ff5ec9a7fcbedf9a26813c5bf2db74 (MD5) Previous issue date: 2016 | en |
| dc.description.tableofcontents | 誌謝 i
中文摘要 ii Abstract iii 目錄 iv 表目錄 vii 圖目錄 viii Chapter 1. 緒論 1 1.1. 研究之背景與目的 1 1.2. 發展現況 2 1.3. 相關研究 3 1.4. 論文架構 10 Chapter 2. 研究方法與理論 12 2.1. 電容式麥克風之基本原理 12 2.2. 工作原理 12 2.2.1. 電靈敏度 15 2.2.2. 機械靈敏度 16 2.2.3. 麥克風之特性 17 2.3. 基本振動學理論 19 2.3.1. 無阻尼系統 19 2.3.2. 阻尼系統 23 Chapter 3. 平坦背板電容式麥克風之等效模型建立 31 3.1. 運動方程式 31 3.2. 系統等效模型之建立 32 3.2.1. 等效振膜質量 33 3.2.2. 等效振膜彈簧常數 33 3.2.3. 等效背腔之彈簧常數 34 3.2.4. 等效空氣間隔阻尼 35 3.2.5. 等效背板孔洞阻尼 36 3.2.6. 等效聲壓外力 36 3.2.7. 等效偏壓靜電吸引力 37 3.3. 平坦背板之電容式麥克風分析 39 3.3.1. 吸附電壓 40 3.3.2. 感測電容 40 3.3.3. 麥克風靈敏度分析 42 3.3.4. 訊雜比分析 44 3.3.5. 總諧波失真 45 3.3.6. 平坦背板之麥克風最佳化 45 Chapter 4. 階梯式背板電容麥克風之等效模型建立 49 4.1. 系統等效模型之建立 49 4.1.1. 等效空氣間隔阻尼 50 4.1.2. 等效背板孔洞阻尼 52 4.1.3. 等效偏壓靜電吸引力 53 4.2. 階梯式背板之電容麥克風與系統比較分析 54 4.2.1. 感測電容 55 4.2.2. 麥克風靈敏度分析 58 4.2.3. 訊雜比與總諧波失真分析 60 4.3. 階梯式背板結構麥克風最佳化分析 61 4.3.1. 階梯式背板幾何尺寸最佳化 61 4.3.2. 階梯式背板電極面積最佳化 62 Chapter 5. 結論與未來展望 67 5.1. 結論 67 5.2. 未來展望 68 參考文獻 69 | |
| dc.language.iso | zh-TW | |
| dc.subject | 等效機械振動模型 | zh_TW |
| dc.subject | 微機電電容式麥克風 | zh_TW |
| dc.subject | 階梯式背板 | zh_TW |
| dc.subject | MEMS microphone | en |
| dc.subject | equivalent mechanical model | en |
| dc.subject | stepped backplate | en |
| dc.title | 具階梯式結構背板之電容式麥克風的理論與模型 | zh_TW |
| dc.title | Modeling and Simulation on the Condenser Microphone with Stepped Backplate | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 104-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 胡毓忠(Yuh-chung Hu),施文彬(Wen-Pin Shih),黃榮堂(Huang-Jung Tang),戴慶良(Ching-Liang Dai) | |
| dc.subject.keyword | 微機電電容式麥克風,階梯式背板,等效機械振動模型, | zh_TW |
| dc.subject.keyword | MEMS microphone,stepped backplate,equivalent mechanical model, | en |
| dc.relation.page | 72 | |
| dc.identifier.doi | 10.6342/NTU201602014 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2016-08-08 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 應用力學研究所 | zh_TW |
| 顯示於系所單位: | 應用力學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-105-1.pdf 未授權公開取用 | 3.22 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
