Please use this identifier to cite or link to this item:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/19145
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield??? | Value | Language |
---|---|---|
dc.contributor.advisor | 于明暉(Ming-Whei Yu) | |
dc.contributor.author | Wei-Yi Kao | en |
dc.contributor.author | 高瑋怡 | zh_TW |
dc.date.accessioned | 2021-06-08T01:46:35Z | - |
dc.date.copyright | 2016-08-26 | |
dc.date.issued | 2016 | |
dc.date.submitted | 2016-08-09 | |
dc.identifier.citation | 1. Venook AP, Papandreou C, Furuse J, et al. The incidence and epidemiology of hepatocellular carcinoma: a global and regional perspective. Oncologist 2010;15 Suppl 4:5-13.
2. Bosch FX, Ribes J, Borras J. Epidemiology of primary liver cancer. Semin Liver Dis 1999;19(3):271-85. 3. Lavanchy D. Hepatitis B virus epidemiology, disease burden, treatment, and current and emerging prevention and control measures. J Viral Hepat 2004;11(2):97-107. 4. Yu MW, Chen CJ. Hepatitis B and C viruses in the development of hepatocellular carcinoma. Crit Rev Oncol Hematol 1994;17(2):71-91. 5. Liaw YF, Chu CM. Hepatitis B virus infection. Lancet 2009;373(9663):582-92. 6. Fattovich G, Bortolotti F, Donato F. Natural history of chronic hepatitis B: special emphasis on disease progression and prognostic factors. J Hepatol 2008;48(2):335-52. 7. Yu MW, Chang HC, Liaw YF, et al. Familial risk of hepatocellular carcinoma among chronic hepatitis B carriers and their relatives. J Natl Cancer Inst 2000;92(14):1159-64. 8. Wu CF, Yu MW, Lin CL, et al. Long-term tracking of hepatitis B viral load and the relationship with risk for hepatocellular carcinoma in men. Carcinogenesis 2008;29(1):106-12. 9. Chen CJ, Yang HI, Su J, et al. Risk of hepatocellular carcinoma across a biological gradient of serum hepatitis B virus DNA level. JAMA 2006;295(1):65-73. 10. Yang HI, Lu SN, Liaw YF, et al. Hepatitis B e antigen and the risk of hepatocellular carcinoma. N Engl J Med 2002;347(3):168-74. 11. Yu MW, Yeh SH, Chen PJ, et al. Hepatitis B virus genotype and DNA level and hepatocellular carcinoma: a prospective study in men. J Natl Cancer Inst 2005;97(4):265-72. 12. Kao JH, Chen PJ, Lai MY, et al. Hepatitis B genotypes correlate with clinical outcomes in patients with chronic hepatitis B. Gastroenterology 2000;118(3):554-9. 13. Chen G, Lin W, Shen F, et al. Past HBV viral load as predictor of mortality and morbidity from HCC and chronic liver disease in a prospective study. Am J Gastroenterol 2006;101(8):1797-803. 14. Chan HL, Tse CH, Mo F, et al. High viral load and hepatitis B virus subgenotype ce are associated with increased risk of hepatocellular carcinoma. J Clin Oncol 2008;26(2):177-82. 15. Yang HI, Yeh SH, Chen PJ, et al. Associations between hepatitis B virus genotype and mutants and the risk of hepatocellular carcinoma. J Natl Cancer Inst 2008;100(16):1134-43. 16. Chou YC, Yu MW, Wu CF, et al. Temporal relationship between hepatitis B virus enhancer II/basal core promoter sequence variation and risk of hepatocellular carcinoma. Gut 2008;57(1):91-7. 17. Loomba R, Liu J, Yang HI, et al. Synergistic effects of family history of hepatocellular carcinoma and hepatitis B virus infection on risk for incident hepatocellular carcinoma. Clin Gastroenterol Hepatol 2013;11(12):1636-45 e1-3. 18. Hung YC, Lin CL, Liu CJ, et al. Development of risk scoring system for stratifying population for hepatocellular carcinoma screening. Hepatology 2015;61(6):1934-44. 19. Wan DW, Tzimas D, Smith JA, et al. Risk factors for early-onset and late-onset hepatocellular carcinoma in Asian immigrants with hepatitis B in the United States. Am J Gastroenterol 2011;106(11):1994-2000. 20. Herath NI, Leggett BA, MacDonald GA. Review of genetic and epigenetic alterations in hepatocarcinogenesis. J Gastroenterol Hepatol 2006;21(1 Pt 1):15-21. 21. Laurent-Puig P, Zucman-Rossi J. Genetics of hepatocellular tumors. Oncogene 2006;25(27):3778-86. 22. Pogribny IP, Rusyn I. Role of epigenetic aberrations in the development and progression of human hepatocellular carcinoma. Cancer Lett 2014;342(2):223-30. 23. Martin M, Herceg Z. From hepatitis to hepatocellular carcinoma: a proposed model for cross-talk between inflammation and epigenetic mechanisms. Genome Med 2012;4(1):8. 24. Holliday R. The inheritance of epigenetic defects. Science 1987;238(4824):163-70. 25. Bernstein BE, Meissner A, Lander ES. The mammalian epigenome. Cell 2007;128(4):669-81. 26. Bird A. DNA methylation patterns and epigenetic memory. Genes Dev 2002;16(1):6-21. 27. Antequera F, Bird A. Number of CpG islands and genes in human and mouse. Proc Natl Acad Sci U S A 1993;90(24):11995-9. 28. Lister R, Pelizzola M, Dowen RH, et al. Human DNA methylomes at base resolution show widespread epigenomic differences. Nature 2009;462(7271):315-22. 29. Saxonov S, Berg P, Brutlag DL. A genome-wide analysis of CpG dinucleotides in the human genome distinguishes two distinct classes of promoters. Proc Natl Acad Sci U S A 2006;103(5):1412-7. 30. Wang Y, Leung FC. An evaluation of new criteria for CpG islands in the human genome as gene markers. Bioinformatics 2004;20(7):1170-7. 31. Cedar H, Bergman Y. Programming of DNA methylation patterns. Annu Rev Biochem 2012;81:97-117. 32. Reik W. Stability and flexibility of epigenetic gene regulation in mammalian development. Nature 2007;447(7143):425-32. 33. Meissner A. Epigenetic modifications in pluripotent and differentiated cells. Nat Biotechnol 2010;28(10):1079-88. 34. Barlow DP. Genomic imprinting: a mammalian epigenetic discovery model. Annu Rev Genet 2011;45:379-403. 35. Bestor TH. The host defence function of genomic methylation patterns. Novartis Found Symp 1998;214:187-95; discussion 195-9, 228-32. 36. Robertson KD. DNA methylation and human disease. Nat Rev Genet 2005;6(8):597-610. 37. Kaneto H, Sasaki S, Yamamoto H, et al. Detection of hypermethylation of the p16(INK4A) gene promoter in chronic hepatitis and cirrhosis associated with hepatitis B or C virus. Gut 2001;48(3):372-7. 38. Schagdarsurengin U, Wilkens L, Steinemann D, et al. Frequent epigenetic inactivation of the RASSF1A gene in hepatocellular carcinoma. Oncogene 2003;22(12):1866-71. 39. Okochi O, Hibi K, Sakai M, et al. Methylation-mediated silencing of SOCS-1 gene in hepatocellular carcinoma derived from cirrhosis. Clin Cancer Res 2003;9(14):5295-8. 40. Niwa Y, Kanda H, Shikauchi Y, et al. Methylation silencing of SOCS-3 promotes cell growth and migration by enhancing JAK/STAT and FAK signalings in human hepatocellular carcinoma. Oncogene 2005;24(42):6406-17. 41. Yoshikawa H, Matsubara K, Qian GS, et al. SOCS-1, a negative regulator of the JAK/STAT pathway, is silenced by methylation in human hepatocellular carcinoma and shows growth-suppression activity. Nat Genet 2001;28(1):29-35. 42. Yu J, Ni M, Xu J, et al. Methylation profiling of twenty promoter-CpG islands of genes which may contribute to hepatocellular carcinogenesis. BMC Cancer 2002;2:29. 43. Kubo T, Yamamoto J, Shikauchi Y, et al. Apoptotic speck protein-like, a highly homologous protein to apoptotic speck protein in the pyrin domain, is silenced by DNA methylation and induces apoptosis in human hepatocellular carcinoma. Cancer Res 2004;64(15):5172-7. 44. Zhong S, Tang MW, Yeo W, et al. Silencing of GSTP1 gene by CpG island DNA hypermethylation in HBV-associated hepatocellular carcinomas. Clin Cancer Res 2002;8(4):1087-92. 45. Matsukura S, Soejima H, Nakagawachi T, et al. CpG methylation of MGMT and hMLH1 promoter in hepatocellular carcinoma associated with hepatitis viral infection. Br J Cancer 2003;88(4):521-9. 46. Kanai Y, Ushijima S, Hui AM, et al. The E-cadherin gene is silenced by CpG methylation in human hepatocellular carcinomas. Int J Cancer 1997;71(3):355-9. 47. Lee S, Lee HJ, Kim JH, et al. Aberrant CpG island hypermethylation along multistep hepatocarcinogenesis. Am J Pathol 2003;163(4):1371-8. 48. Wong CM, Ng YL, Lee JM, et al. Tissue factor pathway inhibitor-2 as a frequently silenced tumor suppressor gene in hepatocellular carcinoma. Hepatology 2007;45(5):1129-38. 49. Tischoff I, Markwarth A, Witzigmann H, et al. Allele loss and epigenetic inactivation of 3p21.3 in malignant liver tumors. Int J Cancer 2005;115(5):684-9. 50. Yoshida T, Ogata H, Kamio M, et al. SOCS1 is a suppressor of liver fibrosis and hepatitis-induced carcinogenesis. J Exp Med 2004;199(12):1701-7. 51. Kremsdorf D, Soussan P, Paterlini-Brechot P, et al. Hepatitis B virus-related hepatocellular carcinoma: paradigms for viral-related human carcinogenesis. Oncogene 2006;25(27):3823-33. 52. Shaul Y, Garcia PD, Schonberg S, et al. Integration of hepatitis B virus DNA in chromosome-specific satellite sequences. J Virol 1986;59(3):731-4. 53. Berger I, Shaul Y. Integration of hepatitis B virus: analysis of unoccupied sites. J Virol 1987;61(4):1180-6. 54. Tian Y, Yang W, Song J, et al. Hepatitis B virus X protein-induced aberrant epigenetic modifications contributing to human hepatocellular carcinoma pathogenesis. Mol Cell Biol 2013;33(15):2810-6. 55. Ammerpohl O, Pratschke J, Schafmayer C, et al. Distinct DNA methylation patterns in cirrhotic liver and hepatocellular carcinoma. Int J Cancer 2012;130(6):1319-28. 56. Song MA, Tiirikainen M, Kwee S, et al. Elucidating the landscape of aberrant DNA methylation in hepatocellular carcinoma. PLoS One 2013;8(2):e55761. 57. Shen J, Wang S, Zhang YJ, et al. Genome-wide DNA methylation profiles in hepatocellular carcinoma. Hepatology 2012;55(6):1799-808. 58. Shen J, Wang S, Zhang YJ, et al. Exploring genome-wide DNA methylation profiles altered in hepatocellular carcinoma using Infinium HumanMethylation 450 BeadChips. Epigenetics 2013;8(1):34-43. 59. Hernandez-Vargas H, Lambert MP, Le Calvez-Kelm F, et al. Hepatocellular carcinoma displays distinct DNA methylation signatures with potential as clinical predictors. PLoS One 2010;5(3):e9749. 60. Archer KJ, Mas VR, Maluf DG, et al. High-throughput assessment of CpG site methylation for distinguishing between HCV-cirrhosis and HCV-associated hepatocellular carcinoma. Mol Genet Genomics 2010;283(4):341-9. 61. Tao R, Li J, Xin J, et al. Methylation profile of single hepatocytes derived from hepatitis B virus-related hepatocellular carcinoma. PLoS One 2011;6(5):e19862. 62. Neumann O, Kesselmeier M, Geffers R, et al. Methylome analysis and integrative profiling of human HCCs identify novel protumorigenic factors. Hepatology 2012;56(5):1817-27. 63. Lambert MP, Paliwal A, Vaissiere T, et al. Aberrant DNA methylation distinguishes hepatocellular carcinoma associated with HBV and HCV infection and alcohol intake. J Hepatol 2011;54(4):705-15. 64. Hlady RA, Tiedemann RL, Puszyk W, et al. Epigenetic signatures of alcohol abuse and hepatitis infection during human hepatocarcinogenesis. Oncotarget 2014;5(19):9425-43. 65. Li L, Choi JY, Lee KM, et al. DNA methylation in peripheral blood: a potential biomarker for cancer molecular epidemiology. J Epidemiol 2012;22(5):384-94. 66. Gao Y, Killian K, Zhang H, et al. Leukocyte DNA methylation and colorectal cancer among male smokers. World J Gastrointest Oncol 2012;4(8):193-201. 67. Marsit CJ, Koestler DC, Christensen BC, et al. DNA methylation array analysis identifies profiles of blood-derived DNA methylation associated with bladder cancer. J Clin Oncol 2011;29(9):1133-9. 68. Xu Z, Bolick SC, DeRoo LA, et al. Epigenome-wide association study of breast cancer using prospectively collected sister study samples. J Natl Cancer Inst 2013;105(10):694-700. 69. Teschendorff AE, Menon U, Gentry-Maharaj A, et al. An epigenetic signature in peripheral blood predicts active ovarian cancer. PLoS One 2009;4(12):e8274. 70. Langevin SM, Koestler DC, Christensen BC, et al. Peripheral blood DNA methylation profiles are indicative of head and neck squamous cell carcinoma: an epigenome-wide association study. Epigenetics 2012;7(3):291-9. 71. Wang L, Aakre JA, Jiang R, et al. Methylation markers for small cell lung cancer in peripheral blood leukocyte DNA. J Thorac Oncol 2010;5(6):778-85. 72. Mizukoshi E, Sidney J, Livingston B, et al. Cellular immune responses to the hepatitis B virus polymerase. J Immunol 2004;173(9):5863-71. 73. Li Y, Wang JJ, Gao S, et al. Decreased peripheral natural killer cells activity in the immune activated stage of chronic hepatitis B. PLoS One 2014;9(2):e86927. 74. Vanwolleghem T, Hou J, van Oord G, et al. Re-evaluation of hepatitis B virus clinical phases by systems biology identifies unappreciated roles for the innate immune response and B cells. Hepatology 2015;62(1):87-100. 75. Besingi W, Johansson A. Smoke-related DNA methylation changes in the etiology of human disease. Hum Mol Genet 2014;23(9):2290-7. 76. Argos M, Chen L, Jasmine F, et al. Gene-specific differential DNA methylation and chronic arsenic exposure in an epigenome-wide association study of adults in Bangladesh. Environ Health Perspect 2015;123(1):64-71. 77. Hernandez-Vargas H, Castelino J, Silver MJ, et al. Exposure to aflatoxin B1 in utero is associated with DNA methylation in white blood cells of infants in The Gambia. Int J Epidemiol 2015;44(4):1238-48. 78. Yuan W, Xia Y, Bell CG, et al. An integrated epigenomic analysis for type 2 diabetes susceptibility loci in monozygotic twins. Nat Commun 2014;5:5719. 79. Petersen AK, Zeilinger S, Kastenmuller G, et al. Epigenetics meets metabolomics: an epigenome-wide association study with blood serum metabolic traits. Hum Mol Genet 2014;23(2):534-45. 80. Dick KJ, Nelson CP, Tsaprouni L, et al. DNA methylation and body-mass index: a genome-wide analysis. Lancet 2014;383(9933):1990-8. 81. Javierre BM, Fernandez AF, Richter J, et al. Changes in the pattern of DNA methylation associate with twin discordance in systemic lupus erythematosus. Genome Res 2010;20(2):170-9. 82. Sung FY, Jung CM, Wu CF, et al. Hepatitis B virus core variants modify natural course of viral infection and hepatocellular carcinoma progression. Gastroenterology 2009;137(5):1687-97. 83. Bibikova M, Le J, Barnes B, et al. Genome-wide DNA methylation profiling using Infinium(R) assay. Epigenomics 2009;1(1):177-200. 84. Michels KB, Binder AM, Dedeurwaerder S, et al. Recommendations for the design and analysis of epigenome-wide association studies. Nat Methods 2013;10(10):949-55. 85. Bibikova M, Barnes B, Tsan C, et al. High density DNA methylation array with single CpG site resolution. Genomics 2011;98(4):288-95. 86. Touleimat N, Tost J. Complete pipeline for Infinium((R)) Human Methylation 450K BeadChip data processing using subset quantile normalization for accurate DNA methylation estimation. Epigenomics 2012;4(3):325-41. 87. Chen YA, Lemire M, Choufani S, et al. Discovery of cross-reactive probes and polymorphic CpGs in the Illumina Infinium HumanMethylation450 microarray. Epigenetics 2013;8(2):203-9. 88. Price ME, Cotton AM, Lam LL, et al. Additional annotation enhances potential for biologically-relevant analysis of the Illumina Infinium HumanMethylation450 BeadChip array. Epigenetics Chromatin 2013;6(1):4. 89. Dedeurwaerder S, Defrance M, Calonne E, et al. Evaluation of the Infinium Methylation 450K technology. Epigenomics 2011;3(6):771-84. 90. Maksimovic J, Gordon L, Oshlack A. SWAN: Subset-quantile within array normalization for illumina infinium HumanMethylation450 BeadChips. Genome Biol 2012;13(6):R44. 91. Teschendorff AE, Marabita F, Lechner M, et al. A beta-mixture quantile normalization method for correcting probe design bias in Illumina Infinium 450 k DNA methylation data. Bioinformatics 2013;29(2):189-96. 92. Sun Z, Chai HS, Wu Y, et al. Batch effect correction for genome-wide methylation data with Illumina Infinium platform. BMC Med Genomics 2011;4:84. 93. Gentleman RC, Carey VJ, Bates DM, et al. Bioconductor: open software development for computational biology and bioinformatics. Genome Biol 2004;5(10):R80. 94. Aryee MJ, Jaffe AE, Corrada-Bravo H, et al. Minfi: a flexible and comprehensive Bioconductor package for the analysis of Infinium DNA methylation microarrays. Bioinformatics 2014;30(10):1363-9. 95. Du P, Kibbe WA, Lin SM. lumi: a pipeline for processing Illumina microarray. Bioinformatics 2008;24(13):1547-8. 96. Wang D, Yan L, Hu Q, et al. IMA: an R package for high-throughput analysis of Illumina's 450K Infinium methylation data. Bioinformatics 2012;28(5):729-30. 97. Wu MC, Joubert BR, Kuan PF, et al. A systematic assessment of normalization approaches for the Infinium 450K methylation platform. Epigenetics 2014;9(2):318-29. 98. Johnson WE, Li C, Rabinovic A. Adjusting batch effects in microarray expression data using empirical Bayes methods. Biostatistics 2007;8(1):118-27. 99. Heyn H, Moran S, Hernando-Herraez I, et al. DNA methylation contributes to natural human variation. Genome Res 2013;23(9):1363-72. 100. Handa V, Jeltsch A. Profound flanking sequence preference of Dnmt3a and Dnmt3b mammalian DNA methyltransferases shape the human epigenome. J Mol Biol 2005;348(5):1103-12. 101. Bell JT, Pai AA, Pickrell JK, et al. DNA methylation patterns associate with genetic and gene expression variation in HapMap cell lines. Genome Biol 2011;12(1):R10. 102. Dedeurwaerder S, Defrance M, Bizet M, et al. A comprehensive overview of Infinium HumanMethylation450 data processing. Brief Bioinform 2014;15(6):929-41. 103. Wilson AS, Power BE, Molloy PL. DNA hypomethylation and human diseases. Biochim Biophys Acta 2007;1775(1):138-62. 104. Ushijima T, Morimura K, Hosoya Y, et al. Establishment of methylation-sensitive-representational difference analysis and isolation of hypo- and hypermethylated genomic fragments in mouse liver tumors. Proc Natl Acad Sci U S A 1997;94(6):2284-9. 105. Lin CH, Hsieh SY, Sheen IS, et al. Genome-wide hypomethylation in hepatocellular carcinogenesis. Cancer Res 2001;61(10):4238-43. 106. Takai D, Yagi Y, Habib N, et al. Hypomethylation of LINE1 retrotransposon in human hepatocellular carcinomas, but not in surrounding liver cirrhosis. Jpn J Clin Oncol 2000;30(7):306-9. 107. Kim MJ, White-Cross JA, Shen L, et al. Hypomethylation of long interspersed nuclear element-1 in hepatocellular carcinomas. Mod Pathol 2009;22(3):442-9. 108. Lee HS, Kim BH, Cho NY, et al. Prognostic implications of and relationship between CpG island hypermethylation and repetitive DNA hypomethylation in hepatocellular carcinoma. Clin Cancer Res 2009;15(3):812-20. 109. Tangkijvanich P, Hourpai N, Rattanatanyong P, et al. Serum LINE-1 hypomethylation as a potential prognostic marker for hepatocellular carcinoma. Clin Chim Acta 2007;379(1-2):127-33. 110. Yan PS, Venkataramu C, Ibrahim A, et al. Mapping geographic zones of cancer risk with epigenetic biomarkers in normal breast tissue. Clin Cancer Res 2006;12(22):6626-36. 111. Kanai Y, Hirohashi S. Alterations of DNA methylation associated with abnormalities of DNA methyltransferases in human cancers during transition from a precancerous to a malignant state. Carcinogenesis 2007;28(12):2434-42. 112. Heyn H, Carmona FJ, Gomez A, et al. DNA methylation profiling in breast cancer discordant identical twins identifies DOK7 as novel epigenetic biomarker. Carcinogenesis 2013;34(1):102-8. 113. Teschendorff AE, Menon U, Gentry-Maharaj A, et al. Age-dependent DNA methylation of genes that are suppressed in stem cells is a hallmark of cancer. Genome Res 2010;20(4):440-6. 114. Rakyan VK, Down TA, Balding DJ, et al. Epigenome-wide association studies for common human diseases. Nat Rev Genet 2011;12(8):529-41. 115. Jaffe AE, Murakami P, Lee H, et al. Bump hunting to identify differentially methylated regions in epigenetic epidemiology studies. Int J Epidemiol 2012;41(1):200-9. 116. Jaffe AE, Irizarry RA. Accounting for cellular heterogeneity is critical in epigenome-wide association studies. Genome Biol 2014;15(2):R31. 117. Houseman EA, Accomando WP, Koestler DC, et al. DNA methylation arrays as surrogate measures of cell mixture distribution. BMC Bioinformatics 2012;13:86. 118. Reinius LE, Acevedo N, Joerink M, et al. Differential DNA methylation in purified human blood cells: implications for cell lineage and studies on disease susceptibility. PLoS One 2012;7(7):e41361. 119. Houseman EA, Christensen BC, Yeh RF, et al. Model-based clustering of DNA methylation array data: a recursive-partitioning algorithm for high-dimensional data arising as a mixture of beta distributions. BMC Bioinformatics 2008;9:365. 120. Yang B, Guo M, Herman JG, et al. Aberrant promoter methylation profiles of tumor suppressor genes in hepatocellular carcinoma. Am J Pathol 2003;163(3):1101-7. 121. Zeilinger S, Kuhnel B, Klopp N, et al. Tobacco smoking leads to extensive genome-wide changes in DNA methylation. PLoS One 2013;8(5):e63812. 122. Shenker NS, Polidoro S, van Veldhoven K, et al. Epigenome-wide association study in the European Prospective Investigation into Cancer and Nutrition (EPIC-Turin) identifies novel genetic loci associated with smoking. Hum Mol Genet 2013;22(5):843-51. 123. Ziller MJ, Gu H, Muller F, et al. Charting a dynamic DNA methylation landscape of the human genome. Nature 2013;500(7463):477-81. 124. Irizarry RA, Ladd-Acosta C, Wen B, et al. The human colon cancer methylome shows similar hypo- and hypermethylation at conserved tissue-specific CpG island shores. Nat Genet 2009;41(2):178-86. 125. Jones PA. Functions of DNA methylation: islands, start sites, gene bodies and beyond. Nat Rev Genet 2012;13(7):484-92. 126. Jjingo D, Conley AB, Yi SV, et al. On the presence and role of human gene-body DNA methylation. Oncotarget 2012;3(4):462-74. 127. Eckhardt F, Lewin J, Cortese R, et al. DNA methylation profiling of human chromosomes 6, 20 and 22. Nat Genet 2006;38(12):1378-85. 128. Dawson MA, Kouzarides T. Cancer epigenetics: from mechanism to therapy. Cell 2012;150(1):12-27. 129. Liu Y, Aryee MJ, Padyukov L, et al. Epigenome-wide association data implicate DNA methylation as an intermediary of genetic risk in rheumatoid arthritis. Nat Biotechnol 2013;31(2):142-7. 130. Koestler DC, Marsit CJ, Christensen BC, et al. Peripheral blood immune cell methylation profiles are associated with nonhematopoietic cancers. Cancer Epidemiol Biomarkers Prev 2012;21(8):1293-302. 131. Miller RG. Simultaneous Statistical Inference. 2nd Ed ed. New York: Springer; 1981. 132. El-Serag HB, Rudolph KL. Hepatocellular carcinoma: epidemiology and molecular carcinogenesis. Gastroenterology 2007;132(7):2557-76. 133. Jirtle RL, Skinner MK. Environmental epigenomics and disease susceptibility. Nat Rev Genet 2007;8(4):253-62. 134. Lee KW, Pausova Z. Cigarette smoking and DNA methylation. Front Genet 2013;4:132. 135. Breitling LP, Yang R, Korn B, et al. Tobacco-smoking-related differential DNA methylation: 27K discovery and replication. Am J Hum Genet 2011;88(4):450-7. 136. Zhang YJ, Ahsan H, Chen Y, et al. High frequency of promoter hypermethylation of RASSF1A and p16 and its relationship to aflatoxin B1-DNA adduct levels in human hepatocellular carcinoma. Mol Carcinog 2002;35(2):85-92. 137. Zhang YJ, Chen Y, Ahsan H, et al. Inactivation of the DNA repair gene O6-methylguanine-DNA methyltransferase by promoter hypermethylation and its relationship to aflatoxin B1-DNA adducts and p53 mutation in hepatocellular carcinoma. Int J Cancer 2003;103(4):440-4. 138. Zhang YJ, Rossner P, Jr., Chen Y, et al. Aflatoxin B1 and polycyclic aromatic hydrocarbon adducts, p53 mutations and p16 methylation in liver tissue and plasma of hepatocellular carcinoma patients. Int J Cancer 2006;119(5):985-91. 139. van Engeland M, Weijenberg MP, Roemen GM, et al. Effects of dietary folate and alcohol intake on promoter methylation in sporadic colorectal cancer: the Netherlands cohort study on diet and cancer. Cancer Res 2003;63(12):3133-7. 140. Marsit CJ, McClean MD, Furniss CS, et al. Epigenetic inactivation of the SFRP genes is associated with drinking, smoking and HPV in head and neck squamous cell carcinoma. Int J Cancer 2006;119(8):1761-6. 141. Zakhari S. Alcohol metabolism and epigenetics changes. Alcohol Res 2013;35(1):6-16. 142. Poreba E, Broniarczyk JK, Gozdzicka-Jozefiak A. Epigenetic mechanisms in virus-induced tumorigenesis. Clin Epigenetics 2011;2(2):233-47. 143. Herceg Z, Paliwal A. Epigenetic mechanisms in hepatocellular carcinoma: how environmental factors influence the epigenome. Mutat Res 2011;727(3):55-61. 144. Herceg Z. Epigenetics and cancer: towards an evaluation of the impact of environmental and dietary factors. Mutagenesis 2007;22(2):91-103. 145. Baccarelli A, Wright RO, Bollati V, et al. Rapid DNA methylation changes after exposure to traffic particles. Am J Respir Crit Care Med 2009;179(7):572-8. 146. Langfelder P, Horvath S. WGCNA: an R package for weighted correlation network analysis. BMC Bioinformatics 2008;9:559. 147. Zhang B, Horvath S. A general framework for weighted gene co-expression network analysis. Stat Appl Genet Mol Biol 2005;4:Article17. 148. Monick MM, Beach SR, Plume J, et al. Coordinated changes in AHRR methylation in lymphoblasts and pulmonary macrophages from smokers. Am J Med Genet B Neuropsychiatr Genet 2012;159B(2):141-51. 149. Frigola J, Song J, Stirzaker C, et al. Epigenetic remodeling in colorectal cancer results in coordinate gene suppression across an entire chromosome band. Nat Genet 2006;38(5):540-9. 150. Sun L, Ye RD. Role of G protein-coupled receptors in inflammation. Acta Pharmacol Sin 2012;33(3):342-50. 151. Dorsam RT, Gutkind JS. G-protein-coupled receptors and cancer. Nat Rev Cancer 2007;7(2):79-94. 152. Bayomi EA, Barakat AB, El-Bassuoni MA, et al. Cyclooxygenase-2 expression is associated with elevated aspartate aminotransferase level in hepatocellular carcinoma. J Cancer Res Ther 2015;11(4):786-92. 153. Mikovits JA, Young HA, Vertino P, et al. Infection with human immunodeficiency virus type 1 upregulates DNA methyltransferase, resulting in de novo methylation of the gamma interferon (IFN-gamma) promoter and subsequent downregulation of IFN-gamma production. Mol Cell Biol 1998;18(9):5166-77. 154. Pion M, Jaramillo-Ruiz D, Martinez A, et al. HIV infection of human regulatory T cells downregulates Foxp3 expression by increasing DNMT3b levels and DNA methylation in the FOXP3 gene. AIDS 2013;27(13):2019-29. 155. Watanabe Y, Yamamoto H, Oikawa R, et al. DNA methylation at hepatitis B viral integrants is associated with methylation at flanking human genomic sequences. Genome Res 2015;25(3):328-37. 156. Benhenda S, Cougot D, Buendia MA, et al. Hepatitis B virus X protein molecular functions and its role in virus life cycle and pathogenesis. Adv Cancer Res 2009;103:75-109. 157. Liu X, Xu Q, Chen W, et al. Hepatitis B virus DNA-induced carcinogenesis of human normal liver cells by virtue of nonmethylated CpG DNA. Oncol Rep 2009;21(4):941-7. 158. Park IY, Sohn BH, Yu E, et al. Aberrant epigenetic modifications in hepatocarcinogenesis induced by hepatitis B virus X protein. Gastroenterology 2007;132(4):1476-94. 159. Lee JO, Kwun HJ, Jung JK, et al. Hepatitis B virus X protein represses E-cadherin expression via activation of DNA methyltransferase 1. Oncogene 2005;24(44):6617-25. 160. Qiu X, Zhang L, Lu S, et al. Upregulation of DNMT1 mediated by HBx suppresses RASSF1A expression independent of DNA methylation. Oncol Rep 2014;31(1):202-8. 161. Zhu YZ, Zhu R, Shi LG, et al. Hepatitis B virus X protein promotes hypermethylation of p16(INK4A) promoter through upregulation of DNA methyltransferases in hepatocarcinogenesis. Exp Mol Pathol 2010;89(3):268-75. 162. Sun L, Hui AM, Kanai Y, et al. Increased DNA methyltransferase expression is associated with an early stage of human hepatocarcinogenesis. Jpn J Cancer Res 1997;88(12):1165-70. 163. Pollicino T, Belloni L, Raffa G, et al. Hepatitis B virus replication is regulated by the acetylation status of hepatitis B virus cccDNA-bound H3 and H4 histones. Gastroenterology 2006;130(3):823-37. 164. Vivekanandan P, Thomas D, Torbenson M. Hepatitis B viral DNA is methylated in liver tissues. J Viral Hepat 2008;15(2):103-7. 165. Elliott AC, Hynan LS. A SAS((R)) macro implementation of a multiple comparison post hoc test for a Kruskal-Wallis analysis. Comput Methods Programs Biomed 2011;102(1):75-80. 166. Chaussabel D, Quinn C, Shen J, et al. A modular analysis framework for blood genomics studies: application to systemic lupus erythematosus. Immunity 2008;29(1):150-64. 167. Feber A, Guilhamon P, Lechner M, et al. Using high-density DNA methylation arrays to profile copy number alterations. Genome Biol 2014;15(2):R30. 168. Morris TJ, Butcher LM, Feber A, et al. ChAMP: 450k Chip Analysis Methylation Pipeline. Bioinformatics 2014;30(3):428-30. 169. Lin YJ, Chen CY, Jeang KT, et al. Ring finger protein 39 genetic variants associate with HIV-1 plasma viral loads and its replication in cell culture. Cell Biosci 2014;4:40. 170. Lu Y, Cheng Y, Yan W, et al. Exploring the molecular causes of hepatitis B virus vaccination response: an approach with epigenomic and transcriptomic data. BMC Med Genomics 2014;7:12. 171. Haybaeck J, Zeller N, Wolf MJ, et al. A lymphotoxin-driven pathway to hepatocellular carcinoma. Cancer Cell 2009;16(4):295-308. 172. Shah N, Sukumar S. The Hox genes and their roles in oncogenesis. Nat Rev Cancer 2010;10(5):361-71. 173. Treppendahl MB, Qiu X, Sogaard A, et al. Allelic methylation levels of the noncoding VTRNA2-1 located on chromosome 5q31.1 predict outcome in AML. Blood 2012;119(1):206-16. 174. Cao J, Song Y, Bi N, et al. DNA methylation-mediated repression of miR-886-3p predicts poor outcome of human small cell lung cancer. Cancer Res 2013;73(11):3326-35. 175. Lee HS, Lee K, Jang HJ, et al. Epigenetic silencing of the non-coding RNA nc886 provokes oncogenes during human esophageal tumorigenesis. Oncotarget 2014;5(11):3472-81. 176. Singh R, Kaul R, Kaul A, et al. A comparative review of HLA associations with hepatitis B and C viral infections across global populations. World J Gastroenterol 2007;13(12):1770-87. 177. Bjornsson HT, Sigurdsson MI, Fallin MD, et al. Intra-individual change over time in DNA methylation with familial clustering. JAMA 2008;299(24):2877-83. 178. Bollati V, Schwartz J, Wright R, et al. Decline in genomic DNA methylation through aging in a cohort of elderly subjects. Mech Ageing Dev 2009;130(4):234-9. 179. Fraga MF, Ballestar E, Paz MF, et al. Epigenetic differences arise during the lifetime of monozygotic twins. Proc Natl Acad Sci U S A 2005;102(30):10604-9. 180. Vivekanandan P, Daniel HD, Kannangai R, et al. Hepatitis B virus replication induces methylation of both host and viral DNA. J Virol 2010;84(9):4321-9. 181. Chang JJ, Lewin SR. Immunopathogenesis of hepatitis B virus infection. Immunol Cell Biol 2007;85(1):16-23. 182. Su TC, Lee YT, Cheng TJ, et al. Chronic hepatitis B virus infection and dyslipidemia. J Formos Med Assoc 2004;103(4):286-91. 183. Jiang J, Nilsson-Ehle P, Xu N. Influence of liver cancer on lipid and lipoprotein metabolism. Lipids Health Dis 2006;5:4. 184. Stranger BE, Forrest MS, Dunning M, et al. Relative impact of nucleotide and copy number variation on gene expression phenotypes. Science 2007;315(5813):848-53. 185. Kaminsky ZA, Tang T, Wang SC, et al. DNA methylation profiles in monozygotic and dizygotic twins. Nat Genet 2009;41(2):240-5. 186. Kamatani Y, Wattanapokayakit S, Ochi H, et al. A genome-wide association study identifies variants in the HLA-DP locus associated with chronic hepatitis B in Asians. Nat Genet 2009;41(5):591-5. 187. Kim YJ, Kim HY, Lee JH, et al. A genome-wide association study identified new variants associated with the risk of chronic hepatitis B. Hum Mol Genet 2013;22(20):4233-8. 188. Nishida N, Sawai H, Matsuura K, et al. Genome-wide association study confirming association of HLA-DP with protection against chronic hepatitis B and viral clearance in Japanese and Korean. PLoS One 2012;7(6):e39175. 189. Jiang DK, Sun J, Cao G, et al. Genetic variants in STAT4 and HLA-DQ genes confer risk of hepatitis B virus-related hepatocellular carcinoma. Nat Genet 20 | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/19145 | - |
dc.description.abstract | B型肝炎病毒相關肝細胞癌的平均發病年齡約50歲左右,進而衍生個體過早死亡等重要公共衛生問題,然而如何有效從年經HBV帶原者中早期偵測出具肝細胞癌高危險性者仍充滿著挑戰。B型肝炎病毒相關肝細胞癌的致病機轉包含複雜的病毒-宿主交互作用參與其中,長期進展過程裡逐步累積各種遺傳與表觀遺傳變異。DNA甲基化是一影響基因靜默之主要表觀遺傳機轉,異常甲基化常見於B型肝炎病毒相關肝細胞癌之多階段發展過程之中,可能擔任致癌機轉的重要影響關鍵。本研究透過周邊血液基礎之全表觀基因體相關分析尋找可作為追蹤HBV帶原者未來發展至肝細胞癌之甲基化訊號,連結異常甲基化與病毒/臨床因子之相關性以闡明甲基化變異對病毒-宿主交互作用之塑形。此將有助於更完整系統性地了解甲基化變化與B型肝炎病毒相關肝細胞癌之關係,提供未來發展疾病早期預測甲基化生物指標之指引方向。
本研究以巢式病例對照研究設計針對96個罹病前收集之周邊血液檢體進行進行B型肝炎病毒相關早發型肝細胞癌之全表觀基因體掃描。透過DNA微陣列晶片Illumina Infinium® HumanMethylation450K BeadChip獲取甲基化數據,經質量控制檢驗與數據標準化及校正後,系統性地檢視B型肝炎病毒相關肝細胞癌之全表觀基因體甲基化圖譜,並探討異常甲基化與各種肝細胞癌危險/臨床因子之相關性,釐清DNA甲基化變化與肝細胞癌進展及其相關危險因子之間潛在影響。此外我們觀察HBV慢性感染自然史各階段之甲基化整體變動狀態,探討HBV病毒量高低與全表觀基因體甲基化的變化情形。此將提供新觀點以推論病毒驅動肝細胞癌致癌過程中甲基化重新編程的可能機轉,而這些甲基化訊號未來有機會發展為肝細胞癌危險性評估管理之全新中介指標,特別是針對HBV相關早發型肝細胞癌之疾病進展監控策略。本研究主要分為三個研究主題,包括: (I) 肝細胞癌之全表觀基因體甲基化圖譜分析 背景與目的:現階段對於如何有效早期偵測出早發型肝細胞癌高危險性者仍充滿著挑戰。已知表觀遺傳變異是B型肝炎病毒相關肝細胞癌發展過程中常見的異常現象,然而對其相關致病機轉目前了解有限。本研究針對B型肝炎病毒相關早發型肝細胞癌進行周邊血液全表觀基因體相關分析,找尋可作為追蹤HBV帶原者未來發展至肝細胞癌之甲基化訊號。 方法:全表觀基因體相關分析使用450K晶片平台,針對48對肝細胞癌病例及配對對照樣本之罹病前周邊血液檢體進行分析。單點CpG位點相關性檢測與區域分析分別以Wilcoxon signed-rank法和bump-hunting法執行。我們建構一甲基化分數評估這些肝細胞癌相關甲基化圖譜之累加疾病作用效應,建構方式係將各相關探針之β值以其線性迴歸模型之迴歸係數加權後加總所得。這些肝細胞癌相關甲基化圖譜之疾病分類能力以數種監督式與非監督式類別演算法進行評估。 結果:肝細胞癌全表觀基因體相關分析指出有38911個CpG位點於配對樣本間呈現甲基化差異,散布於各染色體。其中41.4%的位點在肝細胞癌病例組中呈現低甲基化且主要分布於CpG富含區域。根據甲基化分數估計,肝細胞癌相關甲基化圖譜在不同顯著閾值設定下可解釋多達30.3-54.8%之肝細胞癌變異程度,且反映出疾病特異性。這些甲基化圖譜對於區分肝細胞癌病例與對照組具有相當好的區別能力,六種監督式分類建構法之分類正確率皆達85%以上,非監督式群集演算結果亦觀察到不同病例與對照組別間有明顯之集中歸類趨勢。 結論:本研究系統性地描繪出B型肝炎病毒相關肝細胞癌之血液甲基化變化圖譜,印證在肝細胞癌致病過程中會伴隨多重表基因改變影響疾病發展。這些以周邊血液為基礎所得之甲基化訊息未來可提供肝細胞癌偵測及危險性評估指標發展之方向。 (II) 肝細胞癌相關甲基化變化之共甲基化表現網絡與功能訊息路徑分析 背景與目的:已知肝細胞癌相關病毒/環境因子或臨床特徵對白血球DNA甲基化可能產生各種程度與面向之影響,然而其確切影響目標與相關機轉尚待釐清。本研究分析肝細胞癌相關甲基化變化之共甲基化表現網絡,連結共甲基化與各種病毒/臨床特徵因子之相關性,藉此推論DNA甲基化變化與肝細胞癌及其相關危險因子三者之間潛在影響關係,並分析這些共甲基化表現是否共同參與特定之生物功能訊息路徑以推測背後可能隱含的功能和組織型態意義。 方法:我們使用加權基因共表現網絡法分析10360個肝細胞癌相關位點(p<0.01)之共甲基化表現網絡,共甲基化模組與各種肝細胞癌危險因子之相關模式係計算模組驅動基因與各因子之間的皮爾森相關係數做為評估指標。功能訊息路徑富集分析用以探討模組基因之富集特性。 結果:依據位點之共甲基化表現網絡,這些肝細胞癌相關位點可歸類出7個共甲基化特徵模組。連結模組與各種肝細胞癌危險因子之間的相關性,我們發現這些模組各自與病毒量、HBV基因型、ALT、肝細胞癌家族病史、以及慢性肝病史等重要因子之間具有特異相關模式。觀察模組內之基因富集功能路徑特性亦反映出與相關病毒/臨床因子之間合理的生物醫學連結,例如病毒量相關之模組基因富集於免疫相關生物路徑;而ALT相關模組被觀察到富集於發炎反應相關路徑。 結論:本研究顯示甲基化變化可能受到不同的環境、免疫、或病毒相關因子調控,進而誘發肝細胞癌生成,此結果提供病毒宿主交互作用對人類肝細胞癌影響之新觀點,也提供表基因改變和各種臨床徵狀因子之間更多連結資訊。 (III) HBV慢性感染自然史、病毒複製活性、與甲基化變化之關係 背景與目的:已知發生在HBV DNA之表觀遺傳修飾作用可以調控病毒的基因表現以及複製活性;然而針對宿主因素方面,目前對於宿主表觀遺傳修飾機制和HBV感染進程與病毒複製活性調控關係之了解仍相當有限。本研究觀察血液全表觀基因體於HBV慢性感染自然史過程之甲基化分布狀況,並探討HBV病毒量高低與甲基化變化關係,找出HBV相關甲基化變異的可能參與之生物路徑。本研究亦分析肝細胞癌相關甲基化變化與各種肝細胞癌致病因子暴露之關係,協助釐清甲基化變化參與在宿主、病毒、與免疫交互作用可能的角色,以及HBV相關肝細胞癌之致病機轉。 方法:我們分析晶片所有CpG位點在自然史各階段之甲基化分布差異,探討這些自然史相關甲基化變異位點所在基因之生物功能富集特性並與已知免疫相關基因模組進行比對。針對HBV病毒量多寡與全表觀基因體甲基化變化之相關性,分別以單點CpG位點分析和bump-hunting區域分析檢視。我們比對10360個肝細胞癌相關位點(p<0.01)與病毒/臨床相關位點間的重疊狀況,並透過甲基化分數評估這些肝細胞癌相關位點與病毒/臨床因子間之關係。 結果:全染色體共發現17394個CpG位點在不同HBV自然史期別間存在甲基化分布差異。這些期別相關位點被觀察到富集於免疫相關功能路徑,特別是B細胞功能相關基因。病毒量相關之單點CpG位點分析結果顯示有14458個位點之甲基化變化與病毒量相關,其中14.8%亦與肝細胞癌有關,這些甲基化位點被發現富集於免疫和脂質代謝相關等生物路徑。區域分析結果找出12個病毒量差異甲基化區域,且同樣展現出免疫調節相關特性。我們觀察到在肝細胞癌相關甲基化位點中同與病毒或臨床特徵因子相關之比例,相較於其他位點顯著高出2-4倍;包括病毒量與白血球組成比例等因子可解釋這些相關位點之大部分變異來源。 結論:表觀遺傳相關之免疫調控對HBV慢性感染佔重要影響地位,在慢性感染過程中病毒複製活性高低亦可連結至眾多免疫調節基因區域之甲基化變化。此結果提供了新的思考方向以評估在病毒驅動肝細胞癌致癌過程中,甲基化重新編程之可能機轉。 | zh_TW |
dc.description.abstract | The average age at onset of hepatitis B virus (HBV)-related hepatocellular carcinoma (HCC) is around 50 years, which causes important public health problems such as premature mortality. However, it still remains challenging to identify and detect young HBV carriers who are at high risk of HCC at an early stage. The pathogenesis of HBV-related HCC involves complicated virus-host interactions with the accumulation of genetic and epigenetic abnormalities. Aberrant DNA methylation is an epigenetic mechanism of gene silencing that is frequently observed during the progression from a precancerous condition to HCC, suggesting a mechanism for epigenetic tumorigenesis towards HBV-mediated HCC. By using epigenome-wide mapping technique, we aimed to identify methylation signatures of peripheral leukocytes that allow us to track HCC development in HBV carriers, and by determining the correlation between methylation signatures and viral/clinical factors, the role of epigenetic variation in shaping virus-host interactions can be elucidated. These studies may be helpful for systematically understanding aberrant methylation in HBV-related hepatocarcinogenesis, which may open new paths for epigenetic biomarkers development for HCC early detection.
In this study, we performed prospective nested case-control study design to examine genome-wide methylation signals for HBV-related early-onset HCC using leukocyte DNA from 96 prospectively collected prediagnostic blood samples. Signatures of global methylation profiles were obtained from Illumina Infinium® HumanMethylation450K BeadChip by passing quality control checks, data normalization and correction procedures. We sought to systematically establish a global DNA methylation profile in HBV-related HCC and to identify DNA methylation changes associated with major risk factors and clinical correlates, thereby, clarifying the link between methylation signatures, HCC progression, and etiological risk factors. We also characterized the methylation patterns across different phases of HBV infection and identified methylation signatures associated with HBV viral load. These are important processes for providing new insights into the mechanisms underlying epigenetic reprogramming during HBV-induced hepatocarcinogenesis. Furthermore, the methylation signatures may act as novel intermediate biomarkers for the management of HCC risk with great potential in clinical use, especially for early-onset HCC. This research is divided in three parts, including: (I) Epigenome-wide DNA Methylation Profiles and Early-onset Hepatocellular Carcinoma in Hepatitis B Carriers Background & Aims It remains challenging to identify persons at high risk of HCC for early detection. The epigenetic disruption is frequently observed in HBV-related HCC progression, but there is only limited knowledge regarding its participation in HBV-related HCC pathogenesis. We aimed to identify blood-based genome-wide aberrant DNA methylation profiles in HBV-related early-onset HCCs that allows us to track HCC progress in HBV carriers. Methods We conducted an epigenome-wide association analysis of prospectively collected leukocyte DNA using 450K array on 48 case-control pairs for HBV-related early-onset HCC. The site-specific and region-level analyses were performed using Wilcoxon signed-rank test and bump-hunting method, respectively. A methylation profile score (MPS) that reflect additive effect of HCC methylation profiles was constructed by computing a sum of the β-values for each associated probes weighed by the regression coefficient derived through a linear regression. To evaluate the discrimination ability of these methylation profiles, both supervised and unsupervised prediction algorithms were applied. Results Significant differential methylation was observed between HCC cases and matched controls at 38911 loci across the genome, wherein 41.4% were hypomethylated in HCCs and a large part of these loci were resided in CpG-rich regions. These HCC methylation profiles collectively accounted for a substantial proportion of variance (30.3-54.8%, evaluated from MPS according to different significance thresholds) with good specificity and had high quality of discrimination performances. The classification accuracy of six supervised class prediction algorithms reached above 85%, while apparent clustering were observed for HCCs and controls separately by unsupervised methods. Conclusions The present study demonstrates the significance of blood-based aberrant methylation profiles in HBV-related HCC tumorigenesis, which proves that the HCC pathogenesis is accompanied by multitudes of epigenetic alterations. The blood-based methylation signature holds promise for HCC detection and risk prediction. (II) Co-methylation network and pathway analysis of HCC-associated methylation signatures Background & Aims Aberrant methylation of leukocyte DNA is associated with various environmental agents/clinical features known to be risk factors for HCC, but the precise targets and underlying mechanisms have not been elucidated. We aimed to examine the co-methylation networks for HCC-associated differentially methylated probes (HCC-DMPs) and correlate the identified co-methylation modules to the viral/clinical features, thereby, clarifying the link between etiological risk factors, HCC progression, and methylation signatures. We also performed pathway analysis to explore the underlying functional organization of these co-methylation changes. Methods We applied a weighted correlation network analysis to identify the co-methylation modules for 10360 HCC-DMPs (p<0.01). The correlations between modules and the viral/clinical features were evaluated by calculating the Pearson correlation coefficients of module eigengenes and each factor. Gene set enrichment analysis was performed for these modules to test for potential overlaps with biological processes and pathways. Results We identified a total of 7 co-methylation modules, and each of them was significantly correlated with specific viral/clinical features including viral load, HBV genotype, alanine transaminase (ALT), history of chronic liver disease, and first-degree family history of HCC. The enrichment of functional pathways in each of the modules may further reflect their biological concordance in relation to viral/clinical factors, such as, the viral load-related module genes are enriched in the immune-related pathways, while the ALT-related module is associated with inflammatory-related pathways. Conclusions The present study showed that these HCC-DMPs exhibit specific methylation signatures associated with viral/clinical factors. The findings provided not only new insights into the virus-host interaction underlying HBV-related HCC, but also an informative link between etiological risk factors and methylation changes is established. (III) Natural history of HBV chronic infection, viral replication activity, and DNA methylation Background & Aims HBV-DNA methylation changes are observed in human tissues and may be crucial for HBV replication. However, regarding host DNA, little is known about epigenetic changes in human blood DNA in relation to HBV infection. We aimed to identify blood-based genome-wide aberrant DNA methylation signatures associated with the natural history of HBV infection and virus replication, elucidating the biological pathways enriched in these epigenetic changes. We also investigated the association between HCC-DMPs and key components of etiology for HCC, which allows us to clarify the virus-host-immune interaction underlying HBV-related HCC pathogenesis. Methods We characterized the global methylation patterns across four phases of HBV infection and explored the biologic relevance of these alterations by linking to predefined immune-related gene modules. The epigenome-wide association study of HBV viral load was conducted using both site-specific and region-level bump-hunting analyses. We cross matched the 10360 HCC-DMPs (p<0.01) to viral/clinical factor-related probes. The methylation profile score was constructed to evaluate the link between HCC-DMPs and viral/clinical factors. Results A total of 17394 differentially methylated loci associated with phases of HBV-infection were identified. These phase-related genes showed enrichment for immune-related pathways, with abundance of B-cell function-related genes. From site-specific analysis of HBV viral load, we obtained 14458 associated loci, with 14.8% of these loci being related to HCC and were enriched in immune and lipid metabolism-related pathways. Region-level analysis detected 12 viral load-associated methylation regions that also exhibit immune-related properties. We found a two-to-four fold enrichment of the HCC-DMPs with viral/clinical factors-related probes as compared to the HCC-unrelated probes. A substantial proportion of variance in HCC-DMPs was attributed to viral load and leukocyte subtype composition. Conclusions These data highlight a role of DNA methylation changes in the natural course of HBV-infection and a role in the interplay between virus replication and host immune response. Therefore, offering insights into the mechanisms underlying epigenetic reprogramming during HBV-induced hepatocarcinogenesis. | en |
dc.description.provenance | Made available in DSpace on 2021-06-08T01:46:35Z (GMT). No. of bitstreams: 1 ntu-105-D99849004-1.pdf: 4252448 bytes, checksum: 518c0aaf79d7ed8d9db29a5e770d3039 (MD5) Previous issue date: 2016 | en |
dc.description.tableofcontents | 中文摘要 ii
Abstract vi 第一章 緒論 1 第二章 研究目的 4 第三章 資料庫 5 第四章 Illumina Infinium® HumanMethylation450K BeadChip資料及前處理流程 8 第五章 肝細胞癌之全表觀基因體甲基化圖譜分析 24 第一節 研究背景 24 第二節 材料與方法 26 第三節 結果 28 第四節 討論 31 第六章 肝細胞癌相關甲基化變化之共甲基化表現網絡與功能訊息路徑分析 42 第一節 研究背景 42 第二節 材料與方法 43 第三節 結果 45 第四節 討論 47 第七章 HBV慢性感染自然史、病毒複製活性、與甲基化變化之關係 54 第一節 研究背景 54 第二節 材料與方法 55 第三節 結果 58 第四節 討論 62 第八章 結論 75 參考文獻 77 | |
dc.language.iso | zh-TW | |
dc.title | B型肝炎帶原者進展至肝細胞癌之血液全基因體DNA甲基化圖譜分析與生物標記探勘 | zh_TW |
dc.title | Blood Genome-Wide DNA Methylation Profiling in Progression from HBV Carrier to Hepatocellular Carcinoma with Impact on Biomarker Discovery | en |
dc.type | Thesis | |
dc.date.schoolyear | 104-2 | |
dc.description.degree | 博士 | |
dc.contributor.oralexamcommittee | 陳培哲(Pei-Jer Chen),劉俊人(Chun-Jen Liu),鄭尊仁(Tsun-Jen Cheng),張久瑗(Jeou-Yuan Chen),洪 弘(Hung Hung) | |
dc.subject.keyword | DNA甲基化,全表觀基因體相關,B型肝炎,肝細胞癌,周邊血液白血球, | zh_TW |
dc.subject.keyword | DNA methylation,epigenome-wide association,hepatitis B,hepatocellular carcinoma,peripheral blood leukocytes, | en |
dc.relation.page | 90 | |
dc.identifier.doi | 10.6342/NTU201602210 | |
dc.rights.note | 未授權 | |
dc.date.accepted | 2016-08-10 | |
dc.contributor.author-college | 公共衛生學院 | zh_TW |
dc.contributor.author-dept | 流行病學與預防醫學研究所 | zh_TW |
Appears in Collections: | 流行病學與預防醫學研究所 |
Files in This Item:
File | Size | Format | |
---|---|---|---|
ntu-105-1.pdf Restricted Access | 4.15 MB | Adobe PDF |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.