Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 農業化學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/19131
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor徐駿森(Chun-Hua Hsu)
dc.contributor.authorCHIA-YEE CHUNen
dc.contributor.author莊佳儀zh_TW
dc.date.accessioned2021-06-08T01:46:05Z-
dc.date.copyright2016-08-31
dc.date.issued2016
dc.date.submitted2016-08-11
dc.identifier.citation1. Aravind, L., Anantharaman, V., Balaji, S., Babu, M. M., and Iyer, L. M. (2005). The many faces of the helix-turn-helix domain: Transcription regulation and beyond. FEMS Microbiol Rev 29, 231-262.
2. Arnold, K., Bordoli, L., Kopp, J., and Schwede, T. (2006). The SWISS-MODEL workspace: a web-based environment for protein structure homology modelling. Bioinformatics 22, 195-201.
3. Bagchi, A. (2015). Structural characterizations of metal ion binding transcriptional regulator CueR from opportunistic pathogen pseudomonas aeruginosa to identify its possible involvements in virulence. Appl Biochem Biotechnol 175, 649-56.
4. Bhattacherjee, A., and Levy, Y. (2014). Search by proteins for their DNA target site: 1. The effect of DNA conformation on protein sliding. Nucleic Acids Res 42, 12404-12414.
5. Brown, N. L., Stoyanov, J. V., Kidd, S. P., and Hobman, J. L. (2003). The MerR family of transcriptional regulators. FEMS Microbiol Rev 27, 145-63.
6. Cerminati, S., Soncini, F. C., and Checa, S. K. (2011). Selective Detection of Gold Using Genetically Engineered Bacterial Reporters. Biotechnol Bioeng 108, 2553-2560.
7. Chang, C. C., Lin, L. Y., Zou, X. W., Huang, C. C., and Chan, N. L. (2015). Structural basis of the mercury(II)-mediated conformational switching of the dual-function transcriptional regulator MerR. Nucleic Acids Res 43, 7612-23.
8. Changela, A., Chen, K., Xue, Y., Holschen, J., Outten, C. E., O'Halloran, T. V., and Mondragon, A. (2003). Molecular basis of metal-ion selectivity and zeptomolar sensitivity by CueR. Science 301, 1383-1387.
9. Checa, S. K., and Soncini, F. C. (2011). Bacterial gold sensing and resistance. Biometals 24, 419-27.
10. Chen, P., Andoy, N. M., Benitez, J. J., Keller, A. M., Panda, D., and Gao, F. (2010). Tackling metal regulation and transport at the single-molecule level. Natural Product Reports 27, 757-767.
11. Chen, P. R., and He, C. (2008). Selective recognition of metal ions by metalloregulatory proteins. Curr Opin Chem Biol 12, 214-21.
12. Dragan, A. I., Read, C. M., Makeyeva, E. N., Milgotina, E. I., Churchill, M. E., Crane-Robinson, C., and Privalov, P. L. (2004). DNA binding and bending by HMG boxes: energetic determinants of specificity. J Mol Biol 343, 371-93.
13. Duong-Ly, K. C., and Gabelli, S. B. (2014). Salting out of Proteins Using Ammonium Sulfate Precipitation. Method Enzymol: Protein, Pt C 541, 85-94.
14. Estrada-de los Santos, P., Vacaseydel-Aceves, N. B., Martinez-Aguilar, L., Cruz-Hernandez, M. A., Mendoza-Herrera, A., and Caballero-Mellado, J. (2011). Cupriavidus and Burkholderia species associated with agricultural plants that grow in alkaline soils. J Microbiol 49, 867-876.
15. Garman, E. F., and Doublie, S. (2003). Cryocooling of macromolecular crystals: optimization methods. Methods Enzymol 368, 188-216.
16. Garman, E. F., and Owen, R. L. (2006). Cryocooling and radiation damage in macromolecular crystallography. Acta Crystallogr D Biol Crystallogr 62, 32-47.
17. Giedroc, D. P., and Arunkumar, A. I. (2007). Metal sensor proteins: nature's metalloregulated allosteric switches. Dalton Trans 29, 3107-3120.
18. Helmann, J. D., Wang, Y., Mahler, I., and Walsh, C. T. (1989). Homologous Metalloregulatory Proteins from Both Gram-Positive and Gram-Negative Bacteria Control Transcription of Mercury Resistance Operons. J Bacteriol 171, 222-229.
19. Heldwein, E. E., and Brennan, R. G. (2001). Crystal structure of the transcription activator BmrR bound to DNA and a drug. Nature 409, 378-82.
20. Humbert, M. V., Rasia, R. M., Checa, S. K., and Soncini, F. C. (2013). Protein Signatures That Promote Operator Selectivity among Paralog MerR Monovalent Metal Ion Regulators. J Biol Chem 288, 20510-20519.
21. Hobman, J. L., Julian, D. J., and Brown, N. L. (2012). Cysteine coordination of Pb(II) is involved in the PbrR-dependent activation of the lead-resistance promoter, PpbrA, from Cupriavidus metallidurans CH34. BMC Microbiol 12. 1471-2180.
22. Hobman, J. L. (2007). MerR family transcription activators: similar designs, different specificities. Mol Microbiol 63, 1275-8.
23. Ibanez, M. M., Cerminati, S., Checa, S. K., and Soncini, F. C. (2013). Dissecting the metal selectivity of MerR monovalent metal ion sensors in Salmonella. J Bacteriol 195, 3084-92.
24. Ibanez, M. M., Checa, S. K., and Soncini, F. C. (2015). A single serine residue determines selectivity to monovalent metal ions in metalloregulators of the MerR family. J Bacteriol 197, 1606-13.
25. Janssen, P. J., Van Houdt, R., Moors, H., Monsieurs, P., Morin, N., Michaux, A., Benotmane, M. A., Leys, N., Vallaeys, T., Lapidus, A., Monchy, B., Medigue, C., Taghavi, S., McCorkle, S., Dunn, J., van der Lelie, D., and Mergeay, M. (2010). The Complete Genome Sequence of Cupriavidus metallidurans Strain CH34, a Master Survivalist in Harsh and Anthropogenic Environments. PLoS One 5.
26. Jian, X., Wasinger, E. C., Lockard, J. V., Chen, L. X., and He, C. (2009). Highly sensitive and selective gold(I) recognition by a metalloregulator in Ralstonia metallidurans. J Am Chem Soc 131, 10869-71.
27. Julian, D. J., Kershaw, C. J., Brown, N. L., and Hobman, J. L. (2009). Transcriptional activation of MerR family promoters in Cupriavidus metallidurans CH34. Antonie Van Leeuwenhoek 96, 149-59.
28. Kelley, L. A., Mezulis, S., Yates, C. M., Wass, M. N., and Sternberg, M. J. (2015). The Phyre2 web portal for protein modeling, prediction and analysis. Nat Protoc 10, 845-58.
29. Mergeay, M., Monchy, S., Vallaeys, T., Auquier, V., Benotmane, A., Bertin, P., Taghavi, S., Dunn, J., van der Lelie, D., and Wattiez, R. (2003). Ralstonia metallidurans, a bacterium specifically adapted to toxic metals: towards a catalogue of metal-responsive genes. FEMS Microbiol Rev 27, 385-410.
30. McFerrin, M. B., and Snell, E. H. (2002). The development and application of a method to quantify the quality of cryoprotectant solutions using standard area-detector X-ray images. J. Appl. Crystallogr 35, 538-545.
31. Michael Gromiha, M., Siebers, J. G., Selvaraj, S., Kono, H., and Sarai, A. (2004). Intermolecular and intramolecular readout mechanisms in protein-DNA recognition. J Mol Biol 337, 285-94.
32. Monchy, S., Vallaeys, T., Bossus, A., and Mergeay, M. (2006). Metal transport ATPase genes from Cupriavidus metallidurans CH34: a transcriptomic approach. Int J Environ Anal Chem 86, 677-692.
33. Monchy, S., Benotmane, M. A., Wattiez, R., van Aelst, S., Auquier, V., Borremans, B., Mergeay, M., Taghavi, S., van der Lelie, D., and Vallaeys, T. (2006). Transcriptomic and proteomic analyses of the pMOL30-encoded copper resistance in Cupriavidus metallidurans strain CH34. Microbiology-Sgm 152, 1765-1776.
34. Osman, D., and Cavet, J. S. (2010). Bacterial metal-sensing proteins exemplified by ArsR-SmtB family repressors. Nat Prod Rep 27, 668-80.
35. Outten, C. E., Outten, F. W., and O'Halloran, T. V. (1999). DNA distortion mechanism for transcriptional activation by ZntR, a Zn(II)-responsive MerR homologue in Escherichia coli. J Biol Chem 274, 37517-37524.
36. Perez Audero, M. E., Podoroska, B. M., Ibanez, M. M., Cauerhff, A., Checa, S. K., and Soncini, F. C. (2010). Target transcription binding sites differentiate two groups of MerR-monovalent metal ion sensors. Mol Microbiol 78, 853-65.
37. Philips, S. J., Canalizo-Hernandez, M., Yildirim, I., Schatz, G. C., Mondragon, A., and O'Halloran, T. V. (2015). TRANSCRIPTION. Allosteric transcriptional regulation via changes in the overall topology of the core promoter. Science 349, 877-81.
38. Pierce, B. G., Wiehe, K., Hwang, H., Kim, B. H., Vreven, T., and Weng, Z. (2014). ZDOCK server: interactive docking prediction of protein-protein complexes and symmetric multimers. Bioinformatics 30, 1771-3.
39. Pontel, L. B., Audero, M. E., Espariz, M., Checa, S. K., and Soncini, F. C. (2007). GolS controls the response to gold by the hierarchical induction of Salmonella-specific genes that include a CBA efflux-coding operon. Mol Microbiol 66, 814-25.
40. Reith, F., Etschmann, B., Grosse, C., Moors, H., Benotmane, M. A., Monsieurs, P., Grass, G., Doonan, C., Vogt, S., Lai, B., Martinez-Criado, G., George, G. N., Nies, D. H., Mergeay, M., Pring, A., Southam, G., and Brugger, J. (2009). Mechanisms of gold biomineralization in the bacterium Cupriavidus metallidurans. Proc Natl Acad Sci U S A 106, 17757-62.
41. Reith, F., Rogers, S. L., McPhail, D. C., and Webb, D. (2006). Biomineralization of gold: biofilms on bacterioform gold. Science 313, 233-6.
42. Reyes-Caballero, H., Campanello, G. C., and Giedroc, D. P. (2011). Metalloregulatory proteins: metal selectivity and allosteric switching. Biophys Chem 156, 103-14.
43. Revzin, A. (1990). 'The Biology of nonspecific DNA-protein interactions,' CRC Press, Boca Raton, Fla 1, 17-27.
44. Shewchuk, L. M., Verdine, G. L., and Walsh, C. T. (1989). Transcriptional switching by the metalloregulatory MerR protein: initial characterization of DNA and mercury (II) binding activities. Biochemistry 28, 2331-9.
45. Struhl, K. (1989). Helix-Turn-Helix, Zinc-Finger, and Leucine-Zipper Motifs for Eukaryotic Transcriptional Regulatory Proteins. Trends Biochem Sci 14, 137-140.
46. Stoyanov, J. V., and Brown, N. L. (2003). The Escherichia coli copper-responsive copA promoter is activated by gold. J Biol Chem 278, 1407-1410.
47. Summers, A.O. (1992). Untwist and Shout - a Heavy Metal-Responsive Transcriptional Regulator. J Bacteriol 174, 3097-3101.
48.Szunyogh, D., Szokolai, H., Thulstrup, P. W., Larsen, F. H., Gyurcsik, B., Christensen, N. J., Stachura, M., Hemmingsen, L., and Jancso, A. (2015). Specificity of the Metalloregulator CueR for Monovalent Metal Ions: Possible Functional Role of a Coordinated Thiol? Angew Chem Int Ed Engl 54, 15756-15761.
49. Tamura, K., Stecher, G., Peterson, D., Filipski, A., and Kumar, S. (2013). MEGA6: Molecular Evolutionary Genetics Analysis version 6.0. Mol Biol Evol 30, 2725-9.
50. Taniguchi, M., Siddiki, M. S., Ueda, S., and Maeda, I. (2015). Mercury (II) sensor based on monitoring dissociation rate of the trans-acting factor MerR from cis-element by surface plasmon resonance. Biosens Bioelectron 67, 309-14.
51. Tseng, H. W., Tsai, Y. J., Yen, J. H., Chen, P. H., and Yeh, Y. C. (2014). A fluorescence-based microbial sensor for the selective detection of gold. Chem Commun (Camb) 50, 1735-7.
52. Tuszynska, I., Magnus, M., Jonak, K., Dawson, W., and Bujnicki, J. M. (2015). NPDock: a web server for protein-nucleic acid docking. Nucleic Acids Res 43, W425-30.
53. Wallace, B. A., and Janes, R. W. (2010). Synchrotron radiation circular dichroism (SRCD) spectroscopy: an enhanced method for examining protein conformations and protein interactions. Biochem Soc Trans 38, 861-73.
54. Watanabe, S., Kita, A., Kobayashi, K., and Miki, K. (2008). Crystal structure of the [2Fe-2S] oxidative-stress sensor SoxR bound to DNA. Proc Natl Acad Sci U S A 105, 4121-6.
55. Wiesemann, N., Mohr, J., Grosse, C., Herzberg, M., Hause, G., Reith, F., and Nies, D. H. (2013). Influence of copper resistance determinants on gold transformation by Cupriavidus metallidurans strain CH34. J Bacteriol 195, 2298-308.
56. Wunderlich, Z., and Mirny, L. A. (2008). Spatial effects on the speed and reliability of protein-DNA search. Nucleic Acids Res 36, 3570-3578.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/19131-
dc.description.abstractCupR 是來自耐金屬貪銅菌 (Cupriavidus metallidurans CH34) 之金屬調節轉錄因子 (metalloregulatory transcription factor),能夠調控其操縱子之基因表現與否。CupR 二聚體受到金屬離子所引發的構型變化,將導致操縱子轉錄調控區塊 (operator/promoter site) RNA 聚合酶結合位 -35 和 -10 區塊旋轉至同一平面上,因而活化轉錄作用。然而至目前為止,CupR 與其專一性啟動子區域結合的細節尚未被釐清。
為了瞭解 CupR 對其特異性 (specific) DNA 序列之辨識以及二者結合對蛋白質二級結構和 DNA 構型的變化,本研究利用電泳遷移率實驗 (Electrophoretic Mobility Shift Assay, EMSA)、恆溫滴定微量熱實驗 (Isothermal Titration Calorimetry, ITC)、圓二色光譜分析實驗 (Ciruclar Dichroism, CD) 對 CupR 與不同序列 DNA 之結合特性做比較探討,再藉由結構模擬以及分子對接技術 (Molecular Docking) 分析 CupR 對相似序列之辨識差異。CupR 與 DNA 之結合能力藉由電泳遷移率實驗分析,顯示 CupR 與其轉錄調控區塊 (PcupA) 的結合能力相較於非特異性核酸序列明顯較強,且亞金離子存在之環境下使二者結合能力提升。CupR 與 DNA 結合過程之熱力學參數,指出 CupR 與 PcupA 的結合過程中所量測得到之熱焓與亂度皆為正值,說明 CupR 主要是以氫鍵穩定與 PcupA 結合。經由 CupR 二聚體模擬結構與其轉錄調控區塊 PcupA 所建構的複合體 (complex) 與文獻所提供之同源蛋白質 CueR-DNA 結構作比較,結果顯示 CupR-DNA 其中三個參與交互作用的鹼基可能對於 CupR 辨識並結合專一性序列重要。
zh_TW
dc.description.abstractCupR, the metalloregulatory transcription factor from Cupriavidus metallidurans strain 34, regulates gene expression of metal-resistance operon. When the dimeric CupR coordinates to a metal ion, the metal-CupR complex causes an allosteric underwinding of the DNA at the operator/promoter site, which realigns the -35 and -10 sequences of the promoter. Subsequently, RNA polymerase can contact the promoter sequences leading to transcription activation. So far the detail recognition of CupR with its specific DNA-binding sequences remains unknown.
In this research, we study the binding properties of CupR toward specific or non-specific DNA sequences through EMSA (Electrophoretic Mobility Shift Assay), ITC (Isothermal Titration Calorimetry) and CD (Circular Dichroism Spectroscopy). Furthermore, homology modeling and docking methods were used to investigate the recognition modes between CupR and various DNA sequences. Data from EMSA reveals that CupR posesses best binding ability with promoter sequences (PcupA) compared to others. Moreover, chelation of CupR with Au+ ion makes CupR binding to PcupA stronger. Additionally, the ITC thermodynamic parameters of CupR bound to promoter sequences (PcupA) shows a very negative enthalpy and a negative entropy effect which indicating that formation of CupR and PcupA is mainly via hydrogen-bonding. Molecular models of CupR in complexes with various DNAs are analyzed by NucPlot and reveal that three bases may be important for the recognition between CupR and promoter sequence.
en
dc.description.provenanceMade available in DSpace on 2021-06-08T01:46:05Z (GMT). No. of bitstreams: 1
ntu-105-R03623029-1.pdf: 7740252 bytes, checksum: c6009d37a6575126e31ed9165a73468e (MD5)
Previous issue date: 2016
en
dc.description.tableofcontents壹、前言 1
一、金屬調節轉錄因子 1
二、MerR 家族之金屬調節轉錄因子 2
三、CupR 以及 cup 操縱子 4
四、一價金屬離子調控轉錄因子 5
五、蛋白質與 DNA 之結合 6
六、研究目標 7
貳、材料與方法 8
一、實驗材料 8
1. 細菌染色體 DNA 8
2. 蛋白質表現載體之構築 8
3. 菌株及培養系統 8
4. 雙股去氧核酸序列設計 8
5. 金屬種類 9
二、實驗方法 10
1. 細菌染色體 DNA 的抽取 10
2. 大腸桿菌勝任細胞 (Competent cell) 之製備 10
3. 轉型作用 11
4. 質體 DNA 抽取 11
5. DNA 定序比對 11
6. SDS 蛋白質膠體電泳分析 11
7. 重組蛋白質之大量表現 12
8. 重組蛋白質之純化 12
9. 蛋白質透析與濃縮 14
10. 膠體過濾層析法 14
11. 蛋白質之定量分析 15
12. 胺基酸序列比對 15
13. 親緣關係圖將胺基酸序列 16
14. 蛋白質與 DNA 之結構模型建立 16
15. 分子對接 (Molecular docking) 與分析 17
16. 雙股去氧核糖核酸序列製備 18
17. 圓二光譜儀測試蛋白質與 DNA 結合的穩定性 18
18. 恆溫滴定微量熱實驗 20
19. 電泳遷移率實驗 21
20. 蛋白質晶體之培養 22
參、實驗結果 26
一、構築 pET-21a(+)-CupR 載體 26
二、CupR蛋白質小量表現 26
三、CupR 蛋白質純化 26
四、膠體過濾層析法分析 CupR 的分子量 27
五、MerR family 蛋白質胺基酸序列比對 27
六、CupR 蛋白質二聚體結構模擬 28
1. CupR 蛋白質二聚體模擬結構之建立 28
2. CupR 結構分析 29
七、CupR 的二級結構和基本性質 29
1. 蛋白質之熱穩定性 29
2. 蛋白質在酸鹼環境的耐受性 30
八、電泳遷移率實驗結合能力測試 30
1. 牛血清蛋白對照組之結合能力測試 30
2. CupR 與四種雙股 DNA 之結合能力測試 30
3. CupR 與四種雙股 DNA 之非特異性結合 31
九、以測定熱量變化觀察 CupR與雙股 DNA 之結合 31
十、於金屬離子存在下CupR 與四種雙股 DNA 之結合能力測試 32
1. CupR 與雙股 DNAspe 之結合 32
2. CupR 與非特異性雙股 DNA 之結合 32
十一、CupR 與雙股 DNA 的結合對二級結構之影響 33
1. 蛋白質構型變化 33
2. 雙股 DNA 構型變化 34
3. Au+ 添加順序對與 CupR 結合之雙股 DNA 的影響 35
十二、與雙股DNA、金屬離子結合之 CupR 熱穩定性 35
十三、CupR 晶體條件篩選 36
十四、CupR 與 DNA 之對接 (docking) 與分析 37
1. CueR-DNA 控制組 37
2. CupR 與雙股 DNA 之對接 37
3. 雙股 DNA 序列之置換 38
十五、CupR 與雙股 DNACueR(TG) 之結合能力 39
肆、討論 40
一、CupR 蛋白質的表現純化與熱變性分析 40
二、CupR 二聚體模擬結構之建立 40
三、CupR 與 DNA 結合之構型變化探討 41
四、CupR 與 DNA 結合之熱量變化探討 41
五、CupR 晶體培養 42
六、CupR 對轉錄調控區塊之辨識 43
伍、圖表 45
陸、參考文獻 83
柒、附錄 89
dc.language.isozh-TW
dc.subject專一性zh_TW
dc.subject耐金屬貪銅菌zh_TW
dc.subject金屬調節轉錄因子zh_TW
dc.subject轉錄調控區塊zh_TW
dc.subject蛋白質與核酸結合zh_TW
dc.subjectTranscriptional regulation operonen
dc.subjectProtein-DNA bindingen
dc.subjectCupriavidus metallidurans strain 34en
dc.subjectSpecificityen
dc.subjectMetalloregulatory transcription factor CupRen
dc.title從結構和能量觀點探討耐金屬貪銅菌之金屬調節轉錄因子 CupR 與 DNA 結合的特異性zh_TW
dc.titleStructural and Energetic Basis of DNA Specificity by Metalloregulatory Transcription Factor CupR in Cupriavidus metalliduransen
dc.typeThesis
dc.date.schoolyear104-2
dc.description.degree碩士
dc.contributor.oralexamcommittee詹迺立(Nei-Li Chan),劉沛棻(Pei-Fen Liu),葉怡均(Yi-Chun Yeh)
dc.subject.keyword耐金屬貪銅菌,金屬調節轉錄因子,轉錄調控區塊,蛋白質與核酸結合,專一性,zh_TW
dc.subject.keywordCupriavidus metallidurans strain 34,Metalloregulatory transcription factor CupR,Transcriptional regulation operon,Protein-DNA binding,Specificity,en
dc.relation.page99
dc.identifier.doi10.6342/NTU201602219
dc.rights.note未授權
dc.date.accepted2016-08-11
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept農業化學研究所zh_TW
顯示於系所單位:農業化學系

文件中的檔案:
檔案 大小格式 
ntu-105-1.pdf
  未授權公開取用
7.56 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved