請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/19130完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 林欽塘(Chin-Tarng Lin) | |
| dc.contributor.author | Li-Fen Sun | en |
| dc.contributor.author | 孫麗棻 | zh_TW |
| dc.date.accessioned | 2021-06-08T01:46:04Z | - |
| dc.date.copyright | 2016-08-26 | |
| dc.date.issued | 2016 | |
| dc.date.submitted | 2016-08-11 | |
| dc.identifier.citation | Andrea F, Xiaohui P, Ian S, Klara B, Andrea B, Wang, Phyllis A, Blake G, Priti L, Lin Z and George C (2011). Tumour hypoxia promotes tolerance and angiogenesis via CCL28 and T reg cells. Nature 475(7355): 226-30
Boonstra J, Rijken P, Humbel B, Cremers F, Verkleij A, and Henegouwen PB (1995). The epidermal growth factor. Cell Biol Int 19:413–430 Baggiolini M, Dewald B, and Moser B (1997). Human chemokines: an update. Annu Rev Immunol 15: 675–705 Bonini, J.A., Steiner, D.F (1997). Molecular cloning and expression of a novel rat CC-chemokine receptor (rCCR10rR) that binds MCP-1 and MIP-1beta with high affinity. DNA Cell Biol. 16: 1023–1030 Brandtzaeg P (2006). Induction of scretory immunity and memory at mucosal surfaces. Vaccine 25: 5467–5484 Bertus E et al (2006). Epithelial Inflammation Is Associated with CCL28 Production and the Recruitment of Regulatory T Cells Expressing CCR10. J Immunol 177: 593-603 Brandon JA, Jacqueline P, Jennings CD, Cohen DA, Sindhava VJ, Bondada S, Kaplan AM, and Bryson JS (2010). Association between chronic liver and colon inflammation during the development of murine syngeneic graft-versus-host disease. Am J Physiol Gastrointest Liver Physiol 299: 602–613 Copenhaver W, Kelly D, Wood R, Bailey’s textbook of histology [M]. 17th ed (1978). Asian ed. Baltimore: The Williams and Wilkins Co. Chan S (1990). Aetiology of nasopharyngeal carcinoma. Ann Acad Med Singapore 19(2):201-207 Cheng Y, Hildesheim A, Hsu M, Chen I, Brinton L, Levine P, Chen C and Yang C (1999). Cigarette smoking, alcohol consumption and risk of nasopharyngeal carcinoma in Taiwan. Cancer Causes Control 10(3): 201-207 Chow L, Lam C, Chan SY, Tsao SW, To KF, Tong SF, Hung WK, Dammann R, Huang DP, Lo KW (2006). Identification of RASSF1A modulated genes in nasopharyngeal carcinoma. Oncogene 25(2): 310-316 Cao Y, Miao XP, Huang MY, Deng L, Hu LF, Ernberg I, Zeng YX, Lin DX, Shao JY (2006). Polymorphisms of XRCC1 genes and risk of nasopharyngeal carcinoma in the Cantonese population. BMC Cancer 166:167 Chan SL, Cui Y, van Hasselt A, Li H, Srivastava G, Jin H, Ng KM, Wang Y, Lee KY, Chang KP, Wu CC, Chen HC, Chen SJ, Peng PH, Tsang NM., Lee LY., Liu SC, Liang Y, Lee YS, Hao SP., Chang YS and Yu JS (2010). Identification of candidate nasopharyngeal carcinoma serum biomarkers by cancer cell secretome and tissue transcriptome analysis: Potential usage of cystatin A for predicting nodal stage and poor prognosis. PROTEOMICS 10: 2644–2660 Chen CJ, Jeng LB, Huang SF (2007).Lymphoepithelioma-Like Hepatocellular Carcinoma. Chang Gung Med J 30(2): 172-177 De The G (1984). Virus-associated lymphomas, leukemias and immunodeficiencies in Africa. IARC Sci Publ 63: 727-744 De Vathaire F, Sancho-Garnier H, de The´ H, Pieddeloup C, Schwab G, Ho JH, Ellousz R, Michaeu C, Cammoun M, Cachin Y, de The´ G (1988). Prognostic value of EBV markers in the clinical management of nasopharyngeal carcinoma (NPC): A multicenter follow-up study. Int J Cancer 42: 176–181 Derynck R (1992). The physiology of transforming growth factor. Adv Cancer Res 58: 27–52. Deng L, Zhao XR, Pan KF, Wang Y, Deng XY, Lu YY, Cao Y (2002). Cyclin D1 Polymorphism and the Susceptibility to NPC Using DHPLC. ACTA BIOCHIMICA et BIOPHYSICA SINICA 34(1): 16-20 Daniel J. Catron and Albert Zlotnik (2001). CCL28.Cytokine Reference Chapter posted 5 Eleonora C et al (2007). The Mucosae-Associated Epithelial Chemokine (MEC/CCL28) Modulates Immunity in HIV Infection. PLoS 2(10): 969 Giffler, Ronald F, John J, Alberto G, James R (1997). Lymphoepithelioma in cervical lymph nodes of children and young adults. American Journal of Surgical Pathology Volume 1 - Issue 4 Hildesheim A, Apple R, Chen C et al (2002). Association of HLA class I and II alleles and extended haplotypes with nasopharyngeal carcinoma in Taiwan. Journal of the National Cancer Institute 94(23): 1780–1789 Hildesheim A, Anderson LM, Chen C J et al (1997). CYP2E1 genetic polymorphisms and risk of nasopharyngeal carcinoma in Taiwan. Journal of the National Cancer Institute 89(16): 1207–1212 HSIUNG CY, HUANG CC, WANG CJ, MD, HUANG EY and HUANG HY (2006). Lymphoepithelioma-like carcinoma of salivary glands: treatment results and failure patterns. The British Journal of Radiology 79: 52–55 Ho CK, Lo WCH, Huang PH, Wu MT, Christiani DC, Lin CT (1999). Suspected nasopharyngeal carcinoma in three workers with long term exposure to sulphuric acid vapour. Occup Environ Med 56(6): 426-428 Ho, J.H et al (1971). Incidence of nasopharyngeal cancer in Hong Kong. UICC Bull Cancer 9: 5 Huang DP, Ho JHC, Saw D, Teoh TB (1978). Carcinoma of the nasal and paranasal reegions in rats fed Cantonese salted marine fish, in Nasopharyngeal Carcinoma: Etioplogy and Contorl (de The G, Ito Y, eds). IARC Scientific Publications No.20, International Agency for Research on Cancer, Lyon 315-328 Henle G and Henle W (1976). Epstein-Barr virus specific IgA serum antibodies as an outstanding feature of nasopharyngeal carcinoma. Int J Cancer 17:1 Henle W, Ho HHC, Henle G, Chau JCW, Kwan HC (1977). Nasopharyngeal carcinoma: Significance of changes in Epstein-Barr virus related antibody pattern following therapy. Int J Cancer 20: 663–672 Hui AB, Lo KW, Kwong J, Lam EC, Chan SY, Chow LS, et al (2003). Epigenetic inactivation of TSLC1 gene in nasopharyngeal carcinoma. Mol Carcinog 38: 170–178 Huang DY, Lin YT, Jan PS, Hwang YC, Liang ST, Peng Y, Huang CFY, Wu HC and Lin CT (2008). Transcription factor SOX-5 enhances nasopharyngeal carcinoma progression by down-regulating SPARC gene expression. Journal of Pathology J Pathol 214: 445–455 Hieshima K, Ohtani H, Shibano M, Izawa D, Nakayama T, Kawasaki Y, Shiba F, Shiota M, Katou F, Saito T, Yoshie O (2003). CCL28 has dual roles in mucosal immunity as a chemokine with broad-spectrum antimicrobial activity. J. Immunol 170: 1452–1461 Hitoshi H, Takashi N, Hajime M, Sumio T, Kunio H, Yoichi T, Akihisa K, and Osamu Y (2004). Expression of CCL28 by Reed-Sternberg Cells Defines a Major Subtype of Classical Hodgkin’s Disease with Frequent Infiltration of Eosinophils and/or Plasma Cells. American Journal of Pathology 164(3): 997-1006 Hwang YC, Lu TY, Huang DY, Kuo YS, Kao CF, Yeh NH, Wu HC and Lin CT (2009). NOLC1, an enhancer of nasopharyngeal carcinoma progression, is essential for TP53 to regulate MDM2 expression. Am. J.Pathol 175: 342-354 Ho JC, Lam WK et al (2003). Lymphoepithelioma-like carcinoma of the lung in a patient with silicosis. Eur Respir J 22: 383–386 Horikawa T, Kaizaki Y, Kato H, Furukawa M, Yoshizaki T (2005). Expression of interleukin-8 receptor A predicts poor outcome in patients with nasopharyngeal carcinoma. Laryngoscope 115(1): 62-67 Ikeda T, Zhang J, Chano T, Mabuchi A, Fukuda A, Kawaguchi H, Nakamura K, Ikegawa S (2002). Identification and characterization of the human long form of Sox5 (L-SOX5) gene. Gene 298: 59–68 James Ewing et al (1929). The American journal of pathology. Lymphoepithelioma. Volume V John AE, Thomas MS, Berlin AA, and Lukacs NW (2005). Temporal production of ccl28 corresponds to eosinophil accumulation and airway hyperreactivity in allergic airway inflammation. Am J Pathol.166(2): 345–353 Kwabena FB, Korle Bu Teaching Hospital, Accra, Ghana (2010). Infectious Disease and Cancer in Africa – A medical and Demographical Reality. Karray H, Ayadi W, Fki L,Hammami A, Daoud J, Drira MM, Frikha M, Jlidi R, Middeldorp JM (2005). Comparison of three different serological techniques for primary diagnosis and monitoring of nasopharyngeal carcinoma in two age groups from Tunisia. J Med Virol 75: 593–602 Karen M, Scanlon et al (2011). IL-17A Induces CCL28, Supporting the Chemotaxis of IgE-Secreting B Cells. Int Arch Allergy Immunol 156: 51–61 Kuo YS, Tang YB, Lu TY, Wu HC and Lin CT (2010). IGFBP-6 plays a role as an oncosuppressor gene in NPC pathogenesis through regulating EGR-1 expression. J Pathol 222(3):299-309 Kumar V, Bustin SA, and McKay IA (1995). Transforming growth factor alpha. Cell Biol Int 19: 373–388 Kwan KY, Lam MMS, Krsnik Z, Kawasawa YI, Lefebvre V, Sestan N (2008). SOX5 postmitotically regulates migration, postmigratory differentiation, and projections of subplate and deep-layer neocortical neurons. PNAS 105(41): 16021–16026 Kuo TS, Tang YB, Lu TY, Wu HC and Lin CT(2010). IGFBP-6 plays a role as an oncosuppressor gene in NPC pathogenesis through regulating EGR-1 expression. J Pathol Lee JS, Kamada S, Takami Y, Oka K, Ochiai Y, Iwaya H, Hara H, Ishizuka S, Lee JS et al (2009). Depletion of CD8+ lymphocytes attenuates CCL28 expression in villus epithelia in rats. Immunology Letters 124: 50–54 Liebowitz D (1994). Nasopharyngeal carcinoma: the Epstein-Barr virus association. Seminars in Oncology 21(3): 376–381 Lin TM, Chen KP, Lin CC, Hsu MM, Tu SM, Chiang TC, Jung PF, Hirayama T (1973). Retrospectives study on nasopharyngeal carcinoma. J Natl Cancer Inst 51:1403 Lin CT, Kao HJ, Lin JL, Chan CY, Wu HC, and Liang ST (2000). Response of nasopharyngeal carcinoma cells to Epstein-Barr virus infection in intro. Lab Invest 80: 1149–1160 Lin, C.T. (2009).Relationship between Epstein-Barr virus infection and nasopharyngeal | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/19130 | - |
| dc.description.abstract | 鼻咽癌好發於東南亞國家,尤其是中國、香港、新加坡和台灣。其致病原因相當複雜,至今仍尚未被研究徹底。早期認為EB病毒和鼻咽癌的發生有很大的關係,但近期許多研究報導都認為EB病毒並非是鼻咽癌發生的主因而是促使鼻咽癌惡化的因素。因此,為了更深入的探討鼻咽癌癌化相關致病基因的分子機制,我們使用cDNA微陣列分析(cDNA microarray analysis)以比較正常鼻咽黏膜上皮細胞和鼻咽癌細胞之間表現的差異,再經由即時定量聚合酶連鎖反應(Quantitative RT-PCR)及西方墨點法(Western Blotting)發現SRY(sex-determining region Y)-box5(SOX-5)在鼻咽癌細胞中的表現有相當顯著的增加。進一步去研究SOX5基因高度表現的分子機制時我們發現Ribosomal Protein L37(RpL37)在鼻咽癌細胞中亦有較高的表現量。在實驗室所建立的鼻咽癌細胞株尤其在undifferentiated carcinoma NPC-TW01N1和NPC-TW06N1中的表現顯著較高。為了更進一步的去探討RpL37在鼻咽癌中扮演的角色以及和其他基因間相互調控的關係。我們發現在調控NPC中SOX5和RpL37的表現有正向關係,這也表示RpL37可能在NPC形成過程中扮演一個相當關鍵的角色。
為了研究RpL37在NPC中的功能我們使用搭載shRpL37的lentivirus去獲得一個穩定的NPC-TW01N1細胞株,我們發現在腫瘤細胞中RpL37的mRNA和蛋白質表現都有顯著的下降,而RpL37的下調可以對細胞的增生、爬行和穿透的能力有顯著的提升,除此之外也可以讓p53的表現隨著增加。就像大家知道的p53是一個可以影響細胞週期的抑癌基因,我們使用流式細胞儀去分析在用shRpL37處理過的細胞株細胞週期是否有改變。最後我們發現在使用shRpL37感染過的NPC-TW01N1細胞株較未處理過的細胞株在S期的細胞比例下降大約有28%,然而在帶有shRpL37處理的NOD/SCID小鼠中細胞生長和轉移的能力都有被顯著的提升,小鼠的體重在最後一個星期大幅的下降也讓我們在犧牲時發現小鼠的健康狀況不佳,可以看見在腸道的部分有大面積的潰爛。 由這樣的結果我們可以推論,RpL37基因在鼻咽癌的腫瘤生長中扮演一種會促使鱗狀上皮性鼻咽癌形成的因素並會使腫瘤生長速度顯著增加和移動、侵犯性能力的加強。 | zh_TW |
| dc.description.abstract | Nasopharyngeal Carcinoma (NPC) is one of the most common cancers among Chinese living in southern China, Hong Kong, Singapore and Taiwan. The cause of the disease is quite complex, and the molecular mechanisms involved in the pathogenesis of NPC still are not yet well defined. Although it was proposed that Epstein-Barr virus (EBV) is closely associated with NPC pathogenesis, but recently many studies have reported that EBV behaves more likely as progression factors but not initiation factors.
The purpose of this research was to find out the genes associated with NPC pathogenesis. Using cDNA microarray analysis of mRNA expression between NPC cell lines and normal nasal mucosal epithelial cells, SOX5 gene expression was found significantly increased in NPC cell lines by quantitative RT-PCR and Western blot analysis. In our previous studies of the function of SOX-5 gene in NPC, we found that Ribosomal Protein L37 (RpL37) was also significantly increased in NPC cell lines, especially in NPC-TW01N1 and NPC-TW06N1 cell lines. To further identify the relationship between SOX5 and RpL37, we performed some investigation to clarify this condition. We found that SOX5 and RpL37 gene expressions could be reciprocally regulated in NPC cells and suggested that RpL37 may be a critical factor for the growth of NPC tumors. To study the role of RpL37 in the molecular pathogenesis of NPC and its functions, we used a stable shRpL37 lentivirus infected NPC-TW01N1 cell lines. We found that the expression of RpL37 mRNA and protein was downregulated remarkably in these call lines. This gene could promote tumor cell migration, proliferation and invasion in vitro. In addition, the down-regulation of RpL37 could up-regulate the expression of p53. We know that p53 is a suppressor gene which could affect the cell cycle. We used flow cytometry to analyze the difference between cell lines with or without shRpL37 infected. Finally, we found that the S-phase cells treated by shRpL37 lentivirus decreased about 28% than NPC-TW01N1 cell lines without infection. However, in NOD/SCID mice bearing shRpL37 infected NPC xenograft, the tumor growth and metastatic activity were moderately increased, and the weights of shRpL37 infected NOD/SCID mice were obviously decreased at last week. We also found those NOD/SCID mice were not healthy when sacrified, their intestinal tract showed focal ulceration and almost no stool in the large intestine. It is concluded that the downregulation of RpL37 gene may play a role to promote the formation of nasopharyngeal carcinoma of nasopharynx and as a suppressor gene in NPC pathogenesis to affect NPC migration, proliferation and invasion in addition to it chemotactic property. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-08T01:46:04Z (GMT). No. of bitstreams: 1 ntu-105-R03444002-1.pdf: 4318356 bytes, checksum: dfce9518e57becabfc93a704eef46461 (MD5) Previous issue date: 2016 | en |
| dc.description.tableofcontents | 中文摘要-------------------------------------------------i
Abstract-----------------------------------------------ii Contents----------------------------------------------iii List of abbreviations----------------------------------iv Introduction--------------------------------------------1 1.1 Nasopharyngeal carcinoma (NPC)----------------------1 1.2 Etiology of NPC-------------------------------------4 1.3 Molecular biomarkers and prognostic factors of NPC--9 1.4 SRY (sex-determining region Y)-box 5 (SOX-5)-------12 1.5 Protein 53 (p53)-----------------------------------14 1.6 Ribosomal protein L37 (RpL37)----------------------15 Materials and methods----------------------------------17 2.1 Cell lines-----------------------------------------17 2.2 Extraction of RNA and preparation of cDNA----------17 2.3 Quantitative RT-PCR (qRT-PCR)----------------------19 2.4 Statistical analysis of qRT-PCR results------------19 2.5 Immuno-histochemical staining----------------------20 2.6 Mini-plasmids purification-------------------------21 2.7 Amplification and Extraction of plasmid------------22 2.8 Lentivirus-mediated short hairpin RNA (shRNA) knockdown----------------------------------------------23 2.9 Western Blotting-----------------------------------24 2.10 Scratch wound healing assay-----------------------25 2.11 MTT assay-----------------------------------------25 2.12 Invasion assay------------------------------------26 2.13 Flow cytometry analysis---------------------------27 2.14 In vivo assay of xenograft growth-----------------27 2.15 Hematoxylin and Eosin (H&E) staining--------------28 2.16 Statistical analysis------------------------------28 Results------------------------------------------------30 3.1 Increase of RpL37 gene expression in SOX5 overexpressed cells------------------------------------30 3.2 RpL37 gene expression in NNM and NPC tumor cell lines--------------------------------------------------30 3.3 Knockdown of RpL37 results in NPC-TW01N1 cell lines---------------------------------------------------------31 3.4 Functional analysis of RpL37 gene expression-------32 3.4.1 RpL37 can enhance the proliferation rate of NPC-TW01N1 cell lines--------------------------------------32 3.4.2 RpL37 can enhance the migration rate of NPC-TW01N1 cell lines---------------------------------------------32 3.4.3 Down-regulation of RpL37 can enhance the invasion activity of NPC-TW01N1 cell lines----------------------33 3.5 Functional analysis of RpL37 in NOD/SCID mice bearing NPC xenografts-----------------------------------------34 Discussion---------------------------------------------35 Figures and tables-------------------------------------40 Table.1 PCR primers for detection of RpL37 gene expression by RT-PCR and quantitative real-time PCR----40 Figure.1 The expression of SOX5 and RpL37 in SOX5 transfected NPC cell lines-----------------------------41 Figure.2 The RpL37 mRNA expression in NNM and NPC cell lines--------------------------------------------------42 Figure.3 Expression of RpL37 and p53 protein in NNM and NPC cell lines-----------------------------------------43 Figure.4 Immuno-histochemical staining of RpL37 protein in NNM and NPC cell lines------------------------------44 Figure.5 Immuno-histochemical staining of RpL37 protein in NNM and NPC biopsy----------------------------------45 Figure.6 Immuno-histochemical staining of RpL37 protein in breast cancer、NNM and NPC biopsy from NTUH---------46 Figure.7 Immuno-histochemical staining of RpL37 protein in NPC type I biopsy from NTUH-------------------------47 Figure.8 Construction of an inducible RpL37 plasmid. (shRNA-RpL37)------------------------------------------48 Figure.9 The expression of RpL37 andp53 mRNA in shRpL37 infected NPC-TW01N1 cell lines-------------------------49 Figure.10 Expression of RpL37 and p53 protein in NPC cell lines with shRpL37 infection---------------------------50 Figure.11 Immuno-histochemical staining of RpL37 protein NPC cell lines and NPC-TW01N1 with shRpL37 infected----51 Figure.12 Alterations in cell viability of RpL37-knockdown NPC-TW01N1 cells-----------------------------52 Figure.13 Alterations in colony formation of RpL37-knockdown NPC-TW01N1 cells-----------------------------53 Figure.14 Increase of cell migration ability in RpL37-knockdown NPC-TW01N1 cells-----------------------------54 Figure.15 Increase of cell migration ability in RpL37-knockdwon NPC-TW01N1 cells-----------------------------56 Figure.16 Increase of invasion ability in RpL37-knockdown NPC-TW01N1 cells---------------------------------------57 Figure.17 Depletion of RpL37 effect cell cycle---------59 Figure.18 Role of RpL37 in NPC cells in vivo-----------60 Figure.19 Role of RpL37 in NPC cells in vivo-----------61 Figure.20 Role of RpL37 in NPC cells in vivo-----------62 Reference----------------------------------------------63 | |
| dc.language.iso | en | |
| dc.subject | RpL37 | zh_TW |
| dc.subject | 鼻咽癌 | zh_TW |
| dc.subject | SOX5 | zh_TW |
| dc.subject | RpL37體外/體內功能性分析 | zh_TW |
| dc.subject | Ribosomal protein L37(RpL37) | en |
| dc.subject | Nasopharyngeal carcinoma(NPC) | en |
| dc.subject | Function analysis of RpL37 in vitro and in vivo | en |
| dc.subject | SRY(sex-determining region Y)-box5(SOX-5) | en |
| dc.title | 探討RpL37基因魚鱗狀上皮性鼻咽癌形成之功能分析 | zh_TW |
| dc.title | Functional analysis of RpL37 gene in squamous cell carcinoma of nasopharynx tumorgenesis | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 104-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.coadvisor | 張逸良(Yih-Laong Chang) | |
| dc.contributor.oralexamcommittee | 吳漢忠,黃祥博 | |
| dc.subject.keyword | 鼻咽癌,RpL37,SOX5,RpL37體外/體內功能性分析, | zh_TW |
| dc.subject.keyword | Nasopharyngeal carcinoma(NPC),Ribosomal protein L37(RpL37),SRY(sex-determining region Y)-box5(SOX-5),Function analysis of RpL37 in vitro and in vivo, | en |
| dc.relation.page | 63 | |
| dc.identifier.doi | 10.6342/NTU201602230 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2016-08-11 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 病理學研究所 | zh_TW |
| 顯示於系所單位: | 病理學科所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-105-1.pdf 未授權公開取用 | 4.22 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
