Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 應用力學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/19118
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor劉佩玲
dc.contributor.authorYueh-Ching Luen
dc.contributor.author盧岳璟zh_TW
dc.date.accessioned2021-06-08T01:45:37Z-
dc.date.copyright2016-08-24
dc.date.issued2016
dc.date.submitted2016-08-12
dc.identifier.citationAkselrod S, Gordon D, Ubel FA, Shannon DC, Barger AC ,Cohen RJ ,“Power spectrum analysis of heart rate fluctuation: a quantitative probe of beat to beat cardiovascular control. ”, Science 213, p.220-222
American Heart Association, Inc., “Heart rate variability: Standards of Measurement, Physiological Interpretation, and Clinical Use”, European Heart Journal, vol. 17, p.354-381, 1996.
Axel Schäfera, Jan Vagedesa, “How accurate is pulse rate variability as an estimate of heart rate variability?: A review on studies comparing photo-plethysmographic technology with an electrocardiogram”, Journal of Cardiology, Volume 166, Issue 1, 5 June 2013, P.15–29
Bartlett, M.S., “Smoothing Periodograms from Time-Series with Continuous Spectra”. Nature 161, p.686–687
Cabiddu R, Cerutti S, Viardot G, Werner S, Bianchi AM.,“Modulation of the Sympatho-Vagal Balance during Sleep: Frequency Domain Study of Heart Rate Variability and Respiration.” , Frontiers in Physiology, 2012; 3: 45.,p.1-10.
Cooper B, Veale D, Griffiths C, et al. “Value of nocturnal oxygen saturation as a screening test for sleep apnea.” Thorax 1991; 46, p.586–588.
Dae-Geun Jang, Sangjun Park, and Minsoo Hahn ,“A Real-Time Pulse Peak Detection Algorithm for the Photoplethysmogram”, Journal of Electronics and Electrical Engineering , 2014,Vol. 2, No. 1, March,p.45-49
Daniel J. Buysse, Martica L. Hall,Patrick J. Strollo,Thomas W. Kamarck, Jane Owens, Laisze Lee, “Pittsburgh Sleep Quality Index (PSQI), Epworth Sleepiness Scale (ESS), and Clinical/Polysomnographic Measures in a Community Sample”, Journal of Clinical Sleep Medicine, Vol. 4, No. 6, 2008,p. 563-571.
Fava C., Montagnana, M., Favaloro, E.J., Guidi, G.C., Lippi, G., “Obstructive Sleep Apnea Syndrome and Cardiovascular Diseases,” Semin. Thromb. Hemost, 2011; 37: p. 280-297.
Florian Chouchou, Martin Desseilles, “Heart rate variability: a tool to explore the sleeping brain?” Frontiers in Neuroscience, 2014, 8: 402.
G. Lu, F. Yang, J. A. Taylor & J. F. Stein,“A comparison of photoplethysmography and ECG recording to analyse heart rate variability in healthy subjects”, Journal of Medical Engineering & Technology, Volume 33, Issue 8, 2009.
George B. Moody, Roger G. Mark, Marjorie A. Bump, Joseph S. Weinstein, Aaron D. Berman, Joseph E. Mietus, and Ary L. Goldberger ,“Clinical Validation of the ECG-Derived Respiration (EDR) Technique”, Computers in Cardiology, 1986, vol. 13, p. 507-510.
H.W. Agnew Jr., W.B. Webb, R.L. Williams, “The first night effect: An EEG study of sleep” Psychophysiology; 2, 1966, p. 263-266.
Hayano J., Yasuma F, Okada A, Mukai S, Fujinami T.,“Respiratory sinus arrhythmia. A phenomenon improving pulmonary gas exchange and circulatory efficiency. ”, Circulation, 1996; 94, p.842-847.
Hayet Werteni , Slim Yacoub , Noureddine Ellouze, “An Automatic Sleep-Wake Classifier Using ECG Signals” ,Journal of Computer Science Issues, Vol. 11, Issue 4, No 1, July 2014,p.84-93.
Junichiro Hayano, Yusaku Sakakibara, Akira Yamada, Masami Yamada,Seiji Mukai, Takao Fujinami, Kiyoko Yokoyama, Yosaku Watanabe, Kazuyuki Takata,“Accuracy of assessment of cardiac vagal tone by heart rate variability in normal subjects”,The American Journal of Cardiology,Volume 67, Issue 2, 15 January 1991, p. 199-204.

J. Thomas Bigger, Günter,Breithardt, Münster, Sergio Cerutti,Milano , Richard J. et.al., “Heart rate variability Standards of measurement, physiological interpretation, and clinical use”Cohen, European Heart Journal (1996) 17, p.354–381
K. Venu Madhav, M. Raghu Ram, E. Hari Krishna, Nagarjuna Reddy Komalla, K. Ashoka Reddy, “Estimation of respiration rate from ECG, BP and PPG signals using empirical mode decomposition”, Instrumentation and Measurement Technology Conference (I2MTC), 2011 IEEE, p.1-4.
Lavery CE, Mittleman MA, Cohen MC, “Nouniform nighttime distribution of acute cardiac events: A possible effect of sleep states” Circulation, 1997; 5, p.3321-3327.
Liborio Parrino, Raffaele Ferri, Oliviero Bruni, Mario G. Terzano, “Cyclic alternating pattern (CAP): The marker of sleep instability”, Sleep Medicine Reviews olume 16, Issue 1, February 2012, p.7–45
M.G. Terzano, L. Parrino, G. Fioriti, B. Orofiamma, H. Depoortere ,“Modifications of sleep structure induced by increasing levels of acoustic perturbation in normal subjects”, Electroencephalography and clinical neurophysiology,1990, 76 (1), p.29-38
M.G.Terzano, Liborio Parrino, “Origin and Significance of the Cyclic Alternating Pattern (CAP): REVIEW ARTICLE” Volume 4, Issue 1, February 2000, P. 101–123.
Mario Giovanni Terzano,Liborio Parrino, “Clinical Applications of Cyclic Alternating Pattern”, Physiology & Behavior.,1993,Vol. 54, p. 807-813.
Murray W. Johns, “A New Method for Measuring Daytime Sleepiness: The Epworth Sleepiness Scale”, Sleep, 14(6), p. 540-545.
Nitzan M., Babchenko A., Khanokh B., Landau D.,“The variability of the photoplethysmographic signal-a potential method for the evaluation of the autonomic nervous system. ”, Physiol. Meas, 1998 Feb; 19(1), p.93-102.

McMillan D.E., “Interpreting heart rate variability sleep/wake patterns in cardiac patients.” J Cardiovasc Nurs. 2002 Oct; 17(1), p.69-81.
P. de Chazal, C. Heneghan ,E. Sheridan, R. Reilly, P. Nolan,M.O’Malley ,“Automated processing of the single-electrocardiogram for the detection of obstructive sleep apnea”,IEEE Transactions on Biomedical Engineering, 2003,Vol. 50, No. 6
Pan, Jiapu, and Willis J. Tompkins“A real-time QRS detection algorithm. ”Biomedical Engineering, IEEE Transactions on 3 (1985), p.230-236.
Pandey, A., Demede, M., Zizi, F., Al Haija’a, O.A., Nwamaghinna, F., Jean-Louis, G., et al., “Sleep apnea and diabetes: insights into the emerging epidemic,” Curr Diabetes Rep, 2011; 11: p. 35-40.
Parrino L, Boselli M, Spaggiari MC, Smerieri A, Terzano MG.,“Cyclic alternating pattern (CAP) in normal sleep: polysomnographic parameters in different age groups. ”, 1998 Dec; 107(6), p.439-450.
Peter D. Welch, “The Use of Fast Fourier Transform for the Estimation of Power Spectra: A Method Based on Time Averaging Over Short, Modified Periodograms”, IEEE Transaction on Audio and Electroacoustics, JUNE 1967, Vol. AU-15, NO. 2,
Robert Joseph Thomas, MD,Joseph E. Mietus,Chung-Kang Peng, Ary L. Goldberger“An Electrocardiogram-Based Technique to Assess Cardiopulmonary Coupling During Sleep”,Sleep, 2005;28(9),p.1151-1161.
Ronald, D.B., Solange, A., David, G., Richard, J.C., “An Efficient Alogorithm for Spectral Analysis of Heart Rate Variability,”IEEE Transaction on Biomedical Engineering, vol.33, 1986
 
Thomas E. Dick, Yee-Hsee Hsieh, Rishi R. Dhingra, David M. Baekey, Roberto F.Galán, Erica Wehrwein, Kendall F. Morris, “Cardiorespiratory Coupling: Common Rhythms in Cardiac,Sympathetic, and Respiratory Activities”, Prog Brain Res. 2014 ; 209,p.191–205
Tina V. Hartert, Arthur P. Wheeler, James R. Sheller,“Use of Pulse Oximetry to Recognize Severity of Airflow Obstruction in Obstructive Airway Disease”,Jounal Chest1999;115(2),p.475-481
Tsunoda, M., Endo, T., Hashimoto, S., Honma, S., & Honma, K. I. (2008). “Effects of light and sleep stages on heart rate variability in humans,” Psychiatry and Clinical Neurosciences, 55(3), p.285-286.
Thomas RJ, Mietus JE, Peng CK, Guo D, Gozal D, Montgomery-Downs H, Gottlieb DJ, Wang CY, Goldberger AL,“Relationship between delta power and the electrocardiogram-derived cardiopulmonary spectrogram: possible implications for assessing the effectiveness of sleep.”,2014, Sleep Med., p.125-131
Verster, Joris C., et al. Sleep and Quality of Life in Clinical Medicine, p. 83. Totowa, New Jersey: Humana Press., 2008
劉勝義, 臨床睡眠檢查學, 合記圖書出版社, 2004
蔡政楒, 睡眠圖譜, 合記圖書出版社, 2009
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/19118-
dc.description.abstract本研究旨在期望利用一種簡單的方式判斷使用者的睡眠穩定度,故本研究嘗試利用穿戴式裝置常之光學式血管體積變化訊號(PPG)來做為判斷睡眠穩定度的生理特徵,並且結合心肺耦合分析法(CRC)來演算分析並與睡眠多項生理檢查儀(PSG)中的循環交替圖譜(CAP)這種被研究出與睡眠穩定度相關性極高的腦波圖譜進行相關性分析,期待能找出與睡眠穩定程度的關聯性。
我們利用PSG中計算血氧濃度(S_p O_2)的PPG訊號進行研究,並僅利用PPG訊號截取出心跳變異率時間序列(NNI)與PPG推導之呼吸特徵訊號(PDR)進行心肺耦合分析,因此不需要穿戴呼吸感測器。
接著將CAP的腦波判讀階段依照睡眠穩定程度分為三個階段,非循環交替圖譜(NCAP)、CAP與清醒與快速眼動期(WREM)。為了與上述CAP階段做比較,我們利用Welch方法計算NNI及PDR之功率頻譜密度(PSD)並相互耦合,其中高頻耦合能量(EHF, f =0.1~0.4 Hz)、低頻耦合能量(ELF, f =0.01~0.1 Hz)與ELF /EHF比例(Lo/Hi ratio)等,便是用來與CAP階段比較的相關特徵。
本研究共21位受試者,其中非睡眠呼吸中止症5位、輕中度患者6位與重度患者10位。其結果呈現非OSA患者準確率不佳(ACC_(PPG,NOSA)=38.37 %),而OSA患者整體的準確度也不好(ACC_(PPG,OSA)=45.31 %),但在判讀睡眠相對穩定階段即NCAP階段的準確率表現相對好很多(ACC_(PPG,NCAP,OSA)=75.15 %)。
由於NCAP判別的準確率較高,本研究在OSA患者分組利用一個穩定睡眠NCAP發生時間除以總睡眠時間(NCAP/TST)即NCAP Ratio這個能代表穩定睡眠在整夜中比例的指標來與睡眠穩定指標CAP發生率(CAP Rate)做比較,並利用迴歸分析發現此方法與人工判讀之CAP Rate呈現負相關的趨勢,代表此PPG方法與NCAP Ratio的指標在判斷睡眠穩定度上在未來是有機會可行的且同時也具有一定程度的生理意義。
比較先前的研究方法,本研究可以利用一個更簡單量測的PPG訊號來達成與心電圖訊號(ECG)相同的睡眠穩定度判讀趨勢,未來若是要應用在居家量測,我們認為PPG訊號將會是一個更好的選擇。
zh_TW
dc.description.abstractThe main purpose of this study is to use an easy method to analyze users sleep stability. Nowadays, lots of wearable devices have already used photo-plethysmography signal (PPG) to measure physiological characteristics of sleep. So we choose PPG signal to evaluate sleep stability. And we compare the Cardiorespiratory Coupling (CRC) result with cyclic alternating pattern (CAP) in order to find out the correlation of sleep stability.
In our study, the PPG data recorded from Polysomnography (PSG). And our study only uses PPG signal to detect the heartbeat interval (NNI) and PPG derived respiratory signal (PDR). So we do not need to wear airflow sensor to measure the characteristics of respiration.
The CAP stages in our study are divided into 3 types (NCAP, CAP, and WREM) according to the level of sleep stability. Then we use Welch’s method to calculate the power spectral density (PSD) of NNI and PDR. When we coupling them together, we’ll get high frequency band power energy (EHF, f =0.1~0.4 Hz), Low frequency band power energy (ELF, f =0.01~0.1 Hz), and ELF/ EHF (Lo/Hi ratio). The foregoing are the characteristic we compare with CAP stages.
We have 21 subjects which were divided into 3 groups: 5 normal subjects, 6 mild and moderate subjects, and 10 severe subjects. And the results show that the normal subjects do not have an obvious characteristic to compare with CAP (ACC_(PPG,NOSA)=38.37 %). Next, we analyze the sleep apnea subjects. The total accuracy of sleep apnea subjects is not a good result (ACC_(PPG,OSA)=45.31 %). But we find the detection of stage non-cyclic alternating pattern (NCAP) have a nice performance (ACC_(PPG,NCAP,OSA)=75.15 %).
In order to use the detection of NCAP to determine sleep stability. We use NCAP time divided by total sleep time (NCAP Ratio). Finally, we find the result of NCAP Ratio shows a negative correlation with CAP Rate. So we think this method might have the potential to evaluate sleep stability.
Compared to the previous research, the method of PPG’s measurement is easier than ECG signal. So we think this PPG method might be a better choice for Home Healthcare in the future.
en
dc.description.provenanceMade available in DSpace on 2021-06-08T01:45:37Z (GMT). No. of bitstreams: 1
ntu-105-R03543044-1.pdf: 4023839 bytes, checksum: 27ddc39dbda61f9ae1fc51ceed1ec227 (MD5)
Previous issue date: 2016
en
dc.description.tableofcontents致謝 I
中文摘要 II
ABSTRACT IV
目錄 VI
圖目錄 IX
表目錄 XIV
第一章 緒論 1
1.1 研究動機 1
1.2 文獻回顧 2
1.3 論文架構 6
第二章 研究相關背景知識 9
2.1 睡眠多項檢查 9
2.2 循環交替圖譜 12
2.3 心電圖訊號原理 14
2.4 心肺耦合分析法 16
2.5 睡眠呼吸中止症 17
第三章 研究方法 23
3.1 光學式血管體積變化訊號之原理 23
3.2 光學式血管體積變化訊號之訊號處理 25
3.3 NNI與PDR訊號之頻帶能量特徵計算 31
3.4 PPG訊號之心肺耦合分析法 34
第四章 研究資料與CAP判讀結果 48
4.1 受試者相關資料 48
4.2 CAP腦波判讀結果 49
第五章 分析結果與討論 52
5.1 分析準確率與信度之方法 52
5.2 睡眠穩定度結果分析 54
5.2.1 睡眠穩定度之分辨方法 54
5.2.2 受試者結果分析 55
5.2.3 OSA受試者之睡眠穩定階段結果分析 59
5.3 完全偵測清醒期對判讀之影響 60
5.4 利用分辨NCAP階段比較睡眠穩定之趨勢 62
第六章 結論與未來展望 82
6.1 結論 82
6.2 未來展望 85
參考文獻 86
附錄 91
附錄A 心電圖之訊號處理 91
A.1心電圖R尖峰偵測 91
A.2 心電圖計算心跳變異率時間序列 93
A.3計算心電圖推導之呼吸訊號 93
附錄B 心電圖訊號之睡眠穩定度分辨方法 95
dc.language.isozh-TW
dc.subject循環交替圖譜zh_TW
dc.subject睡眠呼吸中止症zh_TW
dc.subject睡眠穩定度zh_TW
dc.subject心肺耦合分析zh_TW
dc.subject光學式血管體積變化訊號zh_TW
dc.subjectCardiorespiratory Coupling Analysisen
dc.subjectCyclic Alternating Patternen
dc.subjectPhoto-Plethysmographyen
dc.subjectSleep Apnea Syndromeen
dc.subjectSleep Stabilityen
dc.title光學式血管體積變化訊號應用於心肺耦合與睡眠穩定度之相關性分析zh_TW
dc.titleAnalysis of Sleep Stability and Cardiorespiratory Coupling Using PPG Signalen
dc.typeThesis
dc.date.schoolyear104-2
dc.description.degree碩士
dc.contributor.oralexamcommittee江秉穎,蔡政楒
dc.subject.keyword睡眠呼吸中止症,睡眠穩定度,心肺耦合分析,光學式血管體積變化訊號,循環交替圖譜,zh_TW
dc.subject.keywordSleep Apnea Syndrome,Sleep Stability,Cardiorespiratory Coupling Analysis,Photo-Plethysmography,Cyclic Alternating Pattern,en
dc.relation.page100
dc.identifier.doi10.6342/NTU201602369
dc.rights.note未授權
dc.date.accepted2016-08-12
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept應用力學研究所zh_TW
顯示於系所單位:應用力學研究所

文件中的檔案:
檔案 大小格式 
ntu-105-1.pdf
  未授權公開取用
3.93 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved