Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 藥學專業學院
  4. 藥學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/19115
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor梁碧惠
dc.contributor.authorTsung-Yun Wongen
dc.contributor.author翁琮昀zh_TW
dc.date.accessioned2021-06-08T01:45:32Z-
dc.date.copyright2016-08-26
dc.date.issued2016
dc.date.submitted2016-08-12
dc.identifier.citationReferences
1. Tapas, A., R.; Sakarkar, D., M.; Kakde, R., B. Flavonoids as nutraceuticals: a review. Trop. J .Pharm. Res. 2008, 7, 1089–1099 .
2. Kumar, S.; Pandey, K., P. Chemistry and biological activities of flavonoids: an overview. The Scientific World Journal 2013, 2013, 162750.
3. Agrawal, A.,D. Pharmacological activities of flavonoids: a review. Int. J. Phar. Sci. Nanotech. 2011, 4, 1394–1398.
4. Commenges, D.; Scotet, V.; Renaud, S.; Jacqmin-Gadda, H.; Barberger-Gateau, P.; Dartigues, J., F. Intake of Flavonoids and Risk of Dementia. Eur. J. Epidemiol. 2000, 16, 357–363.
5. Tzeng, S., H.; Ko, W., C.; Ko, F., N.; Teng, C., M. Inhibition of platelet aggregation by some flavonoids. Thromb. Res. 1991, 64, 91–100.
6. Gryglewski, R., J.; Korbut, R.; Robak, J.; Swiss, J. On the mechanism of antithrombotic action of flavonoids. Biochem. Pharmaco. 1987, 36, 317–322.
7. Alcaraz, M., J.; Ferrandiz, M., L. Modification of Arachidonic Metabolism by Flavonoids. J .Ethnopharmacol. 1987, 21, 209–229.
8. Ferrandiz, M., L.; Alcaraz, M., J. Anti-inflammatory activity and inhibition of arachidonate metabolism by flavonoids from Spanish and India medicinal herbs. Pharmazie. 1990, 45, 206–208.
9. Ferrandiz, M., L.; Alcaraz, M., J. Anti-inflammatory activity and inhibition of arachidonic acid metabolism by flavonoids. Agents. Actions. 1991, 32, 283–288.
10. Yoshimoto, T.; Furukawa, M.; Yamamoto, S.; Horie, T.; Watanabe-Kohno, S. Flavonoids: potent inhibitors of arachidonate 5-lipooxygenase. Biochem. Biophys. Res. Commun. 1983, 116, 612–618.
11. Formica, J., V.; Regelson, W. Review of the biology of quercetin and related bioflavonoids. Food Chem. Toxicology. 1995, 33, 1061–1080.
12. Damas, J.; Bourdon, V.; Remacle-Volon, G.; Lecomte, J. Proinflammatory flavonoids which are inhibitors of prostaglandin biosynthesis. Prostaglandins Leukot. Med. 1985, 19, 11–24.
13. Hoult, J., R.; Moroney, M., A.; Paya, M. Actions of flavonoids and coumarins on lipoxygenase and cyclooxygenase. Methods Enzymol. 1994, 234, 443–454.
14. Tordera, M.; Ferrandiz, M., L.; Alcaraz, M., J. Influence of anti-inflammatory flavonoids on degranulation and arachidonic acid release in rat neutrophils. Zeitschrift für Naturforschung C 1994, 49, 235–240.
15. Carlo, G.,D.; Autore, G.; Izzoaa, A., A.; Maiolino, P.; Mascolo, N.; Viola, P.; Diurno, M.,V. ; Capasso, F. Inhibition of intestinal motility and secretion by flavonoids in mice and rats; structure activity relationships. J Pharm. Pharmcol. 1993, 45, 1045–1059.
16. Gradolatto, A.; Basly, J., P.; Berges, R.; Teyssier, C.; Chagnon,M., C.; Siess, M., H.; Canivenc-Lavier, M., C. Pharmacokinetics and metabolism of apigenin in female and male rats after a single oral administration. Drug Metabolism and Disposition 2005, 33, 49–54
17. Hollman, P., C., H.; Buijsman, M. N. C. P.; van Gameren, Y.; Cnossen, P., J.; de Vries, J., H., M.; Katan, M. B. The sugar moiety is a major determinant of the absorption of dietary flavonoid glycosides in man. Free Radic. Res. 1999, 31, 569–573.
18. Walle, T. Serial review: flavonoids and isoflavones (phytoestrogens: absorption, metabolism, and bioactivity.): absorption and metabolism of flavonoids. Free Radical Biology and Medicine 2004, 36, 829 –837.
19. Day, A., J.; Canada, F., J.; Diaz, J., C.; Kroon, P., A.; Mclauchlan, R.; Faulds, C., B.; Plumb, G., W.; Morgan, M., R.; Williamson, G. Dietary flavonoid and isoflavone glycosides are hydrolysed by the lactase site of lactase phlorizin hydrolase. FEBS Letters 2000, 468, 166–170.
20. Scheline, R.,R. Metabolism of foreign compounds by gastrointestinal microorganisms. Pharmacological Review 1973, 25, 451–532.
21. Bravo, L. Polyphenols: chemistry, dietary sources, metabolism, and nutritional significance. Nutrition Reviews. 1998, 56, 317–333.
22. Griffiths, L., A. Mammalian metabolism of flavonoids. In The Flavonoids: Advances in Research; Harborne, J.,B.; Mabry, T., J., Eds. Springer US: Boston, 1982, pp 681–718.
23. Drug-like properties: Concepts, Structure Design and Methods from ADME to Toxicity Optimization. Kerns, E., H.; Di, L., Eds. Elsevier: Burlington, 2008, pp123
24. Laterra, J.; Keep, Richard.; A Betz, L.; Goldstein, G., W. Blood-Brain Barrier. In Basic Neurochemistry: Molecular, Cellular and Medical Aspects, 6th edition. Siegel, G., J.; Agranoff, B., W.; Albers, R., W., et al., eds. Philadelphia: Lippincott-Raven; 1999.
25. Drug-like properties: Concepts, Structure Design and Methods from ADME to Toxicity Optimization. Kerns, E., H.; Di, L., Eds. Elsevier: Burlington, 2008, pp124
26. Smith, Q., R. Transport of glutamate and other amino acids at the blood-brain barrier. J. Nutr. 2000, 130, 4S Suppl:1016S-22S.
27. Hawkins, R., A.; O'Kane, R., L.; Simpson, I., A.; Viña, J. Structure of the blood–brain barrier and its role in the transport of amino acids. J. Nutr. 2006, 136, 218S–226S
28. Oxender, D., L.; Christensen, H., N. Distinct mediating systems for the transport of neutral amino acids by the Ehrlich cell. J. Biol. Chem. 1963, 238, 3686–3700
29. Choi, T., B; Pardridge, W., M. Phenylalanine transport at the human blood-brain barrier. Studies with isolated human brain capillaries. J. Biol. Chem. 1986, 261, 6536–6541
30. Doan, K., M., M.; Humphreys, J., E.; Webster, L., O.; Wring, S., A.; Shampine, L., J.; Serabjit-Singh, C., J. Passive permeability and P-glycoprotein-mediated efflux differentiate central nervous system (CNS) and non-CNS marketed drugs. Journal of Pharmacology and Experimental Therapeutics 2002, 303, 1029–1037
31. Pardridge, W., M. CNS drug design based on principles of blood-brain barrier transport. Journal of Neurochemistry 1998, 70, 1781–1792
32. Maurer, T. S.; DeBartolo, D. B.; Tess, D., A.; Scott, D., O. Relationship between exposure and nonspecific binding of thirty-three central nervous system drugs in mice. Drug Metabolism and Disposition 2005, 33, 175–181
33. Clark, D. E. In silico prediction of blood-brain barrier permeation. Drug Discovery Today 2003, 8, 927–933
34. Lobell, M.; Molnar, L.; Keseru, G., M. Recent advances in the prediction of blood-brain partitioning from molecular structure. Journal of Pharmaceutical Sciences 2003, 92, 360–370
35. Pardridge, W., M. Transport of small molecules through the blood-brain barrier: biology and methodology. Advanced Drug Delivery Reviews 1995, 15, 5–36
36. Ashwood, V., A.; Field, M., J.; Horwell, D., C.; Julien-Larose, C.; Lewthwaite, R., A.; McCleary, S., et al. Utilization of an intramolecular hydrogen bond to increase the CNS penetration of an NK1 receptor antagonist. Journal of Medicinal Chemistry 2001, 44, 2276–2285.
37. Ducharme, Y.; Blouin, M; Carriere, M.-C.; Chateauneuf, A.; Cote, B.; Denis, D. et al. 2, 3-Diarylthiophenes as selective EP1 receptor antagonists. Bioorganic & Medicinal Chemistry Letters 2005, 15, 1155–1160
38. Pardridge, W., M. The blood-brain barrier: bottleneck in brain drug development. NeuroRx: the Journal of the American Society for Experimental NeuroTherapeutics 2005, 2, 3–14
39. Di, L.; Kerns, E., H.; Fan, K.; McConnell, O., J.; Carter, G., T. High throughput artificial membrane permeability assay for blood-brain barrier. European Journal of Medicinal Chemistry 2003, 38, 223–232
40. Viola, H.; Wasowski, C.; Levi de Stein, M.; Wolfman, C; Silveira, R.; Dajas, F.; Medina, J., H; Paladini, A., C. Apigenin, a Component of Matricaria recutita, Flowers, is a Central Benzodiazepine Receptors-Ligand with Anxiolytic Effects. Planta Med. 1995, 61, 213–216
41. Losi,G.; Puia, G.; Garzon, G.; de Vuono, M., C.; Baraldi, M. Apigenin modulates GABAergic and glutamatergic transmission in cultured cortical neurons. Eur J Pharmacol. 2004, 502, 41–46
42. Partitioning and partition coefficient. In The Physicochemical Basis of Pharmaceuticals. Moynihan, H., A.; Crean, A., M, Eds. Oxford University Press; Oxford, 2009, pp 236
43. Bhattacharya, S.; Haldar, S. Interactions between cholesterol and lipids in bilayer membranes: Role of lipid headgroup and hydrocarbon chain-backbone linkage. Biochimica et Biophysica Acta 2000, 1467, 39–53.
44. Rubenstein, J., L.; Smith, B., A.; McConnell,, H., M. Lateral diffusion in binary mixtures of cholesterol and phosphatidylcholines. Proceedings of the National Academy of Sciences of the United States of America 1979, 76, 15–18.
45. Pandurangan, N. A new synthesis for acacetin, chrysoeriol, diosmetin, tricin, and other hydroxylated flavones by modified Baker-Venkataraman transformation. Letters in Organic Chemistry 2013, 11, 225–219
46. Oyama, K.-i., Kondo, T. Total synthesis of apigenin 7,4’-di-O-β-glucopyranoside, a component of blue flower pigment of Salvia patens, and seven chiral analogues. Tetrahedron 2004, 60, 2025–2034
47. Rodebaugh, R.; Fraser-Reid, B. Evidence for Cyclic Bromonium Ion Transfer in Electrophilic Bromination of Alkenes: Reaction of co-Alkenyl Glycosides with Aqueous N-Bromosuccinimide. Tetrahedron 1996, 52, 7663–7678
48. Barron, D.; Ibrahim, R., K. Synthesis of flavonoid sulfates: 1. stepwise sulfation of positions 3, 7, and 4 using N,N'-dicyclohexylcarbodiimide and tetrabutylammonium hydrogen sulfate. Tetrahedron 1987, 43, 5197–5202
49. Kirsch, J.,F.; Jencks, W., P. Base catalysis of imidazole catalysis of ester hydrolysis. J. Am. Chem. Soc. 1964, 86, 833–837
50. Kim, M., K; Choo, H.; Chong, Y. Water-soluble and cleavable quercetin–amino acid conjugates as safe modulators for P-glycoprotein-based multidrug resistance. J Med. Chem. 2014, 57, 7216–33
51. Partition Coefficient (n-octanol/water), High Performance Liquid Chromatography (HPLC) Method. OECD guideline for the testing of chemicals. 1995, no. 117, 1 – 7
52. Yang, Y., Y.; Bai, L.; Li, X. R.;.Xiong, J.;Xu, P., X.;Guo, C.;Xue, M. Transport of active flavonoids, based on cytotoxicity and lipophilicity: Anevulation using the blood-brain barrier cell and Caco-2 cell models. Toxicology in Vitro 2014, 28,388 – 396
53. Water Solubility. OECD guideline for the testing of chemicals. 1995, no. 105, 1 – 7
54. Tasi, M., S.; Lee, M., L.; Chang, C., Y.; Fan, H., H.; Yu, I., S.; Chen, Y., T.; You, J., Y.; Chen, C., Y.; Chang, F., C.; Hsiao, J. H.; Khorkova, O.; Liou, H., H.; Yanagawa, Y.; Lee, L., J.; Lin, S., W. Functional and structural deficits of the dentate gyrus network coincide with emerging spontaneous seizures in an Scn1a mutant Dravet syndrome model during development. Neurobiology of Disease 2015, 77, 35 – 48
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/19115-
dc.description.abstract類黃酮化合物具有廣效的活性,如抗氧化、抗凝血、抗發炎。但類黃酮之水溶性限制其動物實驗的活性探討。本研究將針對類黃酮A進行結構相同性研究(cluster study),以細胞模型探討構效關係;為了提升其水溶解度將其製成微脂體劑型,並合成類黃酮A之葡萄糖苷9、硫酸鉀鹽12、磷酸鈉鹽13,及為了增加其穿透血腦屏障能力與甘胺酸甲酯及甘胺酸形成之氨基甲酸酯15b與16。除了進行這些衍生物的細胞活性試,同時也開發HPLC分析方法測試其溶解度及logP值。綜合以上之結果,可提供類黃酮A結構優化方向,以提供其解決腦神經相關疾病之研究。zh_TW
dc.description.abstractFlavonoids comprise multiple biological activities, e.g., anti-oxidative, antithrombotic, and anti-inflammatory activities. Some of flavonoids are of low water solubility which limits their development in animal study. In this thesis, the structure-activity relationship (SAR) of flavonoid A would be discussed via a cluster study. To improve its water solubility, liposome suspension of various formulations have been designed and prepared. For its structural modification, the corresponding glucoside 9, potassium sulfate salt 12, and phosphate sodium salt 13 have also been designed and synthesized. Additionally, to promote its BBB permeation, glycine methyl ester and glycine were coupled with it to form the corresponding carbamates 15b and 16. These derivatives were subsequently measured for their log P values and solubility by the HPLC method. Overall, this study provides the direction of future optimization for the studies of CNS diseases.en
dc.description.provenanceMade available in DSpace on 2021-06-08T01:45:32Z (GMT). No. of bitstreams: 1
ntu-105-R03423001-1.pdf: 2729973 bytes, checksum: e3dd54841bb8713f38a1a42e939036ef (MD5)
Previous issue date: 2016
en
dc.description.tableofcontentsTable of Contents
中文摘要............................................................................................................................i
Abstract.............................................................................................................................ii
Table of Contents..............................................................................................................iv
List of Figures.................................................................................................................vii
List of Schemes…………………………………………………………………..…….vii
List of Tables……………………………………………………………………..…….vii
List of Abbreviations………...…………………………………………………...……viii
Chapter 1 – Introduction
1.1 Flavonoids……………………….………………………………………………….1
1.1.1 Major Backbones ………………………………….…………………..…….1
1.1.2 Configurations……………………………………………………………..…2
1.1.3 Natural Sources…………………………………………………………..….3
1.1.4 Bioactivities …………………………………….…………………...…..….4
1.1.4.1 Antioxidant Activity…………………………….………...……….…4
1.1.4.2 Antithrombotic Activity……………………………………..………5
1.1.4.3 Anti-inflammatory Activity…………………….…………..…...…….5
1.1.5 Pharmacokinetics……………………………...………………………..…….6
1.2 Blood-Brain Barrier…………………………………….………………………...….7
1.2.1 The Fundamental of BBB……………………………………………...……..7
1.2.2 Mechanisms Affecting BBB Permeation…………………………………......8
1.2.2.1 Facilitative Transportation of Glucose……………….………………9
1.2.2.2 Facilitative Transportation of Monocarboxylic Acids………….……..9
1.2.2.3 Facilitative Transportation of Amino Acids………………...….……...9
1.2.2.3.1 System L – Large Essential Neutral Amino Acids…..……….10
1.2.2.3.2 System y+ – Cationic Amino Acids……………………..…....10
1.2.2.3.3 System x- – Anionic Amino Acids………………...………….10
1.2.2.3.4 System n – Nitrogen-Rich Amino Acids………..………..…..11
1.2.2.4 Na+-dependent Transportation of Amino Acids……..………………11
1.2.2.4.1 System A – Small Nonessential Neutral Amino Acids…..…11
1.2.2.4.2 System ASC – Some Large and Small Neutral Amino Acids...11
1.2.2.4.3 System N – Nitrogen-Rich Amino Acids………..……..…….12
1.2.2.4.4 System EAAT – Acidic Amino Acids………………………12
1.2.2.4.5 System Na+-LNAA – Large Neutral Amino Acids………..….12
1.2.3 Structure-BBB Penetration Relationships…………………………………..…..12
1.2.4 Structure Modification Strategies for Brain Penetration Improvement………...13
Chapter 2 – Results, Discussion and Conclusion
2.1 Objective……………………………………………………………………..…..14
2.2 Strategy…………………………………………………………………….…….14
2.3 Apigenin Liposome Suspension……………………………………………..….15
2.4 Apigenin and Its Derivatives………………………………………………........17
2.4.1 Synthesis of Apigenin…………………………………………….……….20
2.4.2 Apigenin Derivatives……………………………………………………....20
2.4.2.1 Apigenin Glucosides………………………………………….....…20
2.4.2.2 Apigenin, Sulfate and Phosphate salts……………………………..21
2.4.2.3 Apigenin–Amino Acid Carbamates………………………………..22
2.5 Physical/Chemical Properties of Apigenin and Its Derivatives…………….....23
2.6 Biological Results—The Stracture-Activity Relationship of Flavonoids…..…..24
2.7 Conclusion…………………………………………………………………………29
Chapter 3 – Experimental Section
3.1 General Information…………………………………………………………….30
3.2 General Procedures for Compounds Preparation.…………...…………………32
3.3 Preparation and Physicochemical Characterization of Apigenin Liposome…45
3.3.1 Preparation of Apigenin Liposome…………………………………..……45
3.3.2 Determination of Particle Size………………………………………………45
3.3.3 Determination of Entrapment Efficiency…………………………………45
3.4 Measurement of Log P …………………………………………………………46
3.5 Measurement of Solubility………………………………………………………47
3.6 Luciferase Assay…………………………………………………………………47
References………………………………………………………………………..……48
Appendix………………………………………………………………………..……57
dc.language.isoen
dc.subject類黃酮zh_TW
dc.subjectflavonoidsen
dc.title設計與合成類黃酮衍生物及劑型優化zh_TW
dc.titleDesign and Synthesis of Flavonoid Derivatives and Formulation Optimizationen
dc.typeThesis
dc.date.schoolyear104-2
dc.description.degree碩士
dc.contributor.oralexamcommittee林淑華,許麗卿
dc.subject.keyword類黃酮,zh_TW
dc.subject.keywordflavonoids,en
dc.relation.page90
dc.identifier.doi10.6342/NTU201602488
dc.rights.note未授權
dc.date.accepted2016-08-12
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept藥學研究所zh_TW
顯示於系所單位:藥學系

文件中的檔案:
檔案 大小格式 
ntu-105-1.pdf
  未授權公開取用
2.67 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved