請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/19080完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 廖文正 | |
| dc.contributor.author | KUN-YING LEE | en |
| dc.contributor.author | 李昆穎 | zh_TW |
| dc.date.accessioned | 2021-06-08T01:44:25Z | - |
| dc.date.copyright | 2016-08-24 | |
| dc.date.issued | 2016 | |
| dc.date.submitted | 2016-08-16 | |
| dc.identifier.citation | 1.Abrams, D. A., “Tests of Bond between Concrete and Steel,” Bulletin No. 71, Engineering Experiment Station, University of Illinois, Urbana, Ill., 1913, pp. 105.
2.ACI 408 Committee, Bond and Development of Straight Reinforcing Bars in Tension (ACI 408R-03), American Concrete Institute, Detroit, Michigan, US, 2003, pp. 49. 3.ACI 408 Committee, Splice and Development Length of High Relative Rib Area Reinforcing Bars in Tension (408.3-01) and Commentary (408.3R-01), American Concrete Institute, Detroit, Michigan, US, 2003, pp. 49. 4.ACI Committee 318, Building Code Requirements for Structural Concrete and Commentary (ACI 318-14), American Concrete Institute, Farmington Hills, 2011. 5.Australian Standard for Concrete Structures. AS3600, North Sydney, Australia, 1994. 6.Azizinamini, A.; Stark, M.; Roller, J. H.; and Ghosh, S. K., “Bond Performance of Reinforcing Bars Embedded in High-Strength Concrete,” ACI Structural Journal, V. 90, No. 5, Sept.-Oct., 1993, pp. 554-561. 7.Azizinamini, A; Chisala, M.; and Ghosh, S. K., “Tension Development Length of Reinforcing Bars Embedded in High-Strength Concrete,” Engineering Structures, 1995. 8.Bamonte PF and Gambarova PG, High-bond in NSC and HSC: a study on size effect and on the local bond stress–slip law. Journal of Structural Engineering, ASCE 133(2), 2007, pp. 225–234. 9.Bazant ZP, Sener S. Size effect in pullout tests. ACI Mater J 1988;85(5):347–51. M. Baena et al. / Composites: Part B 40, 2009, pp. 784–797. 10. CEB-FIP, CEB-FIP Model Code for Concrete Structures, Thomas Telford, London, UK, 1990. 11.Chamberlin, S. J., “Spacing of Reinforcement in Beams,” ACI JOURNAL, Proceedings V. 53, No. 1, July, 1956, pp. 113-134. 12.Chamberlin, S. J., “Spacing of Spliced Bars in Beams,” ACI JOURNAL, Proceedings V. 54, No. 8, Feb., 1958, pp. 689-698. 13.Chao, S.-H., “Bond Characterization of Reinforcing Bars and Prestressing Strands in High Performance Fiber Reinforced Cementitious Composites under Monotonic and Cyclic Loading,” PhD dissertation, University of Michigan, Ann Arbor, MI, 2005, pp. 475. 14.Chinn, James; Ferguson, Phil M.; and Thompson, J. Neils, “Lapped Splices in Reinforced Concrete Beams, ”ACI Journal, Proceedings V. 52, No. 2, Oct. 1955, pp. 201-214. 15.Choi, Oan Chul; Hadje-Ghaffari, Hossain; Darwin, David; and McCabe, Steven L., “Bond of Epoxy-Coated Reinforcement to Concrete: Bar Parameters,” SL Report No. 90-1, University of Kansas Center for Research, Lawrence, Jan., 1990, pp. 43. 16.Choi, Oan Chul; Hadje-Ghaffari, Hossain; Darwin, David; and McCabe, Steven L., “Bond of Epoxy-Coated Reinforcement: Bar Parameters,” ACI Materials Journal , V. 88, No. 2, Mar.-Apr., 1991, pp. 207-217. 17.Chowdhury, S., “Early age bond strength of reinforcing bars in high strength concrete, ” Icsecm, 2013. 18.Clark, A. P., “Comparative Bond Efficiency of Deformed Concrete Reinforcing Bars,” ACI JOURNAL, Proceedings V. 43, No. 4, Dec., 1946, pp. 381-400. 19. Clark, A. P., “Bond of Concrete Reinforcing Bars,” ACI JOURNAL, Proceedings V. 46, No. 3, Nov., 1950, pp. 161-184. 20. Darwin, D.; McCabe, S. L;cCabe, Idun, E. K.; and Schoenekase, S. P., “Development Length Criteria: Bars Not Confined by Transverse Reinforcement”, ACI Structural Journal, vol. 89, no. 6, Nov.-Dec, 1992, pp. 709-720. 21. Darwin, D., and Graham, E. K., “Effect of Deformation Height and Spacing on Bond Strength of Reinforcing Bars,” ACI Structural Journal, V. 90, No. 6, Nov.-Dec., 1993a, pp. 646-657. 22. Darwin, David; Tholen, Michael L.; Idun, Emmanuel K.; and Zuo, Jun, “Splice Strength of High Relative Rib Area Reinforcing Bars,” SL Report 95-3, University of Kansas Center for Research, Lawrence, May, 1995a, pp. 58. 23. Darwin, D.; Tholen, M. L.; Idun, E. K.; and Zuo, J., “Splice Strength of High Relative Rib Area Reinforcing Bars,”ACI Structural Journal, V. 93, No. 1, Jan.-Feb., 1996a, pp. 95-107. 24. Desnerck, P., De Schutter, G. and Taerwe, L., “Bond behaviour of reinforcing bars in self-compacting concrete: Experimental determination by using beam tests”, Materials andStructures, Vol. 43, No. 1, 2010, pp. 53–62. 25. Devries, R. A.; Moehle, J. P.; and Hester, W., “Lap Splice Strength of Plain and Epoxy-Coated Reinforcement,” Report No. UCB/SEMM-91/02, University of California, Berkeley, Jan., 1991, pp. 86. 26.Esfahani, M. R.; and Rangan , B. V., “Bond Between Normal Strength and High-Strength Concrete (HSC) and Reinforcing Bars in Splices in Beams”, ACI Structural Journal, vol. 95, no. 3, May-Jun., 1998, pp. 272-280. 27. Ferguson, Phil M., and Thompson, J. Neils, “Development Length of High Strength Reinforcing Bars in Bond,” ACI JouRNAL, Proceedings V. 59, No. 7, July, 1962, pp. 887-922. 28.Ferguson, Phil M., and Breen, John E., 'Lapped Splices for High Strength Reinforcing Bars,' ACI Journal Proceedings V. 62, No. 9, Sept., 1965, pp. 1063-1078. 29.Ferguson, Phil M., and Briceno, A., 'Tensile Lap Splices-Part 1: Retaining Wall Type, Varying Moment Zone,' Research Report No. 113-2, Center for Highway Research, The University of Texas at Austin, July, 1969. 30.Ferguson, Phil M., and Krishnaswamy, C. N., 'Tensile Lap Splices-Part 2: Design Recommendations for Retaining Wall Splices and Large Bar Splices,' Research Report No. 113-3, Center for Highway Research, The University of Texas at Austin, Apr., 1971. 31.Goto, Yukimasa, “Cracks Formed in Concrete Around Deformed Tension Bars,” Journal of the American Concrete Institute, Proceedings Vol. 68, No. 4, Detroit, Michigan, April, 1971, pp. 244-251. 32.Hadi, M. N. S., “Bond of High Strength Concrete with High Strength Reinforcing Steel,” no. 3, 2008, pp. 143–147. 33. Harajli MH, Salloukh KA. Effect of fibers on development/splice strength of reinforcing bars in tension. ACI Mater J; 94(4):317_24, 1997. 34.Harajli MH., “Comparison of bond strength of steel bars in normal and high-strength concrete,” J Mater Civ Eng 16(4):365–374.doi:10.1061/(ASCE)0899-1561,16:4(365), 2004. 35.Hester, Cynthia J.; Salamizavaregh, Shahin; Darwin, David; and McCabe, Steven L., “Bond of Epoxy-Coated Reinforcement to Concrete: Splices,” SL Report 91-1, University of Kansas Center for Research, Lawrence, May, 1991, pp.66. 36.Hester, Cynthia J.; Salamizavaregh, Shahin; Darwin, David; and McCabe, Steven L., “Bond of Epoxy-Coated Reinforcement: Splices,” ACI Structural Journal, V. 90, No. 1, Jan.-Feb., 1993. pp. 89-102. 37. Hong, GH; Choi, DU; Choi, OC; and Hong, GS., “An Experimental Study on Bond Strength of High-Strength Reinforcing Bars with High Relative Rib Area,”KC Journal, V. 17, No. 3, Jun., 2005, pp. 375-384. 38. Hughes BP, Videla C., “Design criteria for early-age bond strength in reinforced Concrete,” Mater Struct; 25(152), 1992, pp. 445–63. 39.Li, Hai-Tao; Su Xiao-Zu; DEEKS, A J., “Evaluation of the adequacy of development length requirements for 500 MPa reinforcing bars [J].Advances in Structural Engineering,” 14(3), 2011, pp. 367−378. 40.Losberg, A.; and Olsson, P.-A., “Bond Failure of Deformed Reinforcing Bars Based on the Longitudinal Splitting Effect of the Bars,” ACI JOURNAL, Proceedings V. 76, No. 1, Jan., 1979, pp. 5-18. 41.Mains, R.M., “Measurement of the Distribution of Tensile and Bond Stresses Along Reinforcing Bars”, ACI Journal, V. 48, No. 3, Nov., 1951, pp. 225-252. 42.Mathey, Robert G.; Watstein; and David, “Investigation of Bond in Beam and Pull-Out Specimens with High-Yield-Strength Deformed Bars,” ACI JouRNAL, Proceedings V. 57, No. 9, Mar., 1961, pp. 1071-1090. 43.Mazumder ,M. H; Gilbert , R. I; and Chang , Z-T., “A reassessment of the analysis provisions for bond and anchorage length of deformed reinforcing bars in tension,” Bonfring Interantional Journal of Industrial Engineering and Management Science, vol. 2, Issue 4, 2012, pp. 01-08. 44.Metelli G., Plizzari G. “Influence of the relative rib area on bond behavior,” Magazine of Concrete Research. Vol.66:6; DOI: 10.1680/macr.13.00198, 2014, pp. 277-294. 45.Morris, G.J., “Experimental evaluation of local bond behaviour of deformed reinforcing bars in concrete structures,” University of Canterbury, 2015. 46.Nilson, A.H., “Internal Measurement of Bond Slip,” Journal of ACI, Vol. 69, Title No. 7, 1972, pp. 439-441. 47.Orangun, C.O., Jirsa, J.O., and Breen, J.E., “A Reevaluation of Test Data on Development Length and Splices”, ACI Structural Journal, V. 74, No. 3, 1977, pp.114-122. 48.Rehm, G., “Uber die Grunlagen des Verbundes Zwischen Stahl und Beton,” Deutscher Ausschuss fur Stahlbeton, No. 1381, 1961, pp. 59(C & CA Library Translation No. 134, 1968, “The Basic Principle of the Bond between Steel and Concrete.”) 49.Rezansoff, T.; Konkankar, U. S.; and Fu, Y. C., “Confinement Limits for Tension Lap Splices under Static Loading,” Report, Universityof Saskatchewan, Saskatoon. Rezansoff, T.; Akanni, A; and Sparling, Aug., 1991, pp. 24. 50.Rezansoff, T.; Akanni, A; and Sparling, B., “Tensile Lap Splices under Static Loading: Review of the Proposed ACI 318 Code Provisions,” ACI Structural Journal, V. 90, No. 4, July-Aug., 1993, pp. 374-384. 51.Silva Filho, L. C .P. ; Vale Silva, B. ; Dal Bosco, V. I. ; Gomes, L. E. S. ; Barbosa, M.P. ; Lorrain, M. S. Analysis of the influence of rebar geometry variations on bonding strength in the pull-out test. In: Bond in Concrete 2012 - Bond, Anchorage, Detailing. Fourth International Symposiumn BIC/FIB, rescia, Italy, 2012. 52.Song, X.B.; Wu, Y.J.; Gu, X.L., “Bond behaviour of reinforcing steel bars in early age concrete,” Constr. Build. Mater.94, 2015, pp. 209–217. 53.Soretz, S., and Holzenbein, H., “Influence of Rib Dimensions of Reinforcing Bars on Bond and Bendability,” ACI JOURNAL, Proceedings V. 76, No. 1, Jan., 1979, pp. 111-127. 54.Thompson, M. A.; Jirsa, J. O.; Breen, J. E.; and Meinheit, D. F., “Behavior of Multiple Lap Splices in Wide Sections,” Research Report No. 154-1, Center for Highway Research, University of Texas at Austin, Feb., 1975, pp. 75. 55.Thompson, M. K., “The Anchorage Behavior of Headed Reinforcement in CCT Nodes and Lap Splices,” PhD dissertation, University of Texas at Austin, Austin, TX, 2002, pp. 502. 56.Zekany, A. J.; Neumann, S.; and Jirsa, J. O., “Influence of Shear on Lapped Splices in Reinforced Concrete,” Research Report No. 242-2, Center for Transportation Research, Bureau of Engineering Research, University of Texas at Austin, July, 1981, pp. 88. 57.Zuo, J., and Darwin, D., “Bond Strength of High Relative Rib Area Reinforcing Bars,” SM Report No. 46, University of Kansas Center for Research, Lawrence, Kans., 1998, pp. 350. 58.Zuo, J., and Darwin, D., “Splice Strength of Conventional and High Relative Rib Area Bars in Normal and High-Strength Concrete,” ACI Structural Journal, V. 97, No. 4, July-Aug., 2000, pp. 630-641. 59.“An Investigation of the Bond of Deformed Steel Bars with Concrete (Onderzoek naar de Samenwerking van geprofileerd staal met beton) , ” CUR Report No. 23, Netherlands Committee for Concrete Research, Zoetermeer, 1961. Also, C&CA Library Translation No. Cj112, Cement and Concrete Association, London. 60.紀凱甯,「潤弘精密工程事業股份有限公司汙染鋼筋握裹試驗研究」,財團法人國家實驗研究院國家地震工程研究中心試驗成果報告,2013。 61.中華民國國家標準規範(CNS),ICS 77.140.60,「鋼筋混凝土用鋼筋」,總號:560,類號:A2006,2002。 62.台灣混凝土學會(TCI),「鋼筋混凝土用鋼筋:Steel bars for Concrete Reinforcement-SD550W、SD685、SD785」,新高強度鋼筋混凝土技術委員會報告,2014。 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/19080 | - |
| dc.description.abstract | 握裹應力為鋼筋與混凝土表面間的剪應力,是鋼筋混凝土中最基本且重要的力學關係,藉由良好的握裹應力將鋼筋與混凝土連結互鎖,形成預期的複合材料結構共同抵抗外力。其中,鋼筋表面之相對節面積Rr為影響鋼筋與混凝土間握裹應力的重要因素,美國ACI 408委員會建議竹節鋼筋之相對節面積Rr 值應介於0.10 至0.14 間,以確保握裹性能。
本研究主要針對工程上廣泛採用的竹節鋼筋進行研究,探討不同相對節面積Rr之SD420W竹節鋼筋與普通/高強度混凝土間之握裹行為,目的在驗證ACI 318-14 設計規範所建議的伸展長度公式是否可適用,並進而建構本土竹節鋼筋之直線伸展長度設計公式。本研究共設計12組握裹試體,鋼筋採用SD420W 材質之竹節鋼筋,混凝土設計抗壓強度為42 MPa和80MPa,研究參數包括鋼筋號數、相對節面積Rr與劈裂指標限制等,並模擬真實梁構件受力情形,採用考慮撓曲應力與剪應力效應之試驗裝置。由試驗結果顯示,不論在普通或高強度混凝土方面,依據ACI 318-14所建議之直線伸展長度設計公式,#8及#10 SD420W竹節鋼筋在美國ACI 408委員會建議之Rr下限值0.1以上均可提供足夠之握裹強度,並建議將Rr下限值下修至0.08,且現行規範適用於竹節鋼筋之劈裂指數上限值2.5有其必要性,以確保握裹性能。本研究之混凝土強度上限值為85MPa,更高強度混凝土之相關試驗,將偕同本研究供後續台灣New RC細部設計參考。 本研究也從國際上蒐集過去文獻之握裹試驗結果,整理成資料庫,一方面與國外學者提出之握裹強度預測公式一一比較精確性,另一方面以資料庫迴歸建立鋼筋混凝土梁之握裹強度預測模型。 | zh_TW |
| dc.description.abstract | The bond characteristics of reinforcing steel bars embedded in concrete matrices play a major role in the behavior of reinforced concrete structural members. Bond refers to the interaction between reinforcing steel and the surrounding concrete that allows for transfer of tensile stress from the steel into the concrete. Composite action between concrete and reinforcing bars cannot occur without bond. The relative rib area is one of important factors of reinforcing bar rib geometry affecting bond strength. ACI committee 408 suggested that value of relative rib area is at least 0.10, but no larger than 0.14, in order to ensure bond behavior of reinforced concrete.
This paper focuses on a basic issue of bond behavior between SD420W deformed rebar with different relative rib area and ordinary/high-strength concrete. It is one of the most important objectives in this study to verify the suitability of a straight development length proposal by ACI 318-14 code, and then establish a proper design model of straight development length between commercial deformed rebar in Taiwan and ordinary/high-strength concrete. In this study, twelve beam specimens were designed and the study parameters of them include bar size, relative rib area, splitting index. The concrete strength were designed as 42 MPa in ordinary-strength concrete and 80 MPa in high-strength concrete. A bond experiment with beam specimens considering combined effects of moment and shear was conducted. Test results indicated that both ordinary- and high-strength concrete neglecting the limitation of 70 MPa of concrete required by ACI 318-14, the straight development lengths based on the equation of the ACI 318-14 were enough to develop corresponding reinforcement strengths for both reinforcements of #8 and #10 whose value of relative rib area equal and large than 0.8. Nevertheless, the upper limitation of concrete strength was 85MPa. In order to ensure bond behavior required by ACI 318-14, the upper limitation of splitting index equal to 2.5 was essential for specimens with deformed rebar. On the other hand, the study also collected bond tests from international literatures and build data bases, in order to verify accuracy of bond stress prediction models overseas and to build bond stress prediction model for beam test. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-08T01:44:25Z (GMT). No. of bitstreams: 1 ntu-105-R03521255-1.pdf: 13530482 bytes, checksum: 5e8db145ce85b20eaff653b00c3d4e01 (MD5) Previous issue date: 2016 | en |
| dc.description.tableofcontents | 目錄
目錄 v 表目錄 xii 圖目錄 xv 照片目錄 xxi 參數對照表 xxv 第一章 緒論 1 1.1 動機與目的 1 1.2 研究範圍與內容 1 第二章 文獻回顧 3 2.1 鋼筋與混凝土間握裹應力 3 2.1.1 握裹應力的定義 3 2.1.2 影響握裹應力的因素 6 2.1.3 平均握裹應力與混凝土抗壓強度間的關係 12 2.2 鋼筋表面的幾何性質 14 2.2.1 相對節面積的定義 14 2.2.2 相對節面積與平均節高對平均節距之比值間的關係 14 2.3 相對節面積對於平均握裹應力的影響與建議值 15 2.3.1 Abrams (Abrams, 1913) 15 2.3.2 Clark (Clark, 1946; Clark, 1949) 15 2.3.3 Rehm (Rehm, 1961) 17 2.3.4 Losberg and Olsson (Losberg et al., 1979) 17 2.3.5 Soretz and Holzenbein (Soretz et al., 1979) 17 2.3.6 Darwin and Graham (Darwin et al., 1993) 18 2.3.7 ACI 408 (ACI 408.3-01/3R-01, 2003) 18 2.3.8 Metelli and Plizzari (Metelli et al., 2014) 18 2.3.9 GH Hong, DU Choi, OC Choi and GS Hong (Hong et al., 2005) 20 2.4 高強度混凝土 22 2.4.1 高強度混凝土的性質 22 2.4.2 高強度混凝土的優點 23 2.5 國內對於竹節鋼筋的規範 23 2.5.1 CNS 560 (CNS-560, 2002) 23 2.5.2 TCI新高強度鋼筋混凝土技術委員會報告 (TCI, 2014) 25 2.6 鋼筋直線伸展長度設計公式 25 2.6.1 ACI 318-14 (ACI 318, 2014) 26 2.6.2 ACI 408 (ACI 408.3-01/3R-01, 2003) 26 2.6.3 CEB-FIP 2010 (CEB-FIP, 2010) 26 2.7 潤弘精密工程試驗股份有限公司試驗成果報告 26 2.7.1 汙染鋼筋握裹試驗研究 (紀凱甯, 2013) 26 2.8 鋼筋與混凝土間握裹強度預測公式 27 2.8.1 Orangun, Jirsa and Breen (Orangun et al., 1977) 27 2.8.2 Darwin, McCabe, Idun and Schoenekase (Darwin et al., 1992) 28 2.8.3 Australian Standard 3600 (AS3600, 1994) 28 2.8.4 Esfahani and Rangan (Esfahani et al., 1998) 29 2.8.5 Hadi (Hadi, 2008) 29 2.8.6 ACI 318-14 (ACI 318, 2014) 30 第三章 試驗計畫 31 3.1 試驗背景 31 3.2 試驗材料及配比 31 3.2.1 試驗材料 31 3.2.2 試驗配比 32 3.3 梁試體設計 33 3.3.1 設計細節 33 3.4 試驗儀器與設備 42 3.4.1 測試系統 42 3.4.2 內部量測系統 42 3.4.3 外部量測系統 44 3.4.4 其他相關設備 44 3.5 梁試體製作 47 3.5.1 應變計黏貼 47 3.5.2 試體澆置 48 3.6 試驗流程 52 3.6.1 試驗前置 52 3.6.2 試驗進行與結束 54 第四章 試驗結果 55 4.1 材料試驗 55 4.1.1 普通強度混凝土及高強度混凝土 55 4.1.2 普通強度鋼筋 56 4.2 梁握裹試驗 57 4.2.1 伸展長度供需比、握裹力量降伏比及握裹效益比表現 58 4.2.2 試體破壞情形與破壞模式 63 4.2.3 握裹區段主筋和箍筋受拉應變情形 79 4.2.4 力量滑移曲線 80 第五章 分析與比較 81 5.1 相對節面積對平均握裹應力與正規化平均握裹應力之影響 81 5.2 劈裂指數限制對握裹效益比之影響 83 5.3 主筋號數對平均握裹應力之影響 84 5.4 直線伸展長度比較 85 5.5 本土竹節鋼筋直線伸展長度設計公式之建議 86 5.5.1 相對節面積及平均節高對平均節距的比值之下限值 86 5.5.2 混凝土抗壓強度之上限值 87 5.5.3 本土竹節鋼筋直線伸展長度設計公式 87 第六章 資料庫建立 89 6.1 資料蒐集 89 6.1.1 直接拉拔試驗 90 6.1.2 梁非搭接試驗 104 6.1.3 梁搭接試驗 110 6.1.4 綜合比較 126 6.2 資料整理 126 6.2.1 梁非搭接試驗 128 6.2.2 梁搭接試驗 136 第七章 資料分析 142 7.1 現有握裹強度預測公式分析 142 7.1.1 Orangun, Jirsa and Breen 142 7.1.2 Darwin, McCabe, Idun and Schoenekase 144 7.1.3 Australian Standard 3600 146 7.1.4 Esfahani and Rangan 148 7.1.5 Hadi 152 7.2 各預測公式預測結果比較 156 7.2.1 Orangun, Jirsa and Breen 156 7.2.2 Darwin, McCabe, Idun and Schoenekase 156 7.2.3 Australian Standard 3600 157 7.2.4 Esfahani and Rangan 157 7.2.5 Hadi 158 7.3 各預測公式預測結果綜合比較 158 第八章 預測模型 160 8.1 適用範圍 160 8.2 鋼筋混凝土梁握裹強度預測模型(1) 161 8.2.1 設計流程 161 8.2.2 鋼筋混凝土梁握裹強度預測模型 164 8.2.3 鋼筋混凝土梁握裹強度預測模型驗證 164 8.3 鋼筋混凝土梁握裹強度預測模型(2) 166 8.3.1 設計流程 166 8.3.2 鋼筋混凝土梁握裹強度預測模型 167 8.3.3 鋼筋混凝土梁握裹強度預測模型驗證 168 8.4 預測模型綜合比較 169 第九章 結論與建議 171 9.1 結論 171 9.2 建議 172 參考文獻 ... 174 附錄A汙染鋼筋握裹試驗.. 180 附錄B試驗材料規格.. 182 附錄C試驗架構詳細配置圖.. 189 附錄D試體模板組立參考文獻 .. 191 附錄E試體應變計數據參考文獻 .. 197 | |
| dc.language.iso | zh-TW | |
| dc.subject | 握裹試驗 | zh_TW |
| dc.subject | 高強度混凝土 | zh_TW |
| dc.subject | 鋼筋混凝土 | zh_TW |
| dc.subject | 握裹應力 | zh_TW |
| dc.subject | 伸展長度 | zh_TW |
| dc.subject | 劈裂指數 | zh_TW |
| dc.subject | 竹節鋼筋 | zh_TW |
| dc.subject | 相對節面積 | zh_TW |
| dc.subject | high-strength concrete | en |
| dc.subject | bond test | en |
| dc.subject | reinforced concrete | en |
| dc.subject | splitting index | en |
| dc.subject | relative rib area | en |
| dc.subject | deformed rebar | en |
| dc.subject | development length | en |
| dc.subject | bond stress | en |
| dc.title | 不同相對節面積的竹節鋼筋於普通與高強度混凝土中之握裹行為研究 | zh_TW |
| dc.title | Bond Behavior of Deformed Reinforcement with Different Relative Rib Area in Normal and High Strength Concrete | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 104-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 詹穎雯,李宏仁,林克強 | |
| dc.subject.keyword | 鋼筋混凝土,握裹應力,伸展長度,竹節鋼筋,相對節面積,劈裂指數,高強度混凝土,握裹試驗, | zh_TW |
| dc.subject.keyword | reinforced concrete,bond stress,development length,deformed rebar,relative rib area,splitting index,high-strength concrete,bond test, | en |
| dc.relation.page | 208 | |
| dc.identifier.doi | 10.6342/NTU201602243 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2016-08-16 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 土木工程學研究所 | zh_TW |
| 顯示於系所單位: | 土木工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-105-1.pdf 未授權公開取用 | 13.21 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
