請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/19056完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 宋聖榮(Sheng-Rong Song) | |
| dc.contributor.author | Yi-Hua Huang | en |
| dc.contributor.author | 黃怡華 | zh_TW |
| dc.date.accessioned | 2021-06-08T01:43:37Z | - |
| dc.date.copyright | 2016-09-13 | |
| dc.date.issued | 2016 | |
| dc.date.submitted | 2016-08-16 | |
| dc.identifier.citation | 英文部分
Barrett, R. A., and Parsons, S. A. (1998). The influence of magnetic fields on calcium carbonate precipitation. Water Research, 32(3), 609-612. Birkle, P., and Merkel, B. (2002). Mineralogical–chemical composition and environmental risk potential of pond sediments at the geothermal field of Los Azufres, Mexico. Environmental Geology, 41(5), 583-592. Bozau, E., and van Berk, W. (2013). Hydrogeochemical modeling of deep formation water applied to geothermal energy production. Procedia Earth and Planetary Science, 7, 97-100. Brown, D. W., Duchane, D. V., Heiken, G., and Hriscu, V. T. (2012). Mining the earth's heat: hot dry rock geothermal energy. Springer Science and Business Media. Chandler A., Swanberg C. A., and Morgan, P. (1980). The Silica Heat Flow Interpretation Technique: Assumptions and Applications. Journal of Geophysical Research, 85, 7206-7214. Chen, H.F., Chang, Y.P., Kao, S.J., Chen, M.T., Song, S.R., Kuo, L.W., Wen, S.Y., Yang, T.N. and Lee, T.Q. (2011). Mineralogical and geochemical investigations of sediment-source region changes in the Okinawa Trough during the past 100 ka (IMAGES core MD012404). Journal of Asian Earth Sciences 40, 1238-1249. Dalas, E., and Koutsoukos, P. G. (1989). The effect of magnetic fields on calcium carbonate scale formation. Journal of Crystal Growth, 96(4), 802-806. Dobson, P. F., Salah, S., Spycher, N., and Sonnenthal, E. L. (2004). Simulation of water–rock interaction in the Yellowstone geothermal system using TOUGHREACT. Geothermics, 33(4), 493-502. Dove, P. M., and Crerar, D. A. (1990). Kinetics of quartz dissolution in electrolyte solutions using a hydrothermal mixed flow reactor. Geochimica et Cosmochimica Acta, 54(4), 955-969. Duan, Z. and Li, D. (2008). Coupled phase and aqueous species equilibrium of the H2 O–CO2 –NaCl–CaCO3 system from 0 to 250 C, 1 to 1000 bar with NaCl concentrations up to saturation of halite. Journal of Geochimica et Cosmochimica Acta, 72 . 5128–5145 Faust, S. D. and Aly, O. M. (1999). Chemistry of Water Treatment 2nd Edition. Chap. 6. Removal of Particulate Matter by Coagulation. LEWIS. Folk,R.L. (1974). The natural history of crystalline calcium carbonate: Effect of magnesium content and salinity. J.Sediment Petrol, 44, pages 40-53 Fournier, R.O. (1979). A revised equation for the Na/K geothermometer. Geothermal Resources Council Transactions 3, 221-224. Fournier, R. O. (1985). Carbonate transport and deposition in the epithermal environment. In Geology and Geochemistry of Epithermal Systems (Vol. 2, pp. 63-72). Soc. Econ. Geol. Rev. Fournier, R.O. and Rowe, J.J. (1966). Estimation of underground temperatures from the silica content of water from hot springs and wet-steam wells. American Journal of Science 264, 685-697. Freyer, D., and Voigt, W. (2003). Crystallization and phase stability of CaSO4 and CaSO4–based salts. Monatshefte für Chemie/Chemical Monthly, 134(5), 693-719. Gaus, I., M. Azaroual, and I. Czernichowski-Lauriol,(2005). Reactive transport modelling of the impact of CO2 injection on the clayey cap rock at Sleipner (North Sea), Chemical Geology, 217(3−4), 319−337. Gu, L.X., and Vokes, F.M. (1996). Intergrowths of hexagonal and monoclinic pyrrhotites in some sulphide ores from Norway. Mineralogical Magazine, 60(399), 303-316. Hasson, D., and Bramson, D. (1985). Effectiveness of magnetic water treatment in suppressing calcium carbonate scale deposition. Industrial and Engineering Chemistry Process Design and Development, 24(3), 588-592. Higashitani, K., Kage, A., Katamura, S., Imai, K., and Hatade, S. (1993). Effects of a Magnetic Field on the Formation of CaCO3 Particles. Journal of Colloid and Interface Science, 156(1), 90-95. Hershey, J.P., Millero, F.J. (1986). The dependence of the acidity constants of silicic acid on NaCl concentration using Pitzer’s equations. Mar. Chem., 18: 101– 105. Jacobo, P., Guerra, E., Cartagena, H., Hernández, B., and Santa Tecla, L. L. (2012). Calcite inhibition in the Ahuachapan geothermal field, El Salvador. 001226914. Kennedy, G.C. (1950). A portion of the system silica-water. Economic Geology, 45, 629-653. Kobe, S., Drazic, G., McGuiness, P. J., and Strazisar, J. (2001). TEM examination of the influence of magnetic field on the crystallisation form of calcium carbonate: A magnetic water-treatment device. Acta Chimica Slovenica, 48(1), 77-86. Lagat, J. (2007). Hydrothermal alteration mineralogy in geothermal fields with case examples from Olkaria domes geothermal field, Kenya. Short Course II on Surface Exploration for Geothermal Resources. Organized by UNUGTP and KenGen, at Lake Naivasha, Kenya, 2e17. Lu, H. Y., Lin, C. K., Lin, W., Liou, T. S., Chen, W. F., and Chang, P. Y. (2011). A natural analogue for CO 2 mineral sequestration in Miocene basalt in the Kuanhsi-Chutung area, Northwestern Taiwan. International Journal of Greenhouse Gas Control, 5(5), 1329-1338. McMurry, J., and Fay, R. C. (2004). McMurry fay chemistry. Moncada, D., Mutchler, S., Nieto, A., Reynolds, T. J., Rimstidt, J. D., and Bodnar, R. J. (2012). Mineral textures and fluid inclusion petrography of the epithermal Ag–Au deposits at Guanajuato, Mexico: Application to exploration. Journal of Geochemical Exploration, 114, 20-35. Pátzay, G., Stáhl, G., Karman, F. H., and Kálmán, E. (1998). Modeling of scale formation and corrosion from geothermal water. Electrochimica Acta, 43(1), 137-147. Peng, X. Y., Wang, Y. Y., Chai, L. Y., and Shu, Y. D. (2009). Thermodynamic equilibrium of CaSO 4-Ca (OH) 2-H 2 O system. Transactions of Nonferrous Metals Society of China, 19(1), 249-252. Reyes, A. G. (1990). Petrology of Philippine geothermal systems and the application of alteration mineralogy to their assessment. Journal of Volcanology and Geothermal Research, 43(1), 279-309. Rimstidt, J. D. (1982). Geothermal mineralization I: The mechanism of formation of the Beowawe, Nevada siliceous sinter deposit (Doctoral dissertation, University of Utah). Rose, P., Xu, T., Kovac, K., Mella, M., and Pruess, K. (2007). Chemical stimulation in near-wellbore geothermal formations: silica dissolution in the presence of calcite at high temperature and high pH. In Proceedings of Thirty-Second Workshop on Geothermal Reservoir Engineering, Stanford University, Stanford, California. Siega, F. L. (2005). Calcite scale inhibition in Mahanagdong wells of the Leyte geothermal production field, Philippines. In Transactions-Geothermal Resources Council, Geothermal Resources Council Transactions-GRC 2005 Annual Meeting, 29, 707-712. Sumin, Z., and Kan, Z. (2015). Formation Mechanism and Control Techniques of Calcium Carbonate Scale in the Langjiu Geothermal Field Tibet. Proceedings World Geothermal Congress. Melbourne, Australia. van der Weijden, C. H. Cahiers of Geochemistry Silica I: Silicon Analytical, Physical and Terrestrial Geochemistry. Whelan, J. F., Paces, J. B., and Peterman, Z. E. (2002). Physical and stable-isotope evidence for formation of secondary calcite and silica in the unsaturated zone, Yucca Mountain, Nevada. Applied Geochemistry, 17(6), 735-75 White, D.E., Brannock, W.W. and Murata, K.J. (1956). Silica in hot-spring waters. Geochimica et Cosmochimica Acta 10, 27-59. Worden, R.H., and S.A. Barclay, (2000). Internally-sourced quartz cement due to externally-derived CO2 in sub-arkosic sandstones, North Sea, Journal of Geochemical Exploration, 69, 645−649. Xu, T., Sonnenthal, E., Spycher, N., and Pruess, K. (2003). Using toughreact to model reactive fluid flow and geochemical transport in hydrothermal systems. Lawrence Berkeley National Laboratory. Yanagisawa, N. (2015). Case Study of Calcium Carbonate Scale at EGS and Hot Spring Binary System. In Proceedings World Geothermal Congress. 中文部分 工業技術研究院能源與礦業研究所 (1978) 臺灣地熱資源探勘工作報告之四,經濟部水資源局。 工業技術研究院 (2010) 地熱發電技術開發及多目標利用推動計畫(第二年度),經濟部能源科技研究發展計畫97年度執行報告,共417頁。 工業技術研究院 (2011) 地熱能源永續利用及深層地熱發電技術開發計畫(第二年度),經濟部能源科技研究發展計畫100年度執行報告,共202頁。 中國石油公司 (1976~1986) 清水地熱探井地下地質報告。 朱子涵、李明遠、林梅钦、彭勃與孫亮 (2011) 儲層中 CO2-水-岩石相互作用研究進展, 礦物岩石地球化學通報,第 30卷,第1期,第104-112頁。 何春蓀 (1986) 臺灣地質概論:臺灣地質圖說明書,經濟部中央地質調查所。 吳永助與張寶堂 (1976) 清水土場地熱區及其外圍之地質,礦業技術,第14卷,第12期,第484-489頁。 吳志高 (2002) 磁場對碳酸鈣晶體成長速率之影響,臺灣大學化學工程學研究所碩士論文,共123頁。 宋聖榮 (2012) 宜蘭清水地熱能源研究:探勘技術平台的建立與深層地熱(3/3) 101年度期末報告,行政院國家科學委員會能源型國家科技計畫。 宋聖榮與地熱探勘團隊 (2016) 臺灣東北部宜蘭地熱區的熱源,自然科學簡訊,第28卷,第2期,第52-59頁。 宋聖榮與劉佳玫 (2003) 臺灣的溫泉。遠足文化事業有限公司。共202頁。 李洪岭與司捷 (1994) 二氧化碳碳化法去除硫酸钙工藝研究,無機鹽工業,第6卷,第22-25頁。 李清瑞、韓吟龍、江道義 (2012) 清水地熱區儲集層參數研究及發電潛能評估,臺灣鑛業,第64卷,第1期,第9-17頁。 李麗君 (2003) 奈米石英之合成研究,國立臺灣大學地質科學研究所博士論文,共172頁。 周明顯 (1983) 清水地熱井地熱水管路水垢形成特性及防垢處理研究,經濟部七十二年度研究發展專題。 林啟文與林偉雄 (1995) 三星圖幅,五萬分之ㄧ臺灣地質圖及說明書第15號,經濟部中央地質調查所。 林錦仁 (2000) 宜蘭清水地熱開發之探討,石油季刊,第36卷,第一期,第29-38頁。 英萬 (2012) 大地電磁影像加強了解地熱構造:宜蘭清水地熱案例,國立中央大學地球物理研究所碩士論文,共74頁。 彭永弘 (1997) 磁場對碳酸鈣在流體化床中成長動力之研究,國立臺灣大學化學工程學研究所碩士論文,共100頁。 張堯婷 (2011) 超臨界二氧化碳–水–長石系統之礦物及化學反應,國立成功大學地球科學所碩士論文,共96頁。 許豔梅 (2010) 低頻交變磁場對水中碳酸鈣結晶過程的影響,冶金設備,2010特刊,第1期。 陳培源、劉德慶、黃怡禎 (2004) 臺灣之礦物,經濟部中央地質調查所發行,共415頁。 陳肇夏 (1989) 臺灣的溫泉和地熱,地質,第9卷,第2期,第327-340頁。 曾長生 (1978) 宜蘭縣清水及土場區地質及地熱產狀,臺灣石油地質,第15號,第11-23頁。 黃旭燦與莊恭周 (1986) 清水地熱區熱水蝕變礦物與熱流系統之研究,石油鑽採工程,第27期,第181-210頁。 黃秉鈞 (1980) 地熱水在各種管路中的水垢形成特性及其化學清洗實驗,工業研究中心。 齊金生、孟憲級與白麗萍 (1998) 誘垢載體沉積式除垢技術的研究,工業水處理,第18卷第1期,第12-13頁。 劉明言與朱家玲(2011)地熱能利用中的防腐防垢研究進展,地熱能,第六卷,第11-14頁。 劉崇成 (2009) 磁場、溫度與雜質對方解石晶體成長之影響,國立臺灣大學碩士論文。 劉華林 (2016) 利用高壓熱水反應器探討地質溫度計在板岩區之應用,國立臺灣海洋大學碩士論文,共77頁。 蔡騰龍 (1993) 冷卻水腐蝕水垢抑制論,正文發行。 龍慧容 (2012) 二氧化碳−水−砂岩系統之反應實驗,國立成功大學地球科學所碩士論文,共115頁。 駱芳琳 (2014) 由岩石水熱反應模擬化學風化作用之礦物變化與元素遷移,國立臺灣海洋大學碩士論文,共90頁。 盧建中、羅偉、劉佳玫 (2011) 宜蘭清水地熱區之地質構造,西太平洋地質科學,第11卷,第49-64頁。 盧乙嘉與宋聖榮 (2011) 臺灣綠能生力軍--清水地熱再出發,地質,第30卷,第3期,第32-36頁。 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/19056 | - |
| dc.description.abstract | 礦物結垢乃是目前地熱發電利用上遭遇之瓶頸,過去宜蘭清水地熱電廠正因為結垢問題嚴重而終致關廠。地熱電廠中產生之主要結垢種類為碳酸鈣與二氧化矽。為了避免使用化學藥劑對儲集層和環境所造成的汙染,本研究藉由模擬結垢形成來尋求如何防治結垢之方法。
本研究利用自行設計之高壓熱水反應器,以板岩、純水與二氧化碳進行清水地熱區之儲集層模擬實驗 (R),以及結垢模擬實驗 (S)。R部分實驗以單槽反應模擬不同壓力下300℃時之儲集層狀態。S部分實驗模擬溫泉水由儲集層上升至地表時不同階段的溫度、壓力狀態。反應後進行水溶液化學分析,並以SEM-EDS觀察次生沉澱物。 R部分實驗結果顯示在300℃時會生成大量黏土礦物與黃鐵礦,壓力達277 bar時會出現少量六方晶系之磁黃鐵礦,指示壓力增加有助於岩石中的鐵溶解,促成磁黃鐵礦形成。S部分實驗儲集層模擬條件設定於200℃,在飽和水蒸氣壓的條件下可形成碳酸鈣、硫酸鈣及伊萊石。通入過量二氧化碳壓力至200 bar以上會增加大部份礦物的溶解度,除了碳酸鈣和硫酸鈣消失,其他次生礦物的量也明顯減少。若將二氧化碳灌入地層或生產井中或許可以抑制碳酸鈣和硫酸鈣結垢生成,甚至溶解已結垢在地層中之碳酸鈣。然而本研究將模擬結果和清水地熱區現地溫泉水,成份差異很大,其中HCO3-與Na+、K+離子明顯偏低。未來應以碳酸氫鈉水溶液模擬溫泉水與板岩之反應,應可獲得更多碳酸鈣沉澱,並進一步探討二氧化碳對結垢抑制的效果。二氧化矽結垢部分,壓入二氧化碳造成反應後溶液Si4+濃度超過非晶質二氧化矽飽和濃度。溫度越低,產生沉澱物的時間越長,生成的非晶質二氧化矽更多。未來可評估各地二氧化矽濃度來設計熱交換器之工作流體使用溫度。 | zh_TW |
| dc.description.abstract | Mineral scaling is a major problem for geothermal power plants. Serious scaling was the key factor for shutting down the Chingshui geothermal power plant. Carbonates and silicas are the most common precipitated minerals as scaling in a geothermal system. To avoid the pollution of chemical inhibitors, our studies focus on hydrothermal experiments using high pressure thermal vessel to simulate the mineral precipitation and test how to prevent the mineral scaling.
This study chose the Chingshui geothermal area as the target objects. Pure water and saturated CO2 with slates are the starting materials in our experiments. In reservoir simulation experiments (R), single autoclave was used to simulate the roles of pressure at 300℃. In scale simulation experiments (S), three autoclaves have been applied to simulate the different steps when hot water raise up from reservoir to surface. Finally, we analyze the solution by the IC and ICP-AES, and precipitated minerals by SEM-EDS. Experiments R show that large amounts of secondary chlorite and pyrite appeared at 300℃. When the pressure was up to 277 bars, hexagonal pyrrhotite occurred due to the higher pressure dissolving with more Fe. Calcite, gypsum and illite are the major products at saturated water vapor with pressure at 200℃ in the experiment S. When we injected CO2 with pressure of 200 bars into the system, calcite and gypsum disappeared and other secondary precipitated minerals decreased obviously. Therefore, if the CO2 injected into the reservoir or production well, the CaCO3 and CaSO4 deposits will inhibit and scaling dissolve again in reservoir. However, the concentrations of HCO3-, Na+ and K+ of solutions in our experiments were lower than the ones of thermal water in the Chinshui geothermal area. In the future, the NaHCO3 solution should design for experiments to get more CaCO3 precipitations. Meanwhile, more experiments need to be design to understand the effects of CO2 on scaling prevention in the future. For the silica scale, the Si4+ concentration is more oversaturated than the solubility of amorphous silica, if we inject CO2 to the system. Accordingly, amorphous silica would deposit as scaling. Therefore, concentration of the Si4+ is an important parameter for designing a heat exchanger with different temperature. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-08T01:43:37Z (GMT). No. of bitstreams: 1 ntu-105-R02224109-1.pdf: 6889502 bytes, checksum: f1a6234829748a99b708ea9205dd4b88 (MD5) Previous issue date: 2016 | en |
| dc.description.tableofcontents | 誌謝 i
摘要 ii Abstract iii 目錄 v 圖目錄 viii 表目錄 xi 第一章 緒論 1 1.1 研究背景 1 1.1.1 清水地熱電廠 1 1.1.2 清水地熱區儲集層性質 2 1.2 前人研究 4 1.2.1 礦物結垢 4 1.2.2 結垢抑制 10 1.3 研究目的 15 第二章 研究材料與方法 16 2.1 研究材料 16 2.2 分析方法與儀器介紹 16 2.2.1高壓熱水反應器 17 2.2.2 沉澱物分析 19 2.2.3水樣分析 23 2.3 實驗方法 27 第三章 結果 31 3.1 實驗條件與預期結果 31 3.1.1R.單槽儲集層模擬實驗 31 3.1.2 S. 結垢模擬實驗 31 3.2 原岩分析結果 33 3.2.1 XRF 33 3.2.2 XRD 35 3.3 水樣分析結果 37 3.4 SEM、EDS沉澱物分析結果 39 3.4.1 R部分實驗 39 3.4.2 S部分實驗 44 第四章 討論 52 4.1 沉澱物分析 52 4.1.1 硫化鐵 52 4.1.2 碳酸鈣 53 4.1.3 硫酸鈣 55 4.1.4 二氧化矽 55 4.1.5 含鐵矽鋁氧化物與矽鋁氧化物 57 4.1.6 沉澱物分析總結 61 4.2 純水實驗與加入二氧化碳結果之差異 63 4.3 結垢實驗與清水地熱區結果之比較 65 4.3.1 礦物結垢 65 4.3.2 水化學 68 4.4 結垢實驗流程檢討 72 4.4.1 材料 72 4.4.2 壓力控制 75 4.4.3 實驗天數 75 4.5 以灌入二氧化碳作為結垢抑制之方法 76 第五章 結論 77 參考文獻 78 附錄一 88 附錄二 91 附錄三 98 | |
| dc.language.iso | zh-TW | |
| dc.subject | 結垢 | zh_TW |
| dc.subject | 二氧化矽 | zh_TW |
| dc.subject | 碳酸鈣 | zh_TW |
| dc.subject | 二氧化碳 | zh_TW |
| dc.subject | 地熱 | zh_TW |
| dc.subject | carbon dioxide | en |
| dc.subject | silica | en |
| dc.subject | scaling | en |
| dc.subject | calcium carbonate | en |
| dc.subject | geothermal | en |
| dc.title | 板岩-二氧化碳-水反應後之礦物結垢模擬 | zh_TW |
| dc.title | Simulating Mineral Scaling in Slate-CO2-Water Interactions | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 104-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.coadvisor | 陳惠芬(Huei-Fen Chen) | |
| dc.contributor.oralexamcommittee | 江威德(Wei-Teh Jiang),郭力維(Li-Wei Kuo) | |
| dc.subject.keyword | 地熱,二氧化碳,結垢,碳酸鈣,二氧化矽, | zh_TW |
| dc.subject.keyword | geothermal,carbon dioxide,scaling,calcium carbonate,silica, | en |
| dc.relation.page | 98 | |
| dc.identifier.doi | 10.6342/NTU201602668 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2016-08-17 | |
| dc.contributor.author-college | 理學院 | zh_TW |
| dc.contributor.author-dept | 地質科學研究所 | zh_TW |
| 顯示於系所單位: | 地質科學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-105-1.pdf 未授權公開取用 | 6.73 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
