請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/19029完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 楊性芳(Hsin-Fang Yang-Yen) | |
| dc.contributor.author | Tzu-Yuan Chiu | en |
| dc.contributor.author | 邱子源 | zh_TW |
| dc.date.accessioned | 2021-06-08T01:42:48Z | - |
| dc.date.copyright | 2016-08-26 | |
| dc.date.issued | 2016 | |
| dc.date.submitted | 2016-08-17 | |
| dc.identifier.citation | 1. Kasik, J. and E. Rice, A novel complementary deoxyribonucleic acid is abundantly and specifically expressed in the uterus during pregnancy. Am J Obstet Gynecol, 1997. 176(2): p. 452-6.
2. Zhang, J., N. Rajkumar, and S.C. Hooi, Characterization and expression of the mouse pregnant specific uterus protein gene and its rat homologue in the intestine and uterus. Biochim Biophys Acta, 2000. 1492(2-3): p. 526-30. 3. Zhang, J., et al., The proline-rich acidic protein is epigenetically regulated and inhibits growth of cancer cell lines. Cancer Res, 2003. 63(20): p. 6658-65. 4. Dash, S., et al., New Insights into the Regulation of Chylomicron Production. Annu Rev Nutr, 2015. 35: p. 265-94. 5. Niot, I., et al., Intestinal absorption of long-chain fatty acids: evidence and uncertainties. Prog Lipid Res, 2009. 48(2): p. 101-15. 6. Altmann, S.W., et al., The identification of intestinal scavenger receptor class B, type I (SR-BI) by expression cloning and its role in cholesterol absorption. Biochim Biophys Acta, 2002. 1580(1): p. 77-93. 7. Davis, H.R., Jr., et al., Cholesterol homeostasis by the intestine: lessons from Niemann-Pick C1 Like 1 [NPC1L1). Atheroscler Suppl, 2008. 9(2): p. 77-81. 8. Nguyen, T.M., et al., Cholesterol esterification by ACAT2 is essential for efficient intestinal cholesterol absorption: evidence from thoracic lymph duct cannulation. J Lipid Res, 2012. 53(1): p. 95-104. 9. Yen, C.L. and R.V. Farese, Jr., MGAT2, a monoacylglycerol acyltransferase expressed in the small intestine. J Biol Chem, 2003. 278(20): p. 18532-7. 10. Haas, J.T., et al., DGAT1 mutation is linked to a congenital diarrheal disorder. J Clin Invest, 2012. 122(12): p. 4680-4. 11. Jin, Y., et al., Diacylglycerol acyltransferase-2 (DGAT2) and monoacylglycerol acyltransferase-2 (MGAT2) interact to promote triacylglycerol synthesis. J Biol Chem, 2014. 289(41): p. 28237-48. 12. Pan, X. and M.M. Hussain, Gut triglyceride production. Biochim Biophys Acta, 2012. 1821(5): p. 727-35. 13. Wilfling, F., et al., Triacylglycerol synthesis enzymes mediate lipid droplet growth by relocalizing from the ER to lipid droplets. Dev Cell, 2013. 24(4): p. 384-99. 14. Yanai, H., et al., Diacylglycerol oil for the metabolic syndrome. Nutr J, 2007. 6: p. 43. 15. Yasunaga, K., et al., Effects of triacylglycerol and diacylglycerol oils on blood clearance, tissue uptake, and hepatic apolipoprotein B secretion in mice. J Lipid Res, 2007. 48(5): p. 1108-21. 16. Hussain, M.M., et al., Regulating intestinal function to reduce atherogenic lipoproteins. Clin Lipidol, 2013. 8(4). 17. Anant, S. and N.O. Davidson, Molecular mechanisms of apolipoprotein B mRNA editing. Curr Opin Lipidol, 2001. 12(2): p. 159-65. 18. Fisher, E.A., N.A. Khanna, and R.S. McLeod, Ubiquitination regulates the assembly of VLDL in HepG2 cells and is the committing step of the apoB-100 ERAD pathway. J Lipid Res, 2011. 52(6): p. 1170-80. 19. Gordon, D.A., et al., Secretion of apolipoprotein B-containing lipoproteins from HeLa cells is dependent on expression of the microsomal triglyceride transfer protein and is regulated by lipid availability. Proc Natl Acad Sci U S A, 1994. 91(16): p. 7628-32. 20. Wang, S., et al., The microsomal triglyceride transfer protein facilitates assembly and secretion of apolipoprotein B-containing lipoproteins and decreases cotranslational degradation of apolipoprotein B in transfected COS-7 cells. J Biol Chem, 1996. 271(24): p. 14124-33. 21. Mansbach, C.M. and S.A. Siddiqi, The biogenesis of chylomicrons. Annu Rev Physiol, 2010. 72: p. 315-33. 22. VerHague, M.A., et al., Apolipoprotein A-IV expression in mouse liver enhances triglyceride secretion and reduces hepatic lipid content by promoting very low density lipoprotein particle expansion. Arterioscler Thromb Vasc Biol, 2013. 33(11): p. 2501-8. 23. Glickman, R.M. and P.H. Green, The intestine as a source of apolipoprotein A1. Proc Natl Acad Sci U S A, 1977. 74(6): p. 2569-73. 24. Jaschke, A., et al., The GTPase ARFRP1 controls the lipidation of chylomicrons in the Golgi of the intestinal epithelium. Hum Mol Genet, 2012. 21(14): p. 3128-42. 25. Wasan, K.M., et al., Impact of lipoproteins on the biological activity and disposition of hydrophobic drugs: implications for drug discovery. Nat Rev Drug Discov, 2008. 7(1): p. 84-99. 26. Chung, S., et al., A novel role for ABCA1-generated large pre-beta migrating nascent HDL in the regulation of hepatic VLDL triglyceride secretion. J Lipid Res, 2010. 51(4): p. 729-42. 27. Mulya, A., et al., Minimal lipidation of pre-beta HDL by ABCA1 results in reduced ability to interact with ABCA1. Arterioscler Thromb Vasc Biol, 2007. 27(8): p. 1828-36. 28. Rosenson, R.S., et al., Dysfunctional HDL and atherosclerotic cardiovascular disease. Nat Rev Cardiol, 2016. 13(1): p. 48-60. 29. Duffy, D. and D.J. Rader, Update on strategies to increase HDL quantity and function. Nat Rev Cardiol, 2009. 6(7): p. 455-63. 30. Temel, R.E. and J.M. Brown, A new model of reverse cholesterol transport: enTICEing strategies to stimulate intestinal cholesterol excretion. Trends Pharmacol Sci, 2015. 36(7): p. 440-51. 31. Le May, C., et al., Transintestinal cholesterol excretion is an active metabolic process modulated by PCSK9 and statin involving ABCB1. Arterioscler Thromb Vasc Biol, 2013. 33(7): p. 1484-93. 32. Luchoomun, J. and M.M. Hussain, Assembly and secretion of chylomicrons by differentiated Caco-2 cells. Nascent triglycerides and preformed phospholipids are preferentially used for lipoprotein assembly. J Biol Chem, 1999. 274(28): p. 19565-72. 33. Mindham, M.A. and P.A. Mayes, A simple and rapid method for the preparation of apolipoproteins for electrophoresis. J Lipid Res, 1992. 33(7): p. 1084-8. 34. Li, X., et al., Opposing roles of cell death-inducing DFF45-like effector B and perilipin 2 in controlling hepatic VLDL lipidation. J Lipid Res, 2012. 53(9): p. 1877-89. 35. Rava, P., et al., Phospholipid transfer activity of microsomal triacylglycerol transfer protein is sufficient for the assembly and secretion of apolipoprotein B lipoproteins. J Biol Chem, 2006. 281(16): p. 11019-27. 36. Xiao, Q., J. Elovson, and V.N. Schumaker, Rat McA-RH7777 cells efficiently assemble rat apolipoprotein B-48 or larger fragments into VLDL but not human apolipoprotein B of any size. J Lipid Res, 2000. 41(1): p. 116-25. 37. Mahdessian, H., et al., TM6SF2 is a regulator of liver fat metabolism influencing triglyceride secretion and hepatic lipid droplet content. Proc Natl Acad Sci U S A, 2014. 111(24): p. 8913-8. 38. Smagris, E., et al., Inactivation of Tm6sf2, a Gene Defective in Fatty Liver Disease, Impairs Lipidation but Not Secretion of Very Low Density Lipoproteins. J Biol Chem, 2016. 291(20): p. 10659-76. 39. Abumrad, N.A. and N.O. Davidson, Role of the gut in lipid homeostasis. Physiol Rev, 2012. 92(3): p. 1061-85. 40. Hesse, D., et al., Trans-Golgi proteins participate in the control of lipid droplet and chylomicron formation. Biosci Rep, 2013. 33(1): p. 1-9. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/19029 | - |
| dc.description.abstract | PRAP1在許多真核生物內具有保守性。生化分析顯示PRAP1可與MTP結合,並促進其脂肪轉運的能力,進而促成ApoB的分泌。E85V, 一個PRAP1 的點突變蛋白,則沒有辦法促進此現象。在這篇研究裡,我們主要探究PRAP1在脂肪運輸的功能。之前的研究發現缺乏PRAP1時,在油脂灌食後大部分的油脂會累積在小腸,而延遲的送到血液循環裡。我們發現PRAP1主要會在高基氏體裡,而部分位於內質網中-MTP主要作用的地方。PRAP1在肝臟細胞株中能夠協助ApoB的脂化,進而形成類高密度脂蛋白的顆粒。缺乏PRAP1老鼠所生成的乳糜蛋白油脂量與ApoB的釋出量也較野生種少。有趣的是,即使WT蛋白與E85V突變都可以跟脂肪直接連結,過量表現PRAP1在HeLa細胞中可以減少油脂在胞內累積的現象,而E85V突變不行,代表這其中可能牽涉複雜的脂肪運輸機致。同時,PRAP1也能夠跟高密度脂蛋白中的主要成分ApoA1有相互作用,並可促進肝臟細胞攝取膽固醇及巨噬細胞排出膽固醇的能力。綜上所述,我們的研究顯示認為PRAP1是個新的脂蛋白,去調節脂肪運輸的能力及其他脂蛋白的釋出或功能,並可能作為人類脂肪代謝相關疾病的一種解決方針。 | zh_TW |
| dc.description.abstract | Proline-rich acidic protein 1 (PRAP1) is highly conserved among eukaryotic organisms. Our earlier studies indicated that PRAP1 forms a complex with microsomal triglyceride transfer protein (MTP) and promotes MTP-mediated lipid transfer and facilitates ApoB secretion. The E85V mutant, a point mutation form of PRAP1, however, fails to promote the MTP activity in vitro. In this study, we investigated the functions of PRAP1 in lipid transport, since PRAP1-deficient mice manifest lipid accumulation in the small intestine and delayed secretion of lipids into bloodstream following oral gavage of lipids. Although PRAP1 is mainly localized to the Golgi, it is indeed partially colocalized with MTP, which mainly resides on the ER. PRAP1 promotes ApoB secretion to form HDL-like particles in hepatoma cell lines. Further analysis revealed that PRAP1 promotes the assembly and secretion of ApoB in vivo. Both wt and the E85V mutant of PRAP1 directly bind to lipids. However, overexpression of wt but not the E85V results in less lipid accumulation in HeLa cells, suggesting a possible mechanistic link to its complex functions in lipid transport. Last, we demonstrate that PRAP1 interacts with ApoA1 and facilitates cholesterol uptake into hepatoma cell lines and promotes cholesterol efflux from the macrophage cell line. Taken together, our results suggest that PRAP1 plays a role in lipid transport and lipoprotein metabolism, and may serve as a novel therapeutic target for human diseases. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-08T01:42:48Z (GMT). No. of bitstreams: 1 ntu-105-R03448010-1.pdf: 2943341 bytes, checksum: 22b025cf464eb9844b7148b316754af3 (MD5) Previous issue date: 2016 | en |
| dc.description.tableofcontents | Table of content
List of Figures 3 致謝 4 摘要 5 Abstract 6 1.Introduction 8 1-1 Proline-rich acidic protein 1 8 1-2 Assembly and secretion of chylomicron 8 1-2.1 Uptakes of dietary lipids 8 1-2.2 Triglyceride synthesis 9 1-2.3 Chylomicron/VLDL synthesis and secretion 9 1-3 High-density Lipoprotein (HDL) formation 11 2.Material and Method 14 2-1 Mice 14 2-2 Cells 14 2-3 Immunofluorescence staining and data analysis 15 2-4 Density gradient ultracentrifugation of ApoB-containing lipoproteins 16 2-5 Cell fractionation 17 2-6 Immunoprecipitation assay 18 2-7 Coommassie Blue staining and silver staining 19 2-8 Cholesterol uptake/efflux assay 19 3.Results 22 3-1 Expression of PRAP1 in the small intestine and liver. 22 3-2 Wt but not the E85V mutant of PRAP1 promotes MTP-mediated lipid transfer 22 3-3 Subcellular localization of wt and the E85V mutant of PRAP1 22 3-4 PRAP1-deficiency resulted in reduced triglyceride levels in the chylomicrons 23 3-5 Wt but not the E85V mutant of PRAP1 facilitates the assembly of human apoB48 proteins transiently expressed in Hepa1-6 cells into HDL-like particles. 24 3-6 PRAP1 and apoB show similar subcellular localizations. 25 3-7 PRAP1 overexpression reduced lipid droplet contents 25 3-8 PRAP1 interact with ApoA1 both intracellularly and in the medium 26 3-9 PRAP1 plays a role in HDL-mediated reverse cholesterol transport 27 4.Discussion 28 5.Figures 31 Appendix 1 58 1. Primary Antibody 58 2. Secondary Antibody 59 3.Dye 59 Appendix 2.PRAP1 promotes MTP-mediated lipid transfer activity, but not E85V mutant. (by Hubert Peng) 60 Appendix 3 Triglyceride level of plasma after FPLC analysis (by Hubert Peng) 61 6.Reference 62 List of Figures Figure 1. Expression of PRAP1 in the small intestine and liver 31 Figure 2. Subcellular localization of wt and the E85V mutant of PRAP1 in HeLa cells . 34 Figure 3. Subcellular colocalization of wt and the E85V mutant of PRAP1 with MTP in HeLa cells 36 Figure 4.Distribution of PRAP1 in buoyant lipoproteins in mouse plasma 37 Figure 5. Human apoB48 proteins transiently expressed in Hepa1-6 cells are mainly assembled into HDL-sized particles. 44 Figure 6. Subcellular co-localization of wt or the E85V mutant of PRAP1 with ApoB48 in Hepa1-6 cells 45 Figure 7. Overexpression of PRAP1 leads to less lipid contents in HeLa cells. 47 Figure 8. Overexpression of Wt but not the E85V mutant of PRAP1 reduced lipid contents in HeLa cells. 49 Figure 9. PRAP1 interacts with ApoA1 both inside the cells and in medium 53 Figure10. PRAP1 promotes HDL-mediated cholesterol efflux and uptake 57 | |
| dc.language.iso | en | |
| dc.subject | 脂肪運輸 | zh_TW |
| dc.subject | 高密度脂蛋白 | zh_TW |
| dc.subject | 乳糜蛋白 | zh_TW |
| dc.subject | 三酸甘油酯 | zh_TW |
| dc.subject | 膽固醇 | zh_TW |
| dc.subject | triglyceride | en |
| dc.subject | lipid transport | en |
| dc.subject | chylomicron | en |
| dc.subject | HDL | en |
| dc.subject | cholesterol | en |
| dc.title | 分析PRAP1在脂肪運輸的功能 | zh_TW |
| dc.title | Functional analysis of PRAP1 in lipid transport | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 104-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 嚴仲陽(Jeffrey Jong-Young Yen),徐立中(Li-Chung Hsu),趙麗洋(Lee-Young Chau) | |
| dc.subject.keyword | 脂肪運輸,高密度脂蛋白,乳糜蛋白,三酸甘油酯,膽固醇, | zh_TW |
| dc.subject.keyword | lipid transport,HDL,chylomicron,triglyceride,cholesterol, | en |
| dc.relation.page | 64 | |
| dc.identifier.doi | 10.6342/NTU201602808 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2016-08-18 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 分子醫學研究所 | zh_TW |
| 顯示於系所單位: | 分子醫學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-105-1.pdf 未授權公開取用 | 2.87 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
