Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 農藝學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/19004
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor蔡育彰
dc.contributor.authorYa-Wen Houen
dc.contributor.author侯雅文zh_TW
dc.date.accessioned2021-06-08T01:42:06Z-
dc.date.copyright2016-08-30
dc.date.issued2016
dc.date.submitted2016-08-17
dc.identifier.citationAlvarez, S., Marsh, E.L., Schroeder, S.G., and Schachtman, D.P. (2008). Metabolomic and proteomic changes in the xylem sap of maize under drought. Plant, Cell & Environment 31, 325-340.
Argueso, C.T., Ferreira, F.J., and Kieber, J.J. (2009). Environmental perception avenues: the interaction of cytokinin and environmental response pathways. Plant, Cell & Environment 32, 1147-1160.
Bogdanove, A.J., and Voytas, D.F. (2011). TAL effectors: customizable proteins for DNA targeting. Science 333, 1843-1846.
Carroll, D. (2011). Genome engineering with zinc-finger nucleases. Genetics 188, 773-782.
Chen, K., and Gao, C. (2014). Targeted genome modification technologies and their applications in crop improvements. Plant Cell Reports 33, 575-583.
Cheng, X., Jiang, H., Zhang, J., Qian, Y., Zhu, S., and Cheng, B. (2010). Overexpression of type-A rice response regulators, OsRR3 and OsRR5, results in lower sensitivity to cytokinins. Genet Mol Res 9, 348-359.
Chuck, G., Lincoln, C., and Hake, S. (1996). KNAT1 induces lobed leaves with ectopic meristems when overexpressed in Arabidopsis. The Plant Cell 8, 1277-1289.
Cong, L., Ran, F.A., Cox, D., Lin, S., Barretto, R., Habib, N., Hsu, P.D., Wu, X., Jiang, W., and Marraffini, L.A. (2013). Multiplex genome engineering using CRISPR/Cas systems. Science 339, 819-823.
Cornejo-Martin, M., Mingo-Castel, A., and Primo-Millo, E. (1979). Organ redifferentiation in rice callus: effects of C2H4, CO2 and cytokinins. Zeitschrift fur Pflanzenphysiologie 94, 117-123.
D'Agostino, I.B., Deruere, J., and Kieber, J.J. (2000). Characterization of the response of the Arabidopsis response regulator gene family to cytokinin. Plant Physiology 124, 1706-1717.
De Smet, I., and Jurgens, G. (2007). Patterning the axis in plants–auxin in control. Current Opinion in Genetics & Development 17, 337-343.
Feng, Z., Zhang, B., Ding, W., Liu, X., Yang, D.-L., Wei, P., Cao, F., Zhu, S., Zhang, F., and Mao, Y. (2013). Efficient genome editing in plants using a CRISPR/Cas system. Cell Research, 23(10), 1229.
Feng, Z., Mao, Y., Xu, N., Zhang, B., Wei, P., Yang, D.-L., Wang, Z., Zhang, Z., Zheng, R., and Yang, L. (2014). Multigeneration analysis reveals the inheritance, specificity, and patterns of CRISPR/Cas-induced gene modifications in Arabidopsis. Proceedings of the National Academy of Sciences 111, 4632-4637.
Gaj, T., Gersbach, C.A., and Barbas, C.F. (2013). ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering. Trends in Biotechnology 31, 397-405.
Gan, S., and Amasino, R.M. (1995). Inhibition of leaf senescence by autoregulated production of cytokinin. Science 270, 1986-1988.
Gao, R., and Stock, A.M. (2009). Biological insights from structures of two-component proteins. Annual Review of Microbiology 63, 133.
Gao, S., Fang, J., Xu, F., Wang, W., Sun, X., Chu, J., Cai, B., Feng, Y., and Chu, C. (2014). CYTOKININ OXIDASE/DEHYDROGENASE4 integrates cytokinin and auxin signaling to control rice crown root formation. Plant Physiology 165, 1035-1046.
Hamilton, A.J., and Baulcombe, D.C. (1999). A species of small antisense RNA in posttranscriptional gene silencing in plants. Science 286, 950-952.
HavlovA, M., Dobrev, P.I., Motyka, V., ŠTORCHOVA, H., LIBUS, J., DobrA, J., MALBECK, J., GaudinovA, A., and VankovA, R. (2008). The role of cytokinins in responses to water deficit in tobacco plants over‐expressing trans‐zeatin O‐glucosyltransferase gene under 35S or SAG12 promoters. Plant, Cell & Environment 31, 341-353.
Hirose, N., Makita, N., Kojima, M., Kamada Nobusada, T., and Sakakibara, H. (2007). Overexpression of a type-A response regulator alters rice [Oryza sativa] morphology and cytokinin metabolism. Plant & Cell Physiology (Japan).
Hsu, P.D., Lander, E.S., and Zhang, F. (2014). Development and applications of CRISPR-Cas9 for genome engineering. Cell 157, 1262-1278.
Hutchison, C.E., Li, J., Argueso, C., Gonzalez, M., Lee, E., Lewis, M.W., Maxwell, B.B., Perdue, T.D., Schaller, G.E., and Alonso, J.M. (2006). The Arabidopsis histidine phosphotransfer proteins are redundant positive regulators of cytokinin signaling. The Plant Cell 18, 3073-3087.
Hwang, I., and Sheen, J. (2002). Two-component circuitry in Arabidopsis cytokinin signal transduction. Developmental Biology 247, 484-484.
Hwang, I., Sheen, J., and Muller, B. (2012). Cytokinin signaling networks. Annual Review of Plant Biology 63, 353-380.
Ioio, R.D., Linhares, F.S., Scacchi, E., Casamitjana-Martinez, E., Heidstra, R., Costantino, P., and Sabatini, S. (2007). Cytokinins determine Arabidopsis root-meristem size by controlling cell differentiation. Current Biology 17, 678-682.
Ito, Y., and Kurata, N. (2006). Identification and characterization of cytokinin-signalling gene families in rice. Gene 382, 57-65.
Jain, M., Tyagi, A.K., and Khurana, J.P. (2006). Molecular characterization and differential expression of cytokinin-responsive type-A response regulators in rice (Oryza sativa). BMC Plant Biology 6, 1.
Jeon, J., and Kim, J. (2013). Arabidopsis response Regulator1 and Arabidopsis histidine phosphotransfer Protein2 (AHP2), AHP3, and AHP5 function in cold signaling. Plant Physiology 161, 408-424.
Jeon, J., Kim, N.Y., Kim, S., Kang, N.Y., Novak, O., Ku, S.-J., Cho, C., Lee, D.J., Lee, E.-J., and Strnad, M. (2010). A subset of cytokinin two-component signaling system plays a role in cold temperature stress response in Arabidopsis. Journal of Biological Chemistry 285, 23371-23386.
Jiang, W., Zhou, H., Bi, H., Fromm, M., Yang, B., and Weeks, D.P. (2013). Demonstration of CRISPR/Cas9/sgRNA-mediated targeted gene modification in Arabidopsis, tobacco, sorghum and rice. Nucleic Acids Research, gkt780.
Jinek, M., Chylinski, K., Fonfara, I., Hauer, M., Doudna, J.A., and Charpentier, E. (2012). A programmable dual-RNA–guided DNA endonuclease in adaptive bacterial immunity. Science 337, 816-821.
Kiba, T., Yamada, H., and Mizuno, T. (2002). Characterization of the ARR15 and ARR16 response regulators with special reference to the cytokinin signaling pathway mediated by the AHK4 histidine kinase in roots of Arabidopsis thaliana. Plant & Cell Physiology 43, 1059-1066.
Kiba, T., Yamada, H., Sato, S., Kato, T., Tabata, S., Yamashino, T., and Mizuno, T. (2003). The type-A response regulator, ARR15, acts as a negative regulator in the cytokinin-mediated signal transduction in Arabidopsis thaliana. Plant & Cell Physiology 44, 868-874.
Kitomi, Y., Ito, H., Hobo, T., Aya, K., Kitano, H., and Inukai, Y. (2011). The auxin responsive AP2/ERF transcription factor CROWN ROOTLESS5 is involved in crown root initiation in rice through the induction of OsRR1, a type‐A response regulator of cytokinin signaling. The Plant Journal 67, 472-484.
Kumar, M.N., and Verslues, P.E. (2015). Stress physiology functions of the Arabidopsis histidine kinase cytokinin receptors. Physiologia Plantarum 154, 369-380.
Laplaze, L., Benkova, E., Casimiro, I., Maes, L., Vanneste, S., Swarup, R., Weijers, D., Calvo, V., Parizot, B., and Herrera-Rodriguez, M.B. (2007). Cytokinins act directly on lateral root founder cells to inhibit root initiation. The Plant Cell 19, 3889-3900.
Lee, D.J., Park, J.-Y., Ku, S.-J., Ha, Y.-M., Kim, S., Kim, M.D., Oh, M.-H., and Kim, J. (2007). Genome-wide expression profiling of ARABIDOPSIS RESPONSE REGULATOR 7 (ARR7) overexpression in cytokinin response. Molecular Genetics and Genomics 277, 115-137.
Leibfried, A., To, J.P., Busch, W., Stehling, S., Kehle, A., Demar, M., Kieber, J.J., and Lohmann, J.U. (2005). WUSCHEL controls meristem function by direct regulation of cytokinin-inducible response regulators. Nature 438, 1172-1175.
Mahonen, A.P., Bishopp, A., Higuchi, M., Nieminen, K.M., Kinoshita, K., Tormakangas, K., Ikeda, Y., Oka, A., Kakimoto, T., and Helariutta, Y. (2006). Cytokinin signaling and its inhibitor AHP6 regulate cell fate during vascular development. Science 311, 94-98.
Muller, B., and Sheen, J. (2008). Cytokinin and auxin interaction in root stem-cell specification during early embryogenesis. Nature 453, 1094-1097.
Ma, X., Chen, L., Zhu, Q., Chen, Y., and Liu, Y.-G. (2015). Rapid decoding of sequence-specific nuclease-induced heterozygous and biallelic mutations by direct sequencing of PCR products. Molecular Plant 8, 1285-1287.
Mao, Y., Zhang, H., Xu, N., Zhang, B., Gou, F., and Zhu, J.-K. (2013). Application of the CRISPR–Cas system for efficient genome engineering in plants. Molecular Plant 6, 2008.
McCabe, M.S., Garratt, L.C., Schepers, F., Jordi, W.J., Stoopen, G.M., Davelaar, E., van Rhijn, J.H.A., Power, J.B., and Davey, M.R. (2001). Effects of PSAG12-IPT gene expression on development and senescence in transgenic lettuce. Plant Physiology 127, 505-516.
Miao, J., Guo, D., Zhang, J., Huang, Q., Qin, G., Zhang, X., Wan, J., Gu, H., and Qu, L.-J. (2013). Targeted mutagenesis in rice using CRISPR-Cas system. Cell Research 23, 1233.
Mok, M.C. (1994). Cytokinins and plant development. Cytokinins: chemistry, activity, and function. CRC Press, Boca Raton, 155-166.
Nishiyama, R., Watanabe, Y., Fujita, Y., Le, D.T., Kojima, M., Werner, T., Vankova, R., Yamaguchi-Shinozaki, K., Shinozaki, K., and Kakimoto, T. (2011). Analysis of cytokinin mutants and regulation of cytokinin metabolic genes reveals important regulatory roles of cytokinins in drought, salt and abscisic acid responses, and abscisic acid biosynthesis. The Plant Cell 23, 2169-2183.
Nishiyama, R., Watanabe, Y., Leyva-Gonzalez, M.A., Van Ha, C., Fujita, Y., Tanaka, M., Seki, M., Yamaguchi-Shinozaki, K., Shinozaki, K., and Herrera-Estrella, L. (2013). Arabidopsis AHP2, AHP3, and AHP5 histidine phosphotransfer proteins function as redundant negative regulators of drought stress response. Proceedings of the National Academy of Sciences 110, 4840-4845.
Osakabe, Y., Miyata, S., Urao, T., Seki, M., Shinozaki, K., and Yamaguchi-Shinozaki, K. (2002). Overexpression of Arabidopsis response regulators, ARR4/ATRR1/IBC7 and ARR8/ATRR3, alters cytokinin responses differentially in the shoot and in callus formation. Biochemical and Biophysical Research Communications 293, 806-815.
Peleg, Z., Reguera, M., Tumimbang, E., Walia, H., and Blumwald, E. (2011). Cytokinin‐mediated source/sink modifications improve drought tolerance and increase grain yield in rice under water‐stress. Plant Biotechnology Journal 9, 747-758.
Ram, N.R., and Nabors, M. (1984). Cytokinin mediated long-term, high-frequency plant regeneration in rice tissue cultures. Zeitschrift fur Pflanzenphysiologie 113, 315-323.
Sakai, H., Aoyama, T., and Oka, A. (2000). Arabidopsis ARR1 and ARR2 response regulators operate as transcriptional activators. The Plant Journal 24, 703-711.
Salome, P.A., To, J.P., Kieber, J.J., and McClung, C.R. (2006). Arabidopsis response regulators ARR3 and ARR4 play cytokinin-independent roles in the control of circadian period. The Plant Cell 18, 55-69.
Schafer, M., Brutting, C., Meza-Canales, I.D., Groskinsky, D.K., Vankova, R., Baldwin, I.T., and Meldau, S. (2015). The role of cis-zeatin-type cytokinins in plant growth regulation and mediating responses to environmental interactions. Journal of Experimental Botany 66, 4873-4884.
Schlapfer, W.T. (1981). Tissue and Organ Culture. In Methods in Neurobiology (Springer), pp. 183-244.
Singh, A., Kushwaha, H.R., Soni, P., Gupta, H., Singla-Pareek, S.L., and Pareek, A. (2015). Tissue specific and abiotic stress regulated transcription of histidine kinases in plants is also influenced by diurnal rhythm. Frontiers in Plant Science 6.
Stock, A.M., Robinson, V.L., and Goudreau, P.N. (2000). Two-component signal transduction. Annual Review of Biochemistry 69, 183-215.
To, J.P., Deruere, J., Maxwell, B.B., Morris, V.F., Hutchison, C.E., Ferreira, F.J., Schaller, G.E., and Kieber, J.J. (2007). Cytokinin regulates type-A Arabidopsis response regulator activity and protein stability via two-component phosphorelay. The Plant Cell 19, 3901-3914.
To, J.P., Haberer, G., Ferreira, F.J., Deruere, J., Mason, M.G., Schaller, G.E., Alonso, J.M., Ecker, J.R., and Kieber, J.J. (2004). Type-A Arabidopsis response regulators are partially redundant negative regulators of cytokinin signaling. The Plant Cell 16, 658-671.
Tran, L.-S.P., Shinozaki, K., and Yamaguchi-Shinozaki, K. (2010). Role of cytokinin responsive two-component system in ABA and osmotic stress signalings. Plant Signaling & Behavior 5, 148-150.
Tran, L.-S.P., Urao, T., Qin, F., Maruyama, K., Kakimoto, T., Shinozaki, K., and Yamaguchi-Shinozaki, K. (2007). Functional analysis of AHK1/ATHK1 and cytokinin receptor histidine kinases in response to abscisic acid, drought, and salt stress in Arabidopsis. Proceedings of the National Academy of Sciences 104, 20623-20628.
Tsai, Y.-C., Weir, N.R., Hill, K., Zhang, W., Kim, H.J., Shiu, S.-H., Schaller, G.E., and Kieber, J.J. (2012). Characterization of genes involved in cytokinin signaling and metabolism from rice. Plant Physiology 158, 1666-1684.
Verma, V., Sivaraman, J., Srivastava, A.K., Sadanandom, A., and Kumar, P.P. (2015). Destabilization of interaction between cytokinin signaling intermediates AHP1 and ARR4 modulates Arabidopsis development. New Phytologist 206, 726-737.
Werner, T., and Schmulling, T. (2009). Cytokinin action in plant development. Current Opinion in Plant Biology 12, 527-538.
Werner, T., Nehnevajova, E., Kollmer, I., Novak, O., Strnad, M., Kramer, U., and Schmulling, T. (2010). Root-specific reduction of cytokinin causes enhanced root growth, drought tolerance, and leaf mineral enrichment in Arabidopsis and tobacco. The Plant Cell 22, 3905-3920.
Wintermans, J., and De Mots, A. (1965). Spectrophotometric characteristics of chlorophylls a and b and their phenophytins in ethanol. Biochimica et Biophysica Acta 109, 448-453.
Wohlbach, D.J., Quirino, B.F., and Sussman, M.R. (2008). Analysis of the Arabidopsis histidine kinase ATHK1 reveals a connection between vegetative osmotic stress sensing and seed maturation. The Plant Cell 20, 1101-1117.
Wuichet, K., Cantwell, B.J., and Zhulin, I.B. (2010). Evolution and phyletic distribution of two-component signal transduction systems. Current Opinion in Microbiology 13, 219-225.
Xu, P., Zhang, Y., Kang, L., Roossinck, M.J., and Mysore, K.S. (2006). Computational estimation and experimental verification of off-target silencing during posttranscriptional gene silencing in plants. Plant Physiology 142, 429-440.
Xu, Y., and Huang, B. (2009). Effects of foliar-applied ethylene inhibitor and synthetic cytokinin on creeping bentgrass to enhance heat tolerance. Crop Science 49, 1876-1884.
Yonekura-Sakakibara, K., Kojima, M., Yamaya, T., and Sakakibara, H. (2004). Molecular characterization of cytokinin-responsive histidine kinases in maize. Differential ligand preferences and response to cis-zeatin. Plant Physiology 134, 1654-1661.
Yu, C., Zhang, Y., Yao, S., and Wei, Y. (2014). A PCR based protocol for detecting indel mutations induced by TALENs and CRISPR/Cas9 in zebrafish. PLoS One 9, e98282.
Zhang, H., Zhang, J., Wei, P., Zhang, B., Gou, F., Feng, Z., Mao, Y., Yang, L., Zhang, H., and Xu, N. (2014). The CRISPR/Cas9 system produces specific and homozygous targeted gene editing in rice in one generation. Plant Biotechnology Journal 12, 797-807.
Zhao, Y., Hu, Y., Dai, M., Huang, L., and Zhou, D.-X. (2009). The WUSCHEL-related homeobox gene WOX11 is required to activate shoot-borne crown root development in rice. The Plant Cell 21, 736-748.
Zhao, Y., Cheng, S., Song, Y., Huang, Y., Zhou, S., Liu, X., and Zhou, D.-X. (2015). The interaction between rice ERF3 and WOX11 promotes crown root development by regulating gene expression involved in cytokinin signaling. The Plant Cell 27, 2469-2483.
Zhao, Z., Andersen, S.U., Ljung, K., Dolezal, K., Miotk, A., Schultheiss, S.J., and Lohmann, J.U. (2010). Hormonal control of the shoot stem-cell niche. Nature 465, 1089-1092.
Zhu, X., Xu, Y., Yu, S., Lu, L., Ding, M., Cheng, J., Song, G., Gao, X., Yao, L., and Fan, D. (2014). An efficient genotyping method for genome-modified animals and human cells generated with CRISPR/Cas9 system. Scientific Reports 4.
Zwack, P.J., and Rashotte, A.M. (2015). Interactions between cytokinin signalling and abiotic stress responses. Journal of Experimental Botany 66, 4863-4871.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/19004-
dc.description.abstract細胞分裂素 (cytokinin, CK) 為重要的植物荷爾蒙之一,在調節植物生長發育上具有重要功能,而細胞分裂素訊息傳遞為一重要調控機制。細胞分裂素之訊息傳遞為雙分子訊息傳遞系統 (two-component signaling system, TCS),藉由磷酸轉移傳遞訊息,其中Type-A RRs能被細胞分裂素所誘導,為細胞分裂素訊息中之原初反應 (primary response) 分子,前人研究顯示在阿拉伯芥及部分水稻 Type-A Response regulators (RRs) 具有負向調控細胞分裂素訊息傳導的功能。目前已知在水稻中有 13 個 Type-A OsRRs,預期在細胞分裂素生理功能上會有補償性,根據親緣關係分群與表現組織,本研究對細胞分裂素訊息反應調節子 OsRR6 與 OsRR11 進行生理功能探討。一般生長狀況下,OsRR6 具有較高的表現量且全株皆有表現;OsRR11 表現量很低且具有地上部的組織專一性。檢測 OsRR6 及 OsRR11 在不同非生物逆境下的基因表現,發現 OsRR6 在高溫逆境與乾旱逆境下能被誘導基因表現,OsRR11 基因表現會受到鹽逆境與乾旱逆境抑制,顯示 OsRR6 與 OsRR11 調控水稻遭受非生物逆境下之反應並且可能具有不同的生理功能。為了解 OsRR6 與 OsRR11 在細胞分裂素訊息之功能,以 CRISPR/Cas9 基因編輯系統建立 Osrr6/11 雙重突變株,在 OsRR6 與 OsRR11 突變效率皆達 80% 以上,突變型態以缺失 1bp 最多,進行與細胞分裂素相關反應實驗,結果顯示相較於野生型 Osrr6/11 突變株之不定根數目較多、能夠延緩葉綠素降解且促進水稻癒傷組織地上部再生,皆支持 OsRR6 與 OsRR11 在細胞分裂素訊息傳遞系統中扮演負向調控的角色。zh_TW
dc.description.abstractCytokinins are plant hormones that play important regulatory roles in plant developmental and physiological processes. Cytokinin signaling pathway is a multistep His-Asp phosphorelay system known as the two-component system. The type-A response regulator genes in Arabidopsis and rice are rapidly induced by exogenous cytokinin and have been characterized as cytokinin primary response genes. Some of type-A RRs in Arabidopsis and rice act as negative regulators of cytokinin responses by a feedback mechanism. It has been known that there are thirteen type-A RRs in rice and may perform partially redundant functions. Based on the phylogenetic relationship and tissue specificity, in this study, I characterized the functions of OsRR6 and OsRR11, using CRISPR/Cas9 gene-editing approach to establish Osrr6/11 mutants. Mutation rate of Osrr6/11 mutants are over 80% and mainly occurring in 1 bp deletion. Real-time qPCR analysis indicated that OsRR6 exhibits high expression and is expressed in all organs; while OsRR11 exhibits very low expression and is expressed only in the shoot. Besides, OsRR6 can be up-regulated by high temperature and drought stresses; while OsRR11 can be down-regulated by salinity and drought stresses. These results illustrated that OsRR6 and OsRR11 participate in plant responses to different stresses and may have different functions under abiotic stresses. In order to gain insight into their functions, we conduct cytokinin response analysis by using Osrr6/11 mutants. Compared to WT, Osrr6/11 mutants have more adventitious roots, delay leaf senescence and promote callus shoot regeneration. Taken together, these data suggested that OsRR6 and OsRR11 play negative role in cytokinin signaling transduction.en
dc.description.provenanceMade available in DSpace on 2021-06-08T01:42:06Z (GMT). No. of bitstreams: 1
ntu-105-R03621128-1.pdf: 2376024 bytes, checksum: 596ab20303b43bb506d98984ada94481 (MD5)
Previous issue date: 2016
en
dc.description.tableofcontents誌謝 Ⅰ
摘要 Ⅱ
Abstract Ⅲ
縮寫字對照 Ⅳ
目錄 Ⅵ
圖目錄 Ⅶ
表目錄 Ⅷ
附表目錄 Ⅷ
壹、前人研究 1
一、植物細胞分裂素訊息傳導途徑 1
二、細胞分裂素訊息分子 Type-A response regulators 2
三、水稻 Type-A OsRRs 之表現時期及部位 4
四、細胞分裂素對於水稻非生物逆境耐受性之關係 5
五、基因編輯技術 CRISPR/Cas9 7
貳、材料與方法 10
一、植物材料與生長條件 10
二、水稻 CRISPR/Cas9 Osrr6/11 突變株之載體構築 10
三、DNA 萃取 11
四、PCR 11
五、HRM 12
六、DNA 電泳及瓊脂膠體純化 13
七、RNA 萃取 14
八、RT-PCR及Real-time qPCR 14
九、葉綠素降解及萃取 16
十、水稻癒傷組織誘導 16
十一、水稻癒傷組織再生 16
十二、外施細胞分裂素處理 17
十三、非生物逆境條件 17
十四、相對水分含量 17
十五、統計分析 18
參、結果 19
一、水稻 OsRR6 及 OsRR11 特性分析 19
二、OsRR6 及 OsRR11 為水稻細胞分裂素訊息之原初反應分子 19
三、OsRR6 及 OsRR11 在不同非生物逆境下之表現情形 20
四、CRISPR/Cas9 Osrr6/11 同型結合突變株之建立 20
五、Osrr6/11 突變株之特性分析 22
六、Osrr6/11 突變株在外施細胞分裂素下 OsRRs 之表現情形 23
七、Osrr6/11 突變株延緩葉綠素降解並且對細胞分裂素不敏感 24
八、Osrr6/11 突變株促進水稻癒傷組織地上部再生 24
九、Osrr6/11 突變株具有較差之乾旱逆境耐受性 25
肆、討論 26
一、OsRR6 與 OsRR11 啟動子特性分析 26
二、CRISPR/Cas9 Osrr6/11 雙重同質結合型突變株之篩檢 27
三、OsRR6 與 OsRR11 蛋白質功能探討 28
四、Osrr6/11 突變株之其他 Type-A OsRRs補償效應 30
五、OsRR6 負向調控水稻不定根生長 31
六、OsRR6 與 OsRR11 為細胞分裂素訊息負向調控因子 32
伍、結論 34
陸、未來展望 34
柒、參考文獻 35
捌、附錄 62
dc.language.isozh-TW
dc.subject細胞分裂素訊息zh_TW
dc.subject雙分子訊息傳遞系統zh_TW
dc.subjectOsRR6zh_TW
dc.subjectOsRR11zh_TW
dc.subjectCRISPR/Cas9基因編輯系統zh_TW
dc.subjecttwo-component systemen
dc.subjectCRISPR/Cas9en
dc.subjectOsRR11en
dc.subjectOsRR6en
dc.subjectcytokinin signalingen
dc.title水稻細胞分裂素訊息反應調節蛋白 OsRR6 與 OsRR11 之生理功能探討zh_TW
dc.titleStudies on the Physiological Function of Rice Cytokinin Response Regulators OsRR6 and OsRR11en
dc.typeThesis
dc.date.schoolyear104-2
dc.description.degree碩士
dc.contributor.oralexamcommittee高景輝,洪傳揚,張孟基,陸重安
dc.subject.keyword雙分子訊息傳遞系統,細胞分裂素訊息,OsRR6,OsRR11,CRISPR/Cas9基因編輯系統,zh_TW
dc.subject.keywordtwo-component system,cytokinin signaling,OsRR6,OsRR11,CRISPR/Cas9,en
dc.relation.page68
dc.identifier.doi10.6342/NTU201602905
dc.rights.note未授權
dc.date.accepted2016-08-19
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept農藝學研究所zh_TW
顯示於系所單位:農藝學系

文件中的檔案:
檔案 大小格式 
ntu-105-1.pdf
  未授權公開取用
2.32 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved