請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/18965完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 曹建和 | |
| dc.contributor.author | Ming-Huang Chen | en |
| dc.contributor.author | 陳明煌 | zh_TW |
| dc.date.accessioned | 2021-06-08T01:40:57Z | - |
| dc.date.copyright | 2016-10-05 | |
| dc.date.issued | 2016 | |
| dc.date.submitted | 2016-08-18 | |
| dc.identifier.citation | References
Borsboom JM, Chin CT, Bouakaz A, Versluis M, de Jong N. Harmonic chirp imaging method for ultrasound contrast agent. Ieee T Ultrason Ferr 2005;52:241-9. Bouakaz A, Frigstad S, Ten Cate FJ, de Jong N. Improved contrast to tissue ratio at higher harmonics. Ultrasonics 2002;40:575-8. Brock-Fisher GA. Means for increasing sensitivity in non-linear ultrasound imaging systems. Acoustical Society of America Journal 1997;101:3240. Chatterjee D, Sarkar K. A Newtonian rheological model for the interface of microbubble contrast agents. Ultrasound Med Biol 2003;29:1749-57. Chen M-H, Tsao J. Estimation Shell Elasticity of Lipid-Coated Microbubbles Based on the Linearized Marmottant Model. 7th WACBE World Congress on Bioengineering 2015;52:190-3. Chetty K, Stride E, Sennoga CA, Hajnal JV, Eckersley RJ. High-speed optical observations and simulation results of SonoVue microbubbles at low-pressure insonation. Ieee T Ultrason Ferr 2008;55:1333-42. Chomas J, Dayton P, May D, Ferrara K. Nondestructive subharmonic imaging. Ieee T Ultrason Ferr 2002;49:883-92. Church CC. The effects of an elastic solid surface layer on the radial pulsations of gas bubbles. J Acoust Soc Am 1995;97:1510-21. De Jong N, Emmer M, Chin CT, Bouakaz A, Mastik F, Lohse D, Versluis M. “Compression-only” behavior of phospholipid-coated contrast bubbles. Ultrasound Med Biol 2007;33:653-6. De Jong N, Emmer M, Van Wamel A, Versluis M. Ultrasonic characterization of ultrasound contrast agents. Med Biol Eng Comput 2009;47:861-73. de Jong N, Frinking PJ, Bouakaz A, Ten Cate FJ. Detection procedures of ultrasound contrast agents. Ultrasonics 2000;38:87-92. de Jong N, Hoff L. Ultrasound scattering properties of Albunex microspheres. Ultrasonics 1993;31:175-81. de Jong N, Ten Cate FJ. New ultrasound contrast agents and technological innovations. Ultrasonics 1996;34:587-90. Doinikov AA, Aired L, Bouakaz A. Dynamics of a contrast agent microbubble attached to an elastic wall. Ieee T Med Imaging 2012;31:654-62. Doinikov AA, Haac JF, Dayton PA. Resonance frequencies of lipid-shelled microbubbles in the regime of nonlinear oscillations. Ultrasonics 2009;49:263-8. Doinikov AA, Novell A, Escoffre JM, Bouakaz A. Encapsulated bubble dynamics in imaging and therapy. Bubble Dynamics and Shock Waves. Springer Berlin Heidelberg. 2013; 259-89. Dolan MS, Gala SS, Dodla S, Abdelmoneim SS, Xie F, Cloutier D, Bierig M, Mulvagh SL, Porter TR, Labovitz AJ. Safety and efficacy of commercially available ultrasound contrast agents for rest and stress echocardiography: a multicenter experience. J Am Coll Cardiol 2009;53:32-8. Dollet B, Van Der Meer SM, Garbin V, De Jong N, Lohse D, Versluis M. Nonspherical oscillations of ultrasound contrast agent microbubbles. Ultrasound Med Biol 2008;34:1465-73. Emmer M, Van Wamel A, Goertz DE, De Jong N. The onset of microbubble vibration. Ultrasound Med Biol 2007;33:941-9. Emmer, M. The onset of bubble vibration. Diss. Erasmus MC: University Medical Center Rotterdam, 2009. Faez T, Emmer M, Kooiman K, Versluis M, van der Steen AF, de Jong N. 20 years of ultrasound contrast agent modeling. Ieee T Ultrason Ferr 2013;60:7-20. Frinking PJ, Céspedes EI, Kirkhorn J, Torp HG, de Jong N. A new ultrasound contrast imaging approach based on the combination of multiple imaging pulses and a separate release burst. Ieee T Ultrason Ferr 2001;48:643-51. Frinking PJ, de Jong N. Acoustic modeling of shell-encapsulated gas bubbles. Ultrasound Med Biol 1998;24:523-33. Frinking PJ, Gaud E, Brochot J, Arditi M. Subharmonic scattering of phospholipid-shell microbubbles at low acoustic pressure amplitudes. Ieee T Ultrason Ferr 2010;57:1762-71 Goertz DE, Frijlink ME, Tempel D, Bhagwandas V, Gisolf A, Krams R, de Jong N, van der Steen AF. Subharmonic contrast intravascular ultrasound for vasa vasorum imaging. Ultrasound Med Biol 2007;33:1859-72. Goldberg BB, Raichlen JS, Forsberg F. Ultrasound contrast agents: basic principles and clinical applications. Informa Healthcare, 2001. Gong Y, Cabodi M, Porter TM. Acoustic investigation of pressure-dependent resonance and shell elasticity of lipid-coated monodisperse microbubbles. Appl Phys Lett 2014;104:074103. Gorce JM, Arditi M, Schneider M. Influence of bubble size distribution on the echogenicity of ultrasound contrast agents: a study of Sonovue™. Invest Radiol 2000;35:661-71 Gramiak R, Shah PM. Echocardiography of the aortic root. Invest Radiol 1968;3:356-66. Helfield BL, Goertz DE. Nonlinear resonance behavior and linear shell estimates for Definity™ and MicroMarker™ assessed with acoustic microbubble spectroscopy. J Acoust Soc Am 2013;133:1158-68. Hoff L. Acoustic characterization of contrast agents for medical ultrasound imaging. Springer Science & Business Media, 2001. Hoff L, Sontum PC, Hovem JM. Oscillations of polymeric microbubbles: Effect of the encapsulating shell. J Acoust Soc Am 2000;107:2272-80. Humphrey VF. Nonlinear propagation in ultrasonic fields: measurements, modelling and harmonic imaging. Ultrasonics 2000;38:267-72. Khismatullin DB. Resonance frequency of microbubbles: Effect of viscosity. J Acoust Soc Am 2004;116:1463-73. Khismatullin DB, Nadim A. Radial oscillations of encapsulated microbubbles in viscoelastic liquids. Phys Fluids 2002;14:3534-57. Klibanov AL. Ultrasound contrast agents: development of the field and current status. In: ed. Contrast agents II. Springer, 2002. pp. 73-106. Lauterborn W. Numerical investigation of nonlinear oscillations of gas bubbles in liquids. J Acoust Soc Am 1976;59:283-93. Luan Y, Faez T, Gelderblom E, Skachkov I, Geers B, Lentacker I, van der Steen T, Versluis M, de Jong N. Acoustical properties of individual liposome-loaded microbubbles. Ultrasound Med Biol 2012;38:2174-85. MacDonald CA, Sboros V, Gomatam J, Pye SD, Moran CM, McDicken WN. A numerical investigation of the resonance of gas-filled microbubbles: resonance dependence on acoustic pressure amplitude. Ultrasonics 2004;43:113-22. Machado JC, Valente JS. Ultrasonic scattering cross sections of shell-encapsulated gas bubbles immersed in a viscoelastic liquid: first and second harmonics. Ultrasonics 2003;41:605-13. Marmottant P, van der Meer S, Emmer M, Versluis M, de Jong N, Hilgenfeldt S, Lohse D. A model for large amplitude oscillations of coated bubbles accounting for buckling and rupture. J Acoust Soc Am 2005;118:3499-505. Medwin H. Counting bubbles acoustically: a review. Ultrasonics 1977;15:7-13. Miller DL. Ultrasonic detection of resonant bubbles by their second‐harmonic emissions. J Acoust Soc Am 1981;69:S26-S. Minnaert M. XVI. On musical air-bubbles and the sounds of running water. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science 1933;16:235-48. Noltingk BE, Neppiras EA. Cavitation produced by ultrasonics. Proceedings of the Physical Society. Section B 1950;63:674. Newhouse VL, Shankar PM. Bubble size measurements using the nonlinear mixing of two frequencies. J Acoust Soc Am 1984;75:1473-77 Overvelde M, Garbin V, Sijl J, Dollet B, de Jong N, Lohse D, Versluis M. Nonlinear shell behavior of phospholipid-coated microbubbles. Ultrasound Med Biol 2010;36:2080-92. Pasovic M, Danilouchkine M, Faez T, Van Neer PL, Cachard C, van der Steen AF, Basset O, de Jong N. Second harmonic inversion for ultrasound contrast harmonic imaging. Phys Med Biol 2011;56:3163. Phillips PJ. Contrast pulse sequences (CPS): imaging nonlinear microbubbles. Proc IEEE Ultrason Sympos 2001;2:1739 –1745. Plesset M. The dynamics of cavitation bubbles. J Appl Mech 1949;16:277-82. Prosperetti A. Nonlinear oscillations of gas bubbles in liquids: steady‐state solutions. J Acoust Soc Am 1974;56:878-85. Rayleigh L. VIII. On the pressure developed in a liquid during the collapse of a spherical cavity. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science 1917;34:94-8. Sarkar K, Shi WT, Chatterjee D, Forsberg F. Characterization of ultrasound contrast microbubbles using in vitro experiments and viscous and viscoelastic interface models for encapsulation. J Acoust Soc Am 2005;118:539-50. Schrope BA, Newhouse VL. Second harmonic ultrasonic blood perfusion measurement. Ultrasound Med Biol 1993;19:567-79. Shi WT, Forsberg F, Hall AL, Chiao RY, Liu J-B, Miller S, Thomenius KE, Wheatley MA, Goldberg BB. Subharmonic imaging with microbubble contrast agents: initial results. Ultrasonic imaging 1999;21:79-94. Sijl J, Dollet B, Overvelde M, Garbin V, Rozendal T, De Jong N, Lohse D, Versluis M. Subharmonic behavior of phospholipid-coated ultrasound contrast agent microbubbles. J Acoust Soc Am 2010;128:3239-52. Sijl J, Overvelde M, Dollet B, Garbin V, De Jong N, Lohse D, Versluis M. “Compression-only” behavior: A second-order nonlinear response of ultrasound contrast agent microbubbles. J Acoust Soc Am 2011;129:1729-39. Simpson DH, Chin CT, Burns PN. Pulse inversion Doppler: a new method for detecting nonlinear echoes from microbubble contrast agents. Ieee T Ultrason Ferr 1999;46:372-82. Tsao J, Chen M-H. An Adaptive Pulse Compression Filter for Ultrasound Contrast Harmonic Imaging. Engineering 2013;5:118. Tu J, Guan J, Qiu Y, Matula TJ. Estimating the shell parameters of SonoVue® microbubbles using light scattering. J Acoust Soc Am 2009;126:2954-62. van der Meer SM, Dollet B, Voormolen MM, Chin CT, Bouakaz A, de Jong N, Versluis M, Lohse D. Microbubble spectroscopy of ultrasound contrast agents. The J Acoust Soc Am 2007;121:648-56. van Rooij T, Luan Y, Renaud G, van der Steen AF, Versluis M, de Jong N, Kooiman K. Non-linear response and viscoelastic properties of lipid-coated microbubbles: DSPC versus DPPC. Ultrasound Med Biol 2015;41:1432-45. Wells P. Biomedical Ultrasonics, Acad. Press, London 1977;446: | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/18965 | - |
| dc.description.abstract | The phospholipid coated microbubbles are widely used for ultrasound contrast imaging. The quality of imaging strongly depends on the resonance frequency of bubbles. When the transmitted frequency matches the resonance frequency of a contrast agent, conditions are optimal for producing higher scattering, which has been demonstrated to improve the contrast to tissue ratio (CTR). Therefore, a significant factor in ultrasound contrast imaging is knowledge of the resonance frequencies of bubbles. Usually, the natural frequency of a bubble is inversely proportional to its radius. However, in previous studies showed if a bubble size is smaller than 10 μm and its encapsulating material has high viscosity, its resonance frequency is very different from its natural frequency due to the high viscous damping coefficient. In order to research how the resonance frequencies of bubbles are affected by viscous damping over the whole range of microbubble sizes accompanied by the acoustic pressure increasing, we simulate the bubble dynamic oscillation for sizes varying between 1 to 4 μm with the Marmottant model. It showed the pressure-dependent resonance only occurred in bubble sizes larger than Rm (the bubble size at the maximal resonance frequency), and on the opposite side, at bubble sizes smaller than Rm it does not appear. While a bubble size that is smaller than Rm, and which has a larger and flatter spectrum without thresholding effect. The bubbles cease to resonate due to total damping larger than square root of 2. The understanding of the influence of shell parameters on the resonance frequency of lipid coated bubbles, which may aid to optimize pulse echoes for ultrasound contrast imaging.
Second harmonic imaging is the principle technique used in the ultrasound contrast agent diagnosis. Quality of second harmonic images is limited by CTR. Techniques for improving the generation of the contrast harmonic are helpful in increasing the CTR of contrast images. Therefore, this study proposed the effects of the compressible shell on the second harmonic response due to ultrasonic excitation. Recent studies show that the ultrasound contrast agent with phospholipid shell may have compression-only behavior, which may improve the generation of harmonic responses due to the compressibility of shell. Analytical simulations were performed for understanding the influence of the compression-only behavior on the generation of second harmonic. A CER (Compression to Expansion Ratio) index is proposed to quantify the degree of the nonlinearity of microbubbles. Effects of the shell viscosity, shell elasticity and the derivative of shell elasticity on the generation of microbubble second harmonic are presented using the analytical solutions of the bubble dynamic equation. It is shown that the derivative of the effective shell elasticity is positively correlated with CER and SCS (Scattering Cross-Section) of second harmonic, and the CER provides a common ground for gauging the effect of different shell parameters on ultrasound contrast agent harmonic generation. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-08T01:40:57Z (GMT). No. of bitstreams: 1 ntu-105-F95921050-1.pdf: 2646672 bytes, checksum: c27d14223b1f72786b85572668aa4cf2 (MD5) Previous issue date: 2016 | en |
| dc.description.tableofcontents | Contents
口試委員會審定書 i 誌謝 ii 中文摘要 iii Abstract v Contents vii List of Figures x List of Tables xv Chapter 1 Introduction 1 1.1 Ultrasound contrast imaging 1 1.2 Resonance of ultrasound contrast agents 1 1.3 Motivation 2 1.4 Research objectives 4 1.5 Organization 5 Chapter 2 Background and Theory 6 2.1 Medical diagnostic ultrasound 6 2.2 Contrast agents microbubbles 7 2.2.1 Evolution of contrast agents 9 2.2.2 Contrast imaging 11 2.2.3 The importance of resonant frequency for contrast imaging 14 2.3 Dynamic bubbles 16 2.3.1 Dynamics of coated Bubbles 16 2.3.2 Marmottant model 20 2.3.2.1 Compression-only behavior 22 2.4 Nonlinear dynamic of lipid-coated bubbles 27 2.4.1 Skewing behavior 29 2.4.2 Pressure-dependent resonance 32 2.4.3 Thresholding behavior 34 2.5 Weakly nonlinear analysis 40 2.6 Simulation method 45 Chapter 3 Resonance Frequency of Phospholipid Shelled Microbubbles for Nonlinear Oscillations: Effect of shell viscosity 49 3.1 Introduction 49 3.2 Effects of damping on resonance frequency 53 3.3 Effect of bubble radius on the resonance frequency 57 3.4 Effect of shell viscosity on the resonance frequency 61 3.5 Effect of shell viscosity on the pressure-dependent resonance 74 3.6 Limitation of simulation model 93 Chapter 4 Effects of Phospholipid Shell on the Generation of Second Harmonic of Ultrasound Contrast Agent Microbubble 94 4.1 Introduction 94 4.2 Quantifying compression-only behavior by CER (Compression to Expansion Ratio) 96 4.3 Shell parameter effect 100 4.3.1 Effects of shell viscosity 101 4.3.2 Effects of effective shell elasticity 103 4.3.3 Effects of derivative of shell elasticity 105 Chapter 5 Conclusion 112 References 115 | |
| dc.language.iso | en | |
| dc.subject | 氣泡動態模型 | zh_TW |
| dc.subject | 磷脂包覆之微氣泡 | zh_TW |
| dc.subject | 共振頻率 | zh_TW |
| dc.subject | 超音波對比劑成像 | zh_TW |
| dc.subject | Phospholipid-coated microbubble | en |
| dc.subject | Ultrasound contrast imaging | en |
| dc.subject | Resonance frequency | en |
| dc.subject | Compression-only | en |
| dc.subject | Bubble dynamic model | en |
| dc.title | 超音波對比劑聲學反應之優化 | zh_TW |
| dc.title | The Optimization of the Acoustic Response of Ultrasound Contrast Agents | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 104-2 | |
| dc.description.degree | 博士 | |
| dc.contributor.oralexamcommittee | 羅孟宗,林文澧,林祐霆,曹勝凱 | |
| dc.subject.keyword | 磷脂包覆之微氣泡,氣泡動態模型,共振頻率,超音波對比劑成像, | zh_TW |
| dc.subject.keyword | Phospholipid-coated microbubble,Bubble dynamic model,Compression-only,Resonance frequency,Ultrasound contrast imaging, | en |
| dc.relation.page | 123 | |
| dc.identifier.doi | 10.6342/NTU201603288 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2016-08-20 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 生醫電子與資訊學研究所 | zh_TW |
| 顯示於系所單位: | 生醫電子與資訊學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-105-1.pdf 未授權公開取用 | 2.58 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
