請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/18943完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 林劭品(Shau-Ping Lin) | |
| dc.contributor.author | Jen-Yun Chang | en |
| dc.contributor.author | 張人允 | zh_TW |
| dc.date.accessioned | 2021-06-08T01:40:23Z | - |
| dc.date.copyright | 2020-08-24 | |
| dc.date.issued | 2020 | |
| dc.date.submitted | 2020-08-19 | |
| dc.identifier.citation | 1. Aapola, U., Kawasaki, K., Scott, H. S., Ollila, J., Vihinen, M., Heino, M., Shintani, A., Kawasaki, K., Minoshima, S., Krohn, K., Antonarakis, S. E., Shimizu, N., Kudoh, J., and Peterson, P. (2000) Isolation and initial characterization of a novel zinc finger gene, DNMT3L, on 21q22.3, related to the cytosine-5-methyltransferase 3 gene family. Genomics 65, 293-298 2. Aravin, A. A., Sachidanandam, R., Bourc'his, D., Schaefer, C., Pezic, D., Toth, K. F., Bestor, T., and Hannon, G. J. (2008) A piRNA pathway primed by individual transposons is linked to de novo DNA methylation in mice. Mol Cell 31, 785-799 3. Aravin, A. A., van der Heijden, G. W., Castaneda, J., Vagin, V. V., Hannon, G. J., and Bortvin, A. (2009) Cytoplasmic compartmentalization of the fetal piRNA pathway in mice. PLoS Genet 5, e1000764 4. Bellve, A. R., Cavicchia, J. C., Millette, C. F., O'Brien, D. A., Bhatnagar, Y. M., and Dym, M. (1977) Spermatogenic cells of the prepuberal mouse: Isolation and morphological characterization. J Cell Biol 74, 68-85 5. Bohring, C., and Krause, W. (2003) Immune infertility: towards a better understanding of sperm (auto)-immunity: The value of proteomic analysis. Hum Reprod 18, 915-924 6. Boivin, J., Bunting, L., Collins, J. A., and Nygren, K. G. (2007) International estimates of infertility prevalence and treatment-seeking: potential need and demand for infertility medical care. Hum Reprod 22, 1506-1512 7. Borghese, B., Santulli, P., Hequet, D., Pierre, G., de Ziegler, D., Vaiman, D., and Chapron, C. (2012) Genetic polymorphisms of DNMT3L involved in hypermethylation of chromosomal ends are associated with greater risk of developing ovarian endometriosis. Am J Pathol 180, 1781-1786 8. Bourc'his, D., and Bestor, T. H. (2004) Meiotic catastrophe and retrotransposon reactivation in male germ cells lacking Dnmt3L. Nature 431, 96-99 9. Cannarella, R., Condorelli, R. A., Mongioi, L. M., La Vignera, S., and Calogero, A. E. (2020) Molecular Biology of Spermatogenesis: Novel targets of apparently idiopathic male infertility. Int J Mol Sci 21 10. Carmell, M. A., Girard, A., van de Kant, H. J., Bourc'his, D., Bestor, T. H., de Rooij, D. G., and Hannon, G. J. (2007) MIWI2 is essential for spermatogenesis and repression of transposons in the mouse male germline. Dev Cell 12, 503-514 11. Castaneda, J., Genzor, P., van der Heijden, G. W., Sarkeshik, A., Yates, J. R., 3rd, Ingolia, N. T., and Bortvin, A. (2014) Reduced pachytene piRNAs and translation underlie spermiogenic arrest in Maelstrom mutant mice. EMBO J 33, 1999-2019 12. Caudron-Herger, M., Wassmer, E., Nasa, I., Schultz, A. S., Seiler, J., Kettenbach, A. N., and Diederichs, S. (2020) Identification, quantification and bioinformatic analysis of RNA-dependent proteins by RNase treatment and density gradient ultracentrifugation using R-DeeP. Nat Protoc 15, 1338-1370 13. Chuma, S., Hosokawa, M., Tanaka, T., and Nakatsuji, N. (2009) Ultrastructural characterization of spermatogenesis and its evolutionary conservation in the germline: germinal granules in mammals. Mol Cell Endocrinol 306, 17-23 14. Da Ros, M., Lehtiniemi, T., Olotu, O., Fischer, D., Zhang, F. P., Vihinen, H., Jokitalo, E., Sironen, A., Toppari, J., and Kotaja, N. (2017) FYCO1 and autophagy control the integrity of the haploid male germ cell-specific RNP granules. Autophagy 13, 302-321 15. Datta, J., Palmer, M. J., Tanton, C., Gibson, L. J., Jones, K. G., Macdowall, W., Glasier, A., Sonnenberg, P., Field, N., Mercer, C. H., Johnson, A. M., and Wellings, K. (2016) Prevalence of infertility and help seeking among 15,000 women and men. Hum Reprod 31, 2108-2118 16. De Fazio, S., Bartonicek, N., Di Giacomo, M., Abreu-Goodger, C., Sankar, A., Funaya, C., Antony, C., Moreira, P. N., Enright, A. J., and O'Carroll, D. (2011) The endonuclease activity of Mili fuels piRNA amplification that silences LINE1 elements. Nature 480, 259-263 17. de Koning, A. P., Gu, W., Castoe, T. A., Batzer, M. A., and Pollock, D. D. (2011) Repetitive elements may comprise over two-thirds of the human genome. PLoS Genet 7, e1002384 18. Deng, W., and Lin, H. (2002) miwi, a murine homolog of piwi, encodes a cytoplasmic protein essential for spermatogenesis. Dev Cell 2, 819-830 19. Deplus, R., Brenner, C., Burgers, W. A., Putmans, P., Kouzarides, T., de Launoit, Y., and Fuks, F. (2002) Dnmt3L is a transcriptional repressor that recruits histone deacetylase. Nucleic Acids Res 30, 3831-3838 20. Diaz de Arce, A. J., Noderer, W. L., and Wang, C. L. (2018) Complete motif analysis of sequence requirements for translation initiation at non-AUG start codons. Nucleic Acids Res 46, 985-994 21. Ernst, C., Eling, N., Martinez-Jimenez, C. P., Marioni, J. C., and Odom, D. T. (2019) Staged developmental mapping and X chromosome transcriptional dynamics during mouse spermatogenesis. Nat Commun 10, 1251 22. Ernst, C., Odom, D. T., and Kutter, C. (2017) The emergence of piRNAs against transposon invasion to preserve mammalian genome integrity. Nat Commun 8, 1411 23. Fu, Q., Pandey, R. R., Leu, N. A., Pillai, R. S., and Wang, P. J. (2016) Mutations in the MOV10L1 ATP hydrolysis motif cause piRNA biogenesis failure and male sterility in mice. Biol Reprod 95, 103 24. Fujii, Y., Onohara, Y., Fujita, H., and Yokota, S. (2016) Argonaute2 protein in rat spermatogenic cells is localized to nuage structures and LAMP2-positive vesicles surrounding chromatoid bodies. J Histochem Cytochem 64, 268-279 25. Ginsburg, M., Snow, M. H., and McLaren, A. (1990) Primordial germ cells in the mouse embryo during gastrulation. Development 110, 521-528 26. Godin, I., Wylie, C., and Heasman, J. (1990) Genital ridges exert long-range effects on mouse primordial germ cell numbers and direction of migration in culture. Development 108, 357-363 27. Gu, A., Ji, G., Shi, X., Long, Y., Xia, Y., Song, L., Wang, S., and Wang, X. (2010) Genetic variants in Piwi-interacting RNA pathway genes confer susceptibility to spermatogenic failure in a Chinese population. Hum Reprod 25, 2955-2961 28. Hata, K., Okano, M., Lei, H., and Li, E. (2002) Dnmt3L cooperates with the Dnmt3 family of de novo DNA methyltransferases to establish maternal imprints in mice. Development 129, 1983-1993 29. Hermann, B. P., Cheng, K., Singh, A., Roa-De La Cruz, L., Mutoji, K. N., Chen, I. C., Gildersleeve, H., Lehle, J. D., Mayo, M., Westernstroer, B., Law, N. C., Oatley, M. J., Velte, E. K., Niedenberger, B. A., Fritze, D., Silber, S., Geyer, C. B., Oatley, J. M., and McCarrey, J. R. (2018) The mammalian spermatogenesis single-cell transcriptome, from spermatogonial stem cells to spermatids. Cell Rep 25, 1650-1667 e1658 30. Huang, H., Gao, Q., Peng, X., Choi, S. Y., Sarma, K., Ren, H., Morris, A. J., and Frohman, M. A. (2011) piRNA-associated germline nuage formation and spermatogenesis require MitoPLD profusogenic mitochondrial-surface lipid signaling. Dev Cell 20, 376-387 31. Inoue, K., Ichiyanagi, K., Fukuda, K., Glinka, M., and Sasaki, H. (2017) Switching of dominant retrotransposon silencing strategies from posttranscriptional to transcriptional mechanisms during male germ-cell development in mice. PLoS Genet 13, e1006926 32. Ipsaro, J. J., Haase, A. D., Knott, S. R., Joshua-Tor, L., and Hannon, G. J. (2012) The structural biochemistry of Zucchini implicates it as a nuclease in piRNA biogenesis. Nature 491, 279-283 33. Jehn, J., Gebert, D., Pipilescu, F., Stern, S., Kiefer, J. S. T., Hewel, C., and Rosenkranz, D. (2018) PIWI genes and piRNAs are ubiquitously expressed in mollusks and show patterns of lineage-specific adaptation. Commun Biol 1, 137 34. Kato, Y., Kaneda, M., Hata, K., Kumaki, K., Hisano, M., Kohara, Y., Okano, M., Li, E., Nozaki, M., and Sasaki, H. (2007) Role of the Dnmt3 family in de novo methylation of imprinted and repetitive sequences during male germ cell development in the mouse. Hum Mol Genet 16, 2272-2280 35. Kojima-Kita, K., Kuramochi-Miyagawa, S., Nagamori, I., Ogonuki, N., Ogura, A., Hasuwa, H., Akazawa, T., Inoue, N., and Nakano, T. (2016) MIWI2 as an effector of DNA methylation and gene silencing in embryonic male germ cells. Cell Rep 16, 2819-2828 36. Kumar, N., and Singh, A. K. (2015) Trends of male factor infertility, an important cause of infertility: A review of literature. J Hum Reprod Sci 8, 191-196 37. Kumar, R. (2013) Medical management of non-obstructive azoospermia. Clinics (Sao Paulo) 68 (Suppl 1), 75-79 38. Kuramochi-Miyagawa, S., Kimura, T., Ijiri, T. W., Isobe, T., Asada, N., Fujita, Y., Ikawa, M., Iwai, N., Okabe, M., Deng, W., Lin, H., Matsuda, Y., and Nakano, T. (2004) Mili, a mammalian member of piwi family gene, is essential for spermatogenesis. Development 131, 839-849 39. La Salle, S., Mertineit, C., Taketo, T., Moens, P. B., Bestor, T. H., and Trasler, J. M. (2004) Windows for sex-specific methylation marked by DNA methyltransferase expression profiles in mouse germ cells. Dev Biol 268, 403-415 40. La Salle, S., Sun, F., and Handel, M. A. (2009) Isolation and short-term culture of mouse spermatocytes for analysis of meiosis. Methods Mol Biol 558, 279-297 41. Lehtiniemi, T., and Kotaja, N. (2018) Germ granule-mediated RNA regulation in male germ cells. Reproduction 155, R77-R91 42. Levine, H., Jorgensen, N., Martino-Andrade, A., Mendiola, J., Weksler-Derri, D., Mindlis, I., Pinotti, R., and Swan, S. H. (2017) Temporal trends in sperm count: a systematic review and meta-regression analysis. Hum Reprod Update 23, 646-659 43. Liao, H. F., Chen, W. S., Chen, Y. H., Kao, T. H., Tseng, Y. T., Lee, C. Y., Chiu, Y. C., Lee, P. L., Lin, Q. J., Ching, Y. H., Hata, K., Cheng, W. T., Tsai, M. H., Sasaki, H., Ho, H. N., Wu, S. C., Huang, Y. H., Yen, P., and Lin, S. P. (2014) DNMT3L promotes quiescence in postnatal spermatogonial progenitor cells. Development 141, 2402-2413 44. Liu, L., Souto, J., Liao, W., Jiang, Y., Li, Y., Nishinakamura, R., Huang, S., Rosengart, T., Yang, V. W., Schuster, M., Ma, Y., and Yang, J. (2013) Histone lysine-specific demethylase 1 (LSD1) protein is involved in Sal-like protein 4 (SALL4)-mediated transcriptional repression in hematopoietic stem cells. J Biol Chem 288, 34719-34728 45. Lu, J., McCarter, M., Lian, G., Esposito, G., Capoccia, E., Delli-Bovi, L. C., Hecht, J., and Sheen, V. (2016) Global hypermethylation in fetal cortex of Down syndrome due to DNMT3L overexpression. Hum Mol Genet 25, 1714-1727 46. Macfarlan, T. S., Gifford, W. D., Driscoll, S., Lettieri, K., Rowe, H. M., Bonanomi, D., Firth, A., Singer, O., Trono, D., and Pfaff, S. L. (2012) Embryonic stem cell potency fluctuates with endogenous retrovirus activity. Nature 487, 57-63 47. Matsuoka, T., Kawai, K., Ando, S., Sugita, S., Kandori, S., Kojima, T., Miyazaki, J., and Nishiyama, H. (2016) DNA methyltransferase-3 like protein expression in various histological types of testicular germ cell tumor. Jpn J Clin Oncol 46, 475-481 48. Meikar, O., Vagin, V. V., Chalmel, F., Sostar, K., Lardenois, A., Hammell, M., Jin, Y., Da Ros, M., Wasik, K. A., Toppari, J., Hannon, G. J., and Kotaja, N. (2014) An atlas of chromatoid body components. RNA 20, 483-495 49. Minami, K., Chano, T., Kawakami, T., Ushida, H., Kushima, R., Okabe, H., Okada, Y., and Okamoto, K. (2010) DNMT3L is a novel marker and is essential for the growth of human embryonal carcinoma. Clin Cancer Res 16, 2751-2759 50. Miyamoto, T., Tsujimura, A., Miyagawa, Y., Koh, E., Namiki, M., and Sengoku, K. (2012) Male infertility and its causes in human. Adv Urol 2012, 384520 51. Mukhopadhyay, D., Varghese, A. C., Pal, M., Banerjee, S. K., Bhattacharyya, A. K., Sharma, R. K., and Agarwal, A. (2010) Semen quality and age-specific changes: a study between two decades on 3,729 male partners of couples with normal sperm count and attending an andrology laboratory for infertility-related problems in an Indian city. Fertil Steril 93, 2247-2254 52. Nagamori, I., Kobayashi, H., Shiromoto, Y., Nishimura, T., Kuramochi-Miyagawa, S., Kono, T., and Nakano, T. (2015) Comprehensive DNA methylation analysis of retrotransposons in male germ cells. Cell Rep 12, 1541-1547 53. Nargund, V. H. (2015) Effects of psychological stress on male fertility. Nat Rev Urol 12, 373-382 54. Nimura, K., Ishida, C., Koriyama, H., Hata, K., Yamanaka, S., Li, E., Ura, K., and Kaneda, Y. (2006) Dnmt3a2 targets endogenous Dnmt3L to ES cell chromatin and induces regional DNA methylation. Genes Cells 11, 1225-1237 55. Nishimasu, H., Ishizu, H., Saito, K., Fukuhara, S., Kamatani, M. K., Bonnefond, L., Matsumoto, N., Nishizawa, T., Nakanaga, K., Aoki, J., Ishitani, R., Siomi, H., Siomi, M. C., and Nureki, O. (2012) Structure and function of Zucchini endoribonuclease in piRNA biogenesis. Nature 491, 284-287 56. O'Doherty, A. M., Rutledge, C. E., Sato, S., Thakur, A., Lees-Murdock, D. J., Hata, K., and Walsh, C. P. (2011) DNA methylation plays an important role in promoter choice and protein production at the mouse Dnmt3L locus. Dev Biol 356, 411-420 57. O'Donnell, L. (2014) Mechanisms of spermiogenesis and spermiation and how they are disturbed. Spermatogenesis 4, e979623 58. Oakberg, E. F. (1956) Duration of spermatogenesis in the mouse and timing of stages of the cycle of the seminiferous epithelium. Am J Anat 99, 507-516 59. Okamura, D., Kimura, T., Nakano, T., and Matsui, Y. (2003) Cadherin-mediated cell interaction regulates germ cell determination in mice. Development 130, 6423-6430 60. Ooi, S. K., Qiu, C., Bernstein, E., Li, K., Jia, D., Yang, Z., Erdjument-Bromage, H., Tempst, P., Lin, S. P., Allis, C. D., Cheng, X., and Bestor, T. H. (2007) DNMT3L connects unmethylated lysine 4 of histone H3 to de novo methylation of DNA. Nature 448, 714-717 61. Reznik, B., Cincotta, S. A., Jaszczak, R. G., Mateo, L. J., Shen, J., Cao, M., Baskin, L., Ye, P., An, W., and Laird, D. J. (2019) Heterogeneity of transposon expression and activation of the repressive network in human fetal germ cells. Development 146 62. Saiti, D., and Lacham-Kaplan, O. (2007) Mouse Germ Cell Development in-vivo and in-vitro. Biomark Insights 2, 241-252 63. Sakai, Y., Suetake, I., Shinozaki, F., Yamashina, S., and Tajima, S. (2004) Co-expression of de novo DNA methyltransferases Dnmt3a2 and Dnmt3L in gonocytes of mouse embryos. Gene Expr Patterns 5, 231-237 64. Saradalekshmi, K. R., Neetha, N. V., Sathyan, S., Nair, I. V., Nair, C. M., and Banerjee, M. (2014) DNA methyl transferase (DNMT) gene polymorphisms could be a primary event in epigenetic susceptibility to schizophrenia. PLoS One 9, e98182 65. Saxe, J. P., Chen, M., Zhao, H., and Lin, H. (2013) Tdrkh is essential for spermatogenesis and participates in primary piRNA biogenesis in the germline. EMBO J 32, 1869-1885 66. Schwab, S. R., Shugart, J. A., Horng, T., Malarkannan, S., and Shastri, N. (2004) Unanticipated antigens: translation initiation at CUG with leucine. PLoS Biol 2, e366 67. Shovlin, T. C., Bourc'his, D., La Salle, S., O'Doherty, A., Trasler, J. M., Bestor, T. H., and Walsh, C. P. (2007) Sex-specific promoters regulate Dnmt3L expression in mouse germ cells. Hum Reprod 22, 457-467 68. Siomi, M. C., Sato, K., Pezic, D., and Aravin, A. A. (2011) PIWI-interacting small RNAs: the vanguard of genome defence. Nat Rev Mol Cell Biol 12, 246-258 69. Soper, S. F., van der Heijden, G. W., Hardiman, T. C., Goodheart, M., Martin, S. L., de Boer, P., and Bortvin, A. (2008) Mouse maelstrom, a component of nuage, is essential for spermatogenesis and transposon repression in meiosis. Dev Cell 15, 285-297 70. Tanaka, S. S., Toyooka, Y., Akasu, R., Katoh-Fukui, Y., Nakahara, Y., Suzuki, R., Yokoyama, M., and Noce, T. (2000) The mouse homolog of Drosophila Vasa is required for the development of male germ cells. Genes Dev 14, 841-853 71. Tseng, Y. T., Liao, H. F., Yu, C. Y., Mo, C. F., and Lin, S. P. (2015) Epigenetic factors in the regulation of prospermatogonia and spermatogonial stem cells. Reproduction 150, R77-91 72. Vagin, V. V., Sigova, A., Li, C., Seitz, H., Gvozdev, V., and Zamore, P. D. (2006) A distinct small RNA pathway silences selfish genetic elements in the germline. Science 313, 320-324 73. Ventela, S., Toppari, J., and Parvinen, M. (2003) Intercellular organelle traffic through cytoplasmic bridges in early spermatids of the rat: mechanisms of haploid gene product sharing. Mol Biol Cell 14, 2768-2780 74. Voronina, E., Seydoux, G., Sassone-Corsi, P., and Nagamori, I. (2011) RNA granules in germ cells. Cold Spring Harb Perspect Biol 3 75. Vourekas, A., Zheng, Q., Alexiou, P., Maragkakis, M., Kirino, Y., Gregory, B. D., and Mourelatos, Z. (2012) Mili and Miwi target RNA repertoire reveals piRNA biogenesis and function of Miwi in spermiogenesis. Nat Struct Mol Biol 19, 773-781 76. Watanabe, T., Cheng, E. C., Zhong, M., and Lin, H. (2015) Retrotransposons and pseudogenes regulate mRNAs and lncRNAs via the piRNA pathway in the germline. Genome Res 25, 368-380 77. Watanabe, T., Cui, X., Yuan, Z., Qi, H., and Lin, H. (2018) MIWI2 targets RNAs transcribed from piRNA-dependent regions to drive DNA methylation in mouse prospermatogonia. EMBO J 37 78. Wijesekara, G. U., Fernando, D. M., Wijerathna, S., and Bandara, N. (2015) Environmental and occupational exposures as a cause of male infertility. Ceylon Med J 60, 52-56 79. Wong, E. W., and Cheng, C. Y. (2011) Impacts of environmental toxicants on male reproductive dysfunction. Trends Pharmacol Sci 32, 290-299 80. Wylie, C. C., Stott, D., and Donovan, P. J. (1986) Primordial germ cell migration. Dev Biol (N Y 1985) 2, 433-448 81. Yeh, Y. H. Lin, S. P., 2019. Beyond Epigenetic Regulation: Non-Canonical. Function and novel isoform of DNA Methyltransferase 3-Like in postnatal male germ cells. Master thesis, Institute of Biotechnology, college of Bioresource and Agriculture, National Taiwan University. 82. Zamudio, N., Barau, J., Teissandier, A., Walter, M., Borsos, M., Servant, N., and Bourc'his, D. (2015) DNA methylation restrains transposons from adopting a chromatin signature permissive for meiotic recombination. Genes Dev 29, 1256-1270 83. Zegers-Hochschild, F., Adamson, G. D., de Mouzon, J., Ishihara, O., Mansour, R., Nygren, K., Sullivan, E., van der Poel, S., International Committee for Monitoring Assisted Reproductive, T., and World Health, O. (2009) The International Committee for Monitoring Assisted Reproductive Technology (ICMART) and the World Health Organization (WHO) Revised Glossary on ART Terminology, 2009. Hum Reprod 24, 2683-2687 84. Zheng, K., Xiol, J., Reuter, M., Eckardt, S., Leu, N. A., McLaughlin, K. J., Stark, A., Sachidanandam, R., Pillai, R. S., and Wang, P. J. (2010) Mouse MOV10L1 associates with Piwi proteins and is an essential component of the Piwi-interacting RNA (piRNA) pathway. Proc Natl Acad Sci U S A 107, 11841-11846 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/18943 | - |
| dc.description.abstract | 類3號DNA甲基化轉移酶(DNA methyltransferase 3-like, DNMT3L)為表觀遺傳調節分子,協助胚胎發育中新生DNA甲基化之建立。在DNMT3L 缺失的小鼠中,轉座子表現失調並且導致生精作用中斷,造成雄性不育。本研究室發現新穎的DNMT3L蛋白異構物,由於此異構物之RNA最初於成年小鼠睪丸被證實,同樣地此蛋白異構物大量被表現於成年小鼠睪丸中,故命名為DNMT3L_AT (adult testis)。DNMT3L_AT 主要座落在精母細胞 (spermatocytes) 與精細胞 (spermatids) 之細胞質中,不同於典型DNMT3L_S (stem cell) 多存在於前精原細胞 (prospermatogonia) 與精原細胞 (spermatogonia) 之細胞核當中。鑑於其胞內位置與表現時期的差異,我們推論此DNMT3L_AT具有不同於典型構型DNMT3L_S的生物功能。本研究試圖利用in vivo以及in vitro 的策略來驗證此蛋白並且探索其交互作用因子以及潛在功能探討。研究結果顯示在5%-40%蔗糖密度梯度離心分離中,發現DNMT3L_AT 座落於germ granule的成員如VASA 與PIWI 聚集的分層當中。免疫染色也得到DNMT3L_AT與在intermitochondrial cement (IMC) 中表現的 MILI以及chromatoid body (CB)之標記 VASA具有高度訊號重疊,而與MIWI的交互作用經由免疫沈澱實驗佐證。因此我推測其參與germ granule的功能如調節piRNA生成與作用、信使RNA儲存以及其他後轉錄修飾功能。 | zh_TW |
| dc.description.abstract | DNA methyltransferase 3-like (DNMT3L) is an important epigenetic modulator which facilitates de novo DNA methylation by cooperating with other DNA methyltransferases (DNMTs). In Dnmt3l knockout mice, males are infertile because of the spermatogenic arrest in early meiosis and derepression of transposons elements (TEs). Strikingly, our lab identifies a novel protein isoform of DNMT3L, DNMT3L adult testis form (DNMT3L_AT), in mouse testes. It is a much smaller protein compared with canonical DNMT3L stem cell form (DNMT3L_S). I confirmed the transcriptional variants and protein expression in postnatal testes of different developmental stages. Spermatocytes and spermatids are the major developmental stages with high DNMT3L_AT expression level. Besides, the subcellular pattern of DNMT3L_AT displays granule-like structures in the cytoplasm, which is distinct from DNMT3L_S that mainly resides in the nucleus. Based on the characteristic protein size, subcellular localization, and the expression period, we deduced that DNMT3L_AT has functions beyond epigenomic modulation during spermatogenesis. I analyzed male germ cell lysates separated in the 5%-40% sucrose density gradient. DNMT3L_AT coexists in the fractions enriched with germ granule’s proteins. Co-immunoprecipitation assay shows potential interaction of DNMT3L_AT with MIWI, the only PIWI protein expressed at later spermatogenesis. In spermatocytes and spermatids, there are substantial overlaps between the immunofluorescent signal of DNMT3L_AT with that of MILI or VASA, marking germ granules, i.e., intermitochondrial cement (IMC) and chromatoid body (CB). IMC or CB has been suggested as the subcellular membrane-less compartment accommodating mRNA regulation and small RNA mediated processes. With potential interaction between DNMT3L_AT and germ granules, we propose that DNMT3L_AT may play roles in post-transcriptional gene regulation for later male germ cell development. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-08T01:40:23Z (GMT). No. of bitstreams: 1 U0001-1808202001273600.pdf: 27289942 bytes, checksum: d46a95e6640ec1da6f24db5609a88d65 (MD5) Previous issue date: 2020 | en |
| dc.description.tableofcontents | 口試委員會審定書 # 誌謝 i 中文摘要 ii ABSTRACT iii CONTENTS v LIST OF FIGURES viii LIST OF TABLES x Abbreviations xi Introduction Predicament of infertility 1 Male germ cell development 2 DNA (cytosine-5)-methyltransferase-3-like 4 Piwi-interacting RNA system 7 Germ granule 10 Significance and aim of this research 11 Materials and Methods Dnmt3l mutant mouse model 14 RNA extraction 15 Reverse transcription 16 Male germ cell enrichment from testes 17 Protein extraction 18 Western blotting 19 Immunocytochemistry staining (ICC staining) 21 Immunohistochemistry (IHC staining) 22 Immunoprecipitation 23 Cell culture 24 Plasmid construction 25 Density gradient ultracentrifugation 26 Results Transcripts and protein of Dnmt3l isoform are detected in postnatal mouse testes 27 DNMT3L_AT is expressed in late spermatocytes and spermatids, and the signal is mainly located in cytoplasm 28 DNMT3L_AT protein and antibody specificity were validated by expressing ectopic recombinant tag-DNMT3L_AT in 3T3 cells 29 DNMT3L_AT existing in the fraction enriched with components of germ granule, and interaction between DNMT3L_AT and germ granule 30 DNMT3L_AT showing colocalization with MILI and VASA in spermatocytes, yet limited in round spermatids 31 Potential interaction between MIWI and DNMT3L_AT 32 Discussion Features, expressing timing, and potential functions of DNMT3L isoform in postnatal male germ cells 35 Exploring DNMT3L_AT function by revealing its interacting partners 37 Mouse model of DNMT3L_AT specific knockout 39 Other potential protein isoforms of DNMT3L in mouse and human 41 The roles of DNMT3L_S in postnatal testes 42 Conclusion and perspectives 44 Appendix 74 REFERENCES 78 | |
| dc.language.iso | en | |
| dc.subject | 生精作用 | zh_TW |
| dc.subject | 生殖顆粒 | zh_TW |
| dc.subject | 類3號甲基化轉移酶異構物 | zh_TW |
| dc.subject | DNMT3L isoform | en |
| dc.subject | Spermatogenesis | en |
| dc.subject | germ granule | en |
| dc.title | 雄鼠減數分裂生殖細胞表現之 新型類3號DNA甲基酶異構體研究 | zh_TW |
| dc.title | Novel DNA Methyltransferase 3-Like Isoforms in Meiotic Male Germ Cells: Beyond Epigenomic Modulation | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 108-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 宋麗英(Li-ying Sung),陳全木(Chuan-Mu Chen),靖永皓(Yung-Hao Ching),張原翊(Yuan-I Chang) | |
| dc.subject.keyword | 生精作用,類3號甲基化轉移酶異構物,生殖顆粒, | zh_TW |
| dc.subject.keyword | Spermatogenesis,DNMT3L isoform,germ granule, | en |
| dc.relation.page | 86 | |
| dc.identifier.doi | 10.6342/NTU202003902 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2020-08-20 | |
| dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
| dc.contributor.author-dept | 生物科技研究所 | zh_TW |
| 顯示於系所單位: | 生物科技研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-1808202001273600.pdf 未授權公開取用 | 26.65 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
