Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 高分子科學與工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/18933
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor黃慶怡(Ching-I Huang)
dc.contributor.authorHsuan-Hung Liuen
dc.contributor.author劉軒宏zh_TW
dc.date.accessioned2021-06-08T01:40:02Z-
dc.date.copyright2016-08-26
dc.date.issued2016
dc.date.submitted2016-08-21
dc.identifier.citationReferences
(1) Muthukumar, M.; Ober, C. K.; Thomas, E. L. Science 1997, 277, 1225–1232.
(2) Ruokolainen, J. ; Makinen, R.; Torkkeli, M.; Makela, T.; Serimaa, R.; ten Brinke, G.; Ikkala, O. Science 1998, 280, 557–560.
(3) Ruokolainen, J.; ten Brinke, G.; Ikkala, O. Adv. Mater. 1999, 11, 777–780.
(4) Maki-Ontto, R.; de Moel, K.; de Odorico, W.; Ruokolainen, J.; Stamm, M.; ten Brinke, G.; Ikkala, O. Adv. Mater. 2001, 13, 117–121.
(5) Nagata, Y.; Masuda, J.; Noro, A.; Cho, D.Y.; Takano, A.; Matsushita, Y. Macromolecules 2005, 38, 10220–10225.
(6) Masuda, J.; Takano, A.; Nagata, Y.; Noro, A.; Matsushita, Y. Phys. Rev. Lett. 2006, 97, 098301.
(7) Masuda, J.; Takano, A.; Suzuki, J.; Nagata, Y.; Noro, A.; Hayashida, K.; Matsushita, Y. Macromolecules 2007, 40, 4023–4027.
(8) Fleury, G.; Bates, F. S. Macromolecules 2009, 42, 1691–1694.
(9) Fleury, G.; Bates, F. S. Macromolecules 2009, 42, 3598–3610.
(10) Alfonzo, C. G.; Fleury, G.; Chaffin, K. A.; Bates, F. S. Macromolecules 2010, 43, 5295–5305.
(11) Faber, M.; Voet, V. S. D.; ten Brinke, G.; Loos, K. Soft Matter 2012, 8, 4479–4485.
(12) Nap, R.; Erukhimovich, I.; ten Brinke, G. Macromolecules 2004, 37, 4296–4303.
(13) Nap, R.; Sushko, N.; Erukhimovich, I.; ten Brinke, G. Macromolecules 2006, 39, 6765–6770.
(14) Subbotin, A.; Klymko, T.; ten Brinke, G. Macromolecules 2007, 40, 2915–2918.
(15) Klymko, T.; Subbotin, A.; ten Brinke, G. J. Chem. Phys. 2008, 129, 114902.
(16) Li, W. H.; Shi, A. C. Macromolecules 2009, 42, 811–819.
(17) Xu, Y. C.; Li, W. H.; Qiu, F, ;Yang, Y. L.; Shi, A. C. J. Phys. Chem. B 2010, 114, 14875–14883.
(18) Xu, Y. C.; Li, W. H.; Qiu, F.; Yang, Y. L.; Shi, A. C. Phys. Chem. Chem. Phys. 2011, 13, 12421– 12428.
(19) Wang, L. Q.; Lin, J. P.; Zhang, L. Macromolecules 2010, 43, 1602–1609.
(20) Matsen, M. W.; Bates, F. S. Macromolecules 1996, 29, 1091–1098.
(21) Bates, F. S.; Fredrickson, G. H. Physics Today 1999, 52, 32–38.
(22) Bailey, T. S. Morphological behavior spanning the symmetric AB and ABC block copolymer states. Ph.D. Thesis, University of Minnesota, 2001.
(23) Tang, P.; Qiu, F.; Zhang, H. D.; Yang, Y. L. Phys. Rev. E 2004, 69, 031803.
(24) Tyler, C. A.; Qin, J.; Bates, F. S.; Morse, D. C. Macromolecules 2007, 40, 4654–4668.
(25) Qin, J.; Bates, F. S.; Morse, D. C. Macromolecules 2010, 43, 5128–5136.
(26) Nagpal, U.; Detcheverry, F. A.; Nealey, P. F.; de Pablo, J. J. Macromolecules 2011, 44, 5490–5497.
(27) Mogi, Y.; Mori, K.; Kotsuji, H.; Matsushita, Y.; Noda, I.; Han, C. C. Macromolecules 1993, 26, 5169–5173.
(28) Mogi, Y.; Nomura, M.; Kotsuji, H.; Ohnishi, K.; Matsushita, Y.; Noda, L. Macromolecules 1994, 27, 6755–6676.
(29) Matsushita, Y.; Suzuki, J.; Seki, M. Physica B 1998, 248, 238–242.
(30) Bailey, T. S.; Hardy, C. M.; Epps, T. H.; Bates, F. S. Macromolecules 2002, 35, 7007–7017.
(31) Epps, T. H.; Cochran, E. W.; Hardy, C. M.; Bailey, T. S.; Waletzko, R. S.; Bates, F. S. Macromolecules 2004, 36, 2873–2881.
(32) Chatterjee, J.; Jain, S.; Bates, F. S. Macromolecules 2007, 40, 2882–2896.
(33) Guo, Z. J.; Zhang, G. J.; Qiu, F.; Zhang, H. D.; Yang, Y. L.; Shi, A. C. Phys. Rev. Lett. 2008, 101, 028301.
(34) Liu, M. J.; Li, W. H.; Qiu, F.; Shi, A. C. Macromolecules 2012, 45, 9522−9530.
(35) Li, W. H.; Qiu, F.; Shi, A. C. Macromolecules 2012, 45, 503−509.
(36) Auschrat, C.; Stadler, R. Macromolecules 1993, 26, 2171–2174.
(37) Ott, H.; Abetz, V.; Altsta1dt, V. Macromolecules 2001, 34, 2121–2128.
(38) Krappe, U.; Stadler, R.; Voigt-Martin, I. Macromolecules 1995, 28, 4558–4561.
(39) Stadler, R.; Auschra, C.; Beckmann, J.; Krappe, U.; Voight-Martin, I.; Leibler, L. Macromolecules 1995, 28, 3080–3097.
(40) Brinkmann, S.; Stadler, R.; Thomas, E. L. Macromolecules 1995, 28, 6566–6572.
(41) Breiner, U.; Krappe, U.; Stadler, R. Macromol. Rapid Commun. 1996, 17, 567–575.
(42) Breiner, U.; Krappe, U.; Abetz, V.; Stadler, R. Macromol. Chem. Phys. 1997, 198, 1051–1083.
(43) Breiner, U.; Krappe, U.; Jakob, T.; Abetz, V.; Stadler, R. Polym. Bull. 1998, 40, 219–226.
(44) Grason, G. M.; DiDonna, B. A.; Kamien, R. D. Phys. Rev. Lett. 2003, 91, 58304.
(45) Huang, C. I.; Yu, H. T. Polymer 2007, 48, 4537–4546.
(46) Huang, C. I.; Yang, L. F. Macromolecules 2010, 43, 9117−9125.
(47) Matsen, M. W. Macromolecules 2012, 45, 2161−2165.
(48) Xie, N.; Liu, M. J.; Deng, H. L.; Li, W. H.; Qiu, F.; Shi, A. C. J. Am. Chem. Soc. 2014, 136, 2974–2977.
(49) Xie, N.; Li, W. H.; Qiu, F.; Shi, A. C. ACS Macro Lett. 2014, 3, 906−910.
(50) Liu, M. J.; Xia, B. K.; Li, W. H.; Qiu, F.; Shi, A. C. Macromolecules 2015, 48, 3386−3394.
(51) Fredrickson, G. H.; Leibler L. Macromolecules 1989, 22, 1238–1250.
(52) Matsen, M. W.; Schick, M. Phys. Rev. Lett. 1994, 72, 2660–2663.
(53) Alexandridis P.; Spontakt R. J. Current Opinion in Colloid & Interface Science 1999, 4,130–139.
(54) Matsen, M. W. J. Phys. Condens. Matter. 2002, 14, R21–R47.
(55) Huang, C. I.; Hsueh, H. Y., Lan .Y. K.; Lin, Y. C. Macromol. Theory Simul. 2007, 16, 77–85.
(56) Mei, A. X.; Guo, X. L.; Ding, Y. W.; Zhang, X. H.; Xu, J. T.; Fan, Z. Q.; Du, B. Y. Macromolecules 2010, 43, 7312–7320.
(57) Abandansari, H. S.; Aghaghafari, E.; Nabid, M. R. ; Niknejad, H. Polymer 2013, 54, 1329–1340.
(58) Popescu, M. T.; Tsitsilianis, C. ACS Macro Lett. 2013, 2, 222−225.
(59) Meuler, A. J.; Fleury, G.; Hillmyer, M. A.; Bates, F. S. Macromolecules 2008, 41, 5809–5817.
(60) Ye, X. G.; Yu, X. F.; Shi, T. F.; Sun, Z. Y.; An, L. J.; Tong, Z. J. Phys. Chem. B 2006, 110, 23578– 23582.
(61) Matsen, M. W.; Schick, M. Phys. Rev. Lett. 1994, 72, 2660–2663.
(62) Drolet, F.; Fredrickson, G. H. Phys. Rev. Lett. 1999, 83, 4317–4320.
(63) Drolet, F.; Fredrickson, G. H. Macromolecules 2001, 34, 5317–5324.
(64) Tzeremes, G.; Rasmussen, K. O.; Lookman, T.; Saxena, A. Phys. Rev. E 2002, 65, 041806.
(65) Bailey, T. S.; Hardy, C. M.; Epps, T. H.; Bates, F. S. Macromolecules 2002, 35, 7007–7017.
(66) Tyler, C. A.; Morse, D. C. Phys. Rev. Lett. 2005, 94, 208302.
(67) Matsen, M. W. Phys. Rev. Lett. 1995, 74, 4225–4228.
(68) Matsen, M. W. Macromolecules 1995, 28, 5765–5773.
(69) Briggs, J.; Chung, H.; Caffrey, M. J. Phys. II 1996, 6, 723−751.
(70) Fogden, A.; Hyde, S. T. Eur. Phys. J. B 1999, 7, 91−104.
(71) Seddon, A. M.; Hallett, J.; Beddoes, C.; Plivelic, T. S.; Squires, A. M. Langmuir 2014, 30, 5705−5710.
(72) Kirkensgaard, J. J. K. Soft Matter 2010, 6, 6102–6108.
(73) Kirkensgaard, J. J. K.; Fragouli, P.; Hadjichristidis, N.; Mortensen, K. Macromolecules 2011, 44, 575–582.
(74) Liu, H. H.; Huang, C. I.; Shi, A. C. Macromolecules 2015, 48, 6214-6223.
(75) Meuler, A. J.; Hillmyer, M. A.; Bates, F. S. Macromolecules 2009, 42, 7221-7250.
(76) Bailey, T. S.; Hardy, C. M.; Epps, T. H.; Bates, F. S. Macromolecules 2002, 35, 7007-7017.
(77) Tyler, C. A.; Morse, D. C. Phys. Rev. Lett., 2005, 94, 208302.
(78) Yamada, K.; Nonomura, M.; Ohta, T. Macromolecules 2004, 37, 5762–5777.
(79) Takenaka, M.; Wakada, T.; Akasaka, S.; Nishitsuji, S.; Saijo, K.; Shimizu, H.; Hasegawa, H. Macromolecules, 2007, 40, 4399–4402.
(80) Breiner, U.; Krappe, U.; Stadler, R. Macromol. Rapid Commun.1996, 17, 567-575.
(81) Breiner, U.; Krappe, U.; Thomas, E. L.; Stadler, R. Macromolecules 1998, 31, 135-141.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/18933-
dc.description.abstractThe phase behavior of linear ABCBA pentablock terpolymers is examined and compared with corresponding linear ABC triblock terpolymers by using the 3-D self-consistent mean-field theory. In particular, phase diagrams of the melts are constructed and used to discuss how the self-assembled morphologies are influenced by the compositions of the three components and the block number per chain. Since the two free ends of A blocks in the ABCBA copolymers enable the macromolecules to relieve the packing frustration within the structures as well as more types of chain conformation, the ABCBA pentablocks exhibit diverse complex network structures and binary crystalline phases of cylinders and spheres. Compared with most linear diblock and triblock copolymers, for which the gyroid phase occupies a narrow region in the phase space, the ABCBA pentablocks tend to form a variety of continuous networks including diamond, hexagonally perforated lamellae, Fddd network, and gyroid. Moreover, the ABCBA pentablocks exhibit different packing orders of alternating A/C spheres and cylinders than ABC. By varying the length of the B-blocks and the ratio of compositions of A and C, a large number of binary metallic and ionic crystals, such as NaCl, CsCl, ZnS, CaF2, Li3Bi, Nb3Sn and Cu3Au, and alternating A/C cylinders with coordination numbers of A/C equal to 4/4, 6/3, and 4/2, are obtained from the ABCBA pentablock terpolymers. With decreasing symmetric χN value (from 80 to 47.5), the effect interaction parameter between the two neighboring blocks is much smaller as decreasing the incompatibility degree of symmetric χN value so that behavior of the pentablock chains are similar to triblock and diclock chains. Accordingly, the complex networks of ABCBA pentablocks such as diamond, hexagonally perforated lamellae, tend to transfer to gyroid observed in most linear diblock and triblock cases. Moreover, the trend of different packing orders of alternating A/C spheres and cylinders with unequal coordination numbers transfer to those with equal coordination numbers is also observed with decreasing symmetric χN value. On the other hand, when the interaction parameter between the two end blocks is much weaker than those between the neighboring blocks, the copolymers prefer to form morphologies with A/C interfaces, which however is not favored due to the chain topology. Thus, more complex ordered structures can be formed in these frustrated copolymer systems including B-formed cylinders, spheres, and helices on cylinders; lamellae with B-cylinders or B-spheres at the interfaces; segmented types of cylinder or gyroid; core/perforated shell types of cylinder or gyroid; knitting patterns. As our simulated ABCBA pentablock terpolymers have the synthetic advantages, the fascinating self-assembling results displayed in this study enable the ABCBA as one of the most efficient routes to functional materials.en
dc.description.provenanceMade available in DSpace on 2021-06-08T01:40:02Z (GMT). No. of bitstreams: 1
ntu-105-D99549015-1.pdf: 6579076 bytes, checksum: cadca6d7ed3c924b6237ff53e0cd8f16 (MD5)
Previous issue date: 2016
en
dc.description.tableofcontentsContents
Acknowledgements II
Abstract III
Contents V
Table Captions VII
Figure Captions VIII
Chapter 1. Introduction 1
Chapter 2. Theoretical Method 10
2.1 Theoretical Method: Self-Consistent Mean-Field Theory 10
2.2 To Solve the Modified Diffusion Equation by Pseudo-Spectral Method 14
Chapter 3. Composition Effects on Self-Assembly Behavior of ABCBA Linear Pentablock Terpolymers with Symmetric Interaction Parameters 17
3.1 Phase Transition Sequence with One of the Three Components are Minor 18
3.2 Phase Transition Sequence with fB Along fA = fC 21
3.3 Packing Orders of Alternating Spheres and Cylinders Formed by A and C 23
3.4 Summary 27
Chapter 4. Exploring All Possible Ordered Structures by Varying Symmetric Interaction Parameters of ABCBA Linear Pentablock Terpolymers 39
4.1 Morphological Transitions Along Fixed fA, fB, and fA/fC=1 by Varing Symmetric χN Values 40
4.2 Phase Triangles of ABCBA Linear Pentablock Terpolymers in the Intermediate- Segregation Regime 44
4.3 Summary 47
Chapter 5. Discovering Ordered Phases of ABCBA Linear Pentablock Terpolymers with Asymmetric Interaction Parameters 54
5.1 Morphological Transition by Decreasing χ_AC N with Constant χ_AB N=χ_BC N 55
5.2 Phase Triangles of ABCBA Linear Pentablock Terpolymers with Asymmetric Interaction Parameters 56
5.3 Summary 63
Chapter 6. Conclusions 70
References 73
 
dc.language.isoen
dc.subjectABCBA五嵌段線性高分子zh_TW
dc.subject自洽場理論zh_TW
dc.subjectSCFTen
dc.subjectABCBA Linear Pentablock Terpolymersen
dc.titleABCBA線性五嵌段共聚合物在熔融態的形態研究zh_TW
dc.titleSelf-Assembly Behavior of ABCBA Linear Pentablock Terpolymers in the Melten
dc.typeThesis
dc.date.schoolyear104-2
dc.description.degree博士
dc.contributor.oralexamcommittee陳宣毅,戴子安,胡孝光,童世煌
dc.subject.keywordABCBA五嵌段線性高分子,自洽場理論,zh_TW
dc.subject.keywordABCBA Linear Pentablock Terpolymers,SCFT,en
dc.relation.page78
dc.identifier.doi10.6342/NTU201603412
dc.rights.note未授權
dc.date.accepted2016-08-22
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept高分子科學與工程學研究所zh_TW
顯示於系所單位:高分子科學與工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-105-1.pdf
  未授權公開取用
6.42 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved