請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/18930完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 姜昱至 | |
| dc.contributor.author | Chun-Wen Cheng | en |
| dc.contributor.author | 鄭竣文 | zh_TW |
| dc.date.accessioned | 2021-06-08T01:39:56Z | - |
| dc.date.copyright | 2016-08-30 | |
| dc.date.issued | 2016 | |
| dc.date.submitted | 2016-08-20 | |
| dc.identifier.citation | Anusavice KJ, Phillips RW. 2003. Phillips' science of dental materials. St. Louis, Mo.: Saunders.
Ausiello P, Apicella A, Davidson CL. 2002. Effect of adhesive layer properties on stress distribution in composite restorations--a 3d finite element analysis. Dent Mater. 18(4):295-303. Ausiello P, Franciosa P, Martorelli M, Watts DC. 2011. Numerical fatigue 3d-fe modeling of indirect composite-restored posterior teeth. Dent Mater. 27(5):423-430. Ausiello P, Rengo S, Davidson CL, Watts DC. 2004. Stress distributions in adhesively cemented ceramic and resin-composite class ii inlay restorations: A 3d-fea study. Dent Mater. 20(9):862-872. Bakke M, Michler L, Moller E. 1992. Occlusal control of mandibular elevator muscles. Scand J Dent Res. 100(5):284-291. Bath-Balogh M, Fehrenbach MJ, Thomas P. 2006. Illustrated dental embryology, histology, and anatomy. St. Louis, Mo.: Elsevier Saunders. Beier US, Kapferer I, Dumfahrt H. 2012. Clinical long-term evaluation and failure characteristics of 1,335 all-ceramic restorations. Int J Prosthodont. 25(1):70-78. Bergman MA. 1999. The clinical performance of ceramic inlays: A review. Aust Dent J. 44(3):157-168. Bergoli CD, Meira JB, Valandro LF, Bottino MA. 2014. Survival rate, load to fracture, and finite element analysis of incisors and canines restored with ceramic veneers having varied preparation design. Oper Dent. 39(5):530-540. Black GV, Blackwell RE. 1955. Operative dentistry. South Milwaukee, Wis.,: Medico-Dental Pub. Co. Blaser PK, Lund MR, Cochran MA, Potter RH. 1983. Effect of designs of class 2 preparations on resistance of teeth to fracture. Oper Dent. 8(1):6-10. Cavel WT, Kelsey WP, Blankenau RJ. 1985. An in vivo study of cuspal fracture. J Prosthet Dent. 53(1):38-42. Cenci MS, Tenuta LM, Pereira-Cenci T, Del Bel Cury AA, ten Cate JM, Cury JA. 2008. Effect of microleakage and fluoride on enamel-dentine demineralization around restorations. Caries Res. 42(5):369-379. Chen C, Niu LN, Xie H, Zhang ZY, Zhou LQ, Jiao K, Chen JH, Pashley DH, Tay FR. 2015. Bonding of universal adhesives to dentine--old wine in new bottles? J Dent. 43(5):525-536. Conrad HJ, Seong WJ, Pesun IJ. 2007. Current ceramic materials and systems with clinical recommendations: A systematic review. J Prosthet Dent. 98(5):389-404. Costa A, Xavier T, Noritomi P, Saavedra G, Borges A. 2014. The influence of elastic modulus of inlay materials on stress distribution and fracture of premolars. Oper Dent. Cotert HS, Sen BH, Balkan M. 2001. In vitro comparison of cuspal fracture resistances of posterior teeth restored with various adhesive restorations. Int J Prosthodont. 14(4):374-378. de Kok P, de Jager N, Veerman IA, Hafeez N, Kleverlaan CJ, Roeters JF. 2016. Effect of a retention groove on the shear bond strength of dentin-bonded restorations. J Prosthet Dent. Dejak B, Mlotkowski A. 2008. Three-dimensional finite element analysis of strength and adhesion of composite resin versus ceramic inlays in molars. J Prosthet Dent. 99(2):131-140. Denehy GE, Torney DL. 1976. Internal enamel reinforcement through micromechanical bonding. J Prosthet Dent. 36(2):171-175. El-Safty S, Akhtar R, Silikas N, Watts DC. 2012. Nanomechanical properties of dental resin-composites. Dent Mater. 28(12):1292-1300. Ferracane JL. 2013. Resin-based composite performance: Are there some things we can't predict? Dent Mater. 29(1):51-58. Fill TS, Carey JP, Toogood RW, Major PW. 2011. Experimentally determined mechanical properties of, and models for, the periodontal ligament: Critical review of current literature. J Dent Biomech. 2011:312980. Fleming GJ, Maguire FR, Bhamra G, Burke FM, Marquis PM. 2006. The strengthening mechanism of resin cements on porcelain surfaces. J Dent Res. 85(3):272-276. Frankenberger R, Taschner M, Garcia-Godoy F, Petschelt A, Kramer N. 2008. Leucite-reinforced glass ceramic inlays and onlays after 12 years. J Adhes Dent. 10(5):393-398. He LH, Fujisawa N, Swain MV. 2006. Elastic modulus and stress-strain response of human enamel by nano-indentation. Biomaterials. 27(24):4388-4398. Heymann H, Swift EJ, Ritter AV, Sturdevant CM. 2013. Sturdevant's art and science of operative dentistry. St. Louis, Mo.: Elsevier/Mosby. Hilton TJ, Ferracane JL, Broome JC. Summitt's fundamentals of operative dentistry : A contemporary approach. Holberg C, Winterhalder P, Wichelhaus A, Hickel R, Huth K. 2013. Fracture risk of lithium-disilicate ceramic inlays: A finite element analysis. Dent Mater. 29(12):1244-1250. Idriss S, Abduljabbar T, Habib C, Omar R. 2007. Factors associated with microleakage in class ii resin composite restorations. Oper Dent. 32(1):60-66. Ilie N, Rencz A, Hickel R. 2013. Investigations towards nano-hybrid resin-based composites. Clin Oral Investig. 17(1):185-193. Jiang LM, Verhaagen B, Versluis M, van der Sluis LW. 2010. Evaluation of a sonic device designed to activate irrigant in the root canal. J Endod. 36(1):143-146. Kim DH, Park SH. 2013. Evaluation of resin composite translucency by two different methods. Oper Dent. 38(3):E1-15. Larson TD, Douglas WH, Geistfeld RE. 1981. Effect of prepared cavities on the strength of teeth. Oper Dent. 6(1):2-5. Lawn BR, Pajares A, Zhang Y, Deng Y, Polack MA, Lloyd IK, Rekow ED, Thompson VP. 2004. Materials design in the performance of all-ceramic crowns. Biomaterials. 25(14):2885-2892. Lazaridou D, Belli R, Petschelt A, Lohbauer U. 2015. Are resin composites suitable replacements for amalgam? A study of two-body wear. Clin Oral Investig. 19(6):1485-1492. Liu X, Fok A, Li H. 2014. Influence of restorative material and proximal cavity design on the fracture resistance of mod inlay restoration. Dent Mater. 30(3):327-333. Magne P, Belser UC. 2002. Rationalization of shape and related stress distribution in posterior teeth: A finite element study using nonlinear contact analysis. Int J Periodontics Restorative Dent. 22(5):425-433. Malament KA, Socransky SS. 2001. Survival of dicor glass-ceramic dental restorations over 16 years. Part iii: Effect of luting agent and tooth or tooth-substitute core structure. J Prosthet Dent. 86(5):511-519. Manicone PF, Rossi Iommetti P, Raffaelli L. 2007. An overview of zirconia ceramics: Basic properties and clinical applications. J Dent. 35(11):819-826. Mondelli J, Steagall L, Ishikiriama A, de Lima Navarro MF, Soares FB. 1980. Fracture strength of human teeth with cavity preparations. J Prosthet Dent. 43(4):419-422. Morig G. 1996. Aesthetic all-ceramic restorations: A philosophic and clinical review. Pract Periodontics Aesthet Dent. 8(8):741-749; quiz 750. Pashley DH. 1996. Dynamics of the pulpo-dentin complex. Crit Rev Oral Biol Med. 7(2):104-133. Rojpaibool T, Leevailoj C. 2015. Fracture resistance of lithium disilicate ceramics bonded to enamel or dentin using different resin cement types and film thicknesses. J Prosthodont. Sakaguchi RL, Powers JM, Craig RG. 2012. Craig's restorative dental materials. Philadelphia, PA: Elsevier/Mosby. Souza A, Xavier TA, Platt JA, Borges A. 2015. Effect of base and inlay restorative material on the stress distribution and fracture resistance of weakened premolars. Oper Dent. 40(4):E158-166. St-Georges AJ, Sturdevant JR, Swift EJ, Jr., Thompson JY. 2003. Fracture resistance of prepared teeth restored with bonded inlay restorations. J Prosthet Dent. 89(6):551-557. Tiossi R, Vasco MA, Lin L, Conrad HJ, Bezzon OL, Ribeiro RF, Fok AS. 2013. Validation of finite element models for strain analysis of implant-supported prostheses using digital image correlation. Dent Mater. 29(7):788-796. Tortopidis D, Lyons MF, Baxendale RH, Gilmour WH. 1998. The variability of bite force measurement between sessions, in different positions within the dental arch. J Oral Rehabil. 25(9):681-686. Vyas N, Pecheva E, Dehghani H, Sammons RL, Wang QX, Leppinen DM, Walmsley AD. 2016. High speed imaging of cavitation around dental ultrasonic scaler tips. PLoS One. 11(3):e0149804. Yaman SD, Karacaer O, Sahin M. 2004. Stress distribution of post-core applications in maxillary central incisors. J Biomater Appl. 18(3):163-177. Yamanel K, Caglar A, Gulsahi K, Ozden UA. 2009. Effects of different ceramic and composite materials on stress distribution in inlay and onlay cavities: 3-d finite element analysis. Dent Mater J. 28(6):661-670. Zhang Y, Lawn B. 2004. Long-term strength of ceramics for biomedical applications. J Biomed Mater Res B Appl Biomater. 69(2):166-172. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/18930 | - |
| dc.description.abstract | 臨床上常可見到填補材料失敗之案例,其中包含填補材料之斷裂、脫落,或是牙齒本身之斷裂等。具有良好之窩洞外型及適當性質的填補材料對於牙科治療之良好預後為相當重要之因素;然而隨著黏著技術的發展及填補材料的演進,對於窩洞修形之要求與傳統銀粉填補方式已有所差異。本研究目的為探討上顎小臼齒之二級窩洞設計與填補材料對於牙齒應力分布之影響,進而透過窩洞設計與填補材料的選擇,改善牙齒應力分布的狀況,以減少牙齒及填補材料之斷裂或是脫離的情形發生。
本研究使用有限元素分析模型及牙齒樣本壓力測試實驗,建構一上顎小臼齒之二級窩洞模型,並以牙齒樣本實驗印證其結果。使用一種牙科陶瓷復形材料及兩種不同彈性係數之牙科複合樹脂復形材料進行牙齒的復形;窩洞設計則分別為具有小凹之設計與無小凹設計,共六種組別。藉由探討牙齒窩洞之應力分布及位移量之差別,比較材料與窩洞設計對於牙齒之生物力學影響。 實驗結果顯示於小臼齒模型中,應力皆往顎側集中,且使用陶瓷復形材料之組別於牙齒窩洞底部邊緣有較低之應力分布。而小凹之窩洞設計雖於統計學上無顯著之影響,其對於陶瓷修復材料之窩洞邊緣中央區域之應力降低效果高於複合樹脂之組別;對於窩洞設計中之小凹大小深度設計,仍需進一步研究及確認。 根據本實驗之結果,在進行後牙二級窩洞之復形時,建議使用高彈性係數之復形材料搭配具有小凹之窩洞設計,以降低窩洞底部邊緣之應力集中情形。而小凹之窩洞設計則會因不同復形材料本身之彈性係數,而有效果顯著上之差異。 | zh_TW |
| dc.description.abstract | Restoration failure is a common problem in dental daily practice. The obvious failure types were restoration fracture, dislodgement, or tooth fracture. A well-designed cavity and proper restoration material are important factors to the prognosis of therestoration. With new adhesive restorations and good adhesive techniques, preparation guidelines for the restorations seems to be less strict. Instead, the properties of the
restoration and the cavity design are become more significant. The purpose of this study was to evaluate the biomechanical effects of different cavity designs and restorative materials in human upper premolar model. Furthermore, to improve the stress distribution of the cavity and reduce the possibility of tooth fracture and adhesive failure by cavity design and restorative material selection. In this study, finite element methods and compressive test of tooth model were used. Restorative materials were one dental ceramic material and two composite resins with different elastic modulus. The cavities were designed with coves or without coves. By comparing the displacement and stress distribution of the model, in order to analyze the effects of cavities and the restorative materials. The results showed that a greater stress concentration over palatal cervical area. Tooth with ceramic restoration had lower stress distribution within the cavity margin. Application of two coves to the gingival margin of the cavity could reduce the stress distribution of the cavity margin. For the ceramic restorations, the effect was more obvious than composite restorations. The depth and the width of the coves need to be investigated further. Based on the result of this study, using restoration with high elastic modulus combined cavity designed with coves could reduce the stress distribution over cavity margin when restore class II cavities of posterior teeth. The efficacy of the cove cavity design was affected by the elastic modulus of the restoration. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-08T01:39:56Z (GMT). No. of bitstreams: 1 ntu-105-R02422002-1.pdf: 3200243 bytes, checksum: 2d1bb57225d1c93731c2fcb557a88af4 (MD5) Previous issue date: 2016 | en |
| dc.description.tableofcontents | 中文摘要 i
ABSTRACT ii 目錄 iv 圖目錄 vii 表目錄 xi Chapter 1 緒論 1 1.1 牙齒結構 1 1.2 牙齒窩洞修形 2 1.2.1 窩洞修形之分類 3 1.2.2 窩洞修形之固位型設計 4 1.2.3 窩洞修形於牙齒強度之影響 5 1.3 牙科復形材料 10 1.3.1 牙科複合樹脂 10 1.3.2 牙科陶瓷材料 13 1.4 二級窩洞復形於臨床上常見之問題 14 1.5 有限元素法 14 1.5.1 有限元素法於牙科之應用 14 1.5.2 有限元素法於牙齒復形方面之研究 15 Chapter 2 實驗動機與目的 18 Chapter 3 實驗材料與方法 19 3.1 實驗架構 19 3.2 復形材料與窩洞設計之分組 20 3.3 有限元素分析模型 21 3.3.1 有限元素模型之建立 21 3.3.2 牙齒窩洞之設計 23 3.3.3 材料參數之設定 25 3.3.4 分析條件之設定 26 3.4 牙齒樣本製備 28 3.4.1 牙齒樣本 28 3.4.2 製備牙齒窩洞 29 3.4.3 複合樹脂填補 30 3.4.4 陶瓷嵌體復形 33 3.5 牙齒樣本壓力測試 35 Chapter 4 實驗結果 38 4.1 有限元素分析方法之應力分佈結果 38 4.1.1 不同窩洞設計之應力分佈結果 38 4.1.2 不同復形材料之應力分佈結果 41 4.2 有限元素分析方法之位移量結果 43 4.3 牙齒樣本壓力測試結果 45 4.3.1 不同復形材料組別之位移量 45 4.3.2 不同窩洞設計組別之位移量 47 4.3.3 窩洞底部不同測量點之位移變化量 49 4.4 牙齒樣本實驗與有限元素模型之位移量曲線分布印證 50 Chapter 5 討論 51 5.1 不同修復材料之影響 51 5.2 不同窩洞設計之影響 56 5.3 咬合力大小設定 59 5.4 高速攝影機之測量方式 60 5.5 陶瓷復形材料黏著方式之選擇 61 5.6 本研究實驗設計之限制 62 5.6.1 有限元素模型之限制 62 5.6.2 牙齒樣本壓力測試實驗之限制 64 Chapter 6 結論與未來研究方向 65 參考文獻 66 | |
| dc.language.iso | zh-TW | |
| dc.title | 二級窩洞設計及填補材料對後牙復形之生物力學分析 | zh_TW |
| dc.title | Effects of Class II Cavity Design and Restorative Materials on Biomechanical Behavior of Posterior Tooth | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 104-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 林俊彬,陳文斌 | |
| dc.subject.keyword | 二級窩洞,窩洞設計,後牙復形,陶瓷材料,複合樹脂,彈性係數, | zh_TW |
| dc.subject.keyword | Class II cavity,cavity design,posterior teeth restoration,ceramic restoration,composite resin,elastic modulus, | en |
| dc.relation.page | 70 | |
| dc.identifier.doi | 10.6342/NTU201603467 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2016-08-22 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 臨床牙醫學研究所 | zh_TW |
| 顯示於系所單位: | 臨床牙醫學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-105-1.pdf 未授權公開取用 | 3.13 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
