請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/18902
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 伍安怡(Betty A. Wu-Hsieh) | |
dc.contributor.author | Sheng-Yang Wu | en |
dc.contributor.author | 巫聖揚 | zh_TW |
dc.date.accessioned | 2021-06-08T01:38:52Z | - |
dc.date.copyright | 2016-08-26 | |
dc.date.issued | 2016 | |
dc.date.submitted | 2016-08-23 | |
dc.identifier.citation | Abi Abdallah, D.S., Egan, C.E., Butcher, B.A., and Denkers, E.Y. (2011). Mouse neutrophils are professional antigen-presenting cells programmed to instruct Th1 and Th17 T-cell differentiation. Int Immunol 23, 317-326.
Aggarwal, S., Ghilardi, N., Xie, M.H., de Sauvage, F.J., and Gurney, A.L. (2003). Interleukin-23 promotes a distinct CD4 T cell activation state characterized by the production of interleukin-17. The Journal of biological chemistry 278, 1910-1914. Ainsworth, G.C., Bisby, G.R., Kirk, P.M., and CABI Bioscience. (2008). Ainsworth & Bisby's dictionary of the fungi / by P.M. Kirk ... [et al.] ; with the assistance of T.V. Andrianova ... [et al.], 10th edn (Wallingford, Oxon, UK ;: CABI). Allen, H.L., and Deepe, G.S., Jr. (2006). B cells and CD4-CD8- T cells are key regulators of the severity of reactivation histoplasmosis. Journal of immunology 177, 1763-1771. Allendoerfer, R., and Deepe, G.S., Jr. (1997). Intrapulmonary response to Histoplasma capsulatum in gamma interferon knockout mice. Infection and immunity 65, 2564-2569. Alves, C.M., Silva, D.A., Azzolini, A.E., Marzocchi-Machado, C.M., Carvalho, J.V., Pajuaba, A.C., Lucisano-Valim, Y.M., Chammas, R., Liu, F.T., Roque-Barreira, M.C., et al. (2010). Galectin-3 plays a modulatory role in the life span and activation of murine neutrophils during early Toxoplasma gondii infection. Immunobiology 215, 475-485. Antachopoulos, C., Walsh, T.J., and Roilides, E. (2007). Fungal infections in primary immunodeficiencies. European journal of pediatrics 166, 1099-1117. Aratani, Y., Kura, F., Watanabe, H., Akagawa, H., Takano, Y., Suzuki, K., Dinauer, M.C., Maeda, N., and Koyama, H. (2002). Critical role of myeloperoxidase and nicotinamide adenine dinucleotide phosphate-oxidase in high-burden systemic infection of mice with Candida albicans. The Journal of infectious diseases 185, 1833-1837. Aratani, Y., Kura, F., Watanabe, H., Akagawa, H., Takano, Y., Suzuki, K., Dinauer, M.C., Maeda, N., and Koyama, H. (2004). In vivo role of myeloperoxidase for the host defense. Japanese journal of infectious diseases 57, S15. Baddley, J.W., Winthrop, K.L., Patkar, N.M., Delzell, E., Beukelman, T., Xie, F., Chen, L., and Curtis, J.R. (2011). Geographic distribution of endemic fungal infections among older persons, United States. Emerg Infect Dis 17, 1664-1669. Bain, J.M., Louw, J., Lewis, L.E., Okai, B., Walls, C.A., Ballou, E.R., Walker, L.A., Reid, D., Munro, C.A., Brown, A.J., et al. (2014). Candida albicans hypha formation and mannan masking of beta-glucan inhibit macrophage phagosome maturation. MBio 5, e01874. Bar, E., Whitney, P.G., Moor, K., Reis e Sousa, C., and LeibundGut-Landmann, S. (2014). IL-17 regulates systemic fungal immunity by controlling the functional competence of NK cells. Immunity 40, 117-127. Bernardes, E.S., Silva, N.M., Ruas, L.P., Mineo, J.R., Loyola, A.M., Hsu, D.K., Liu, F.T., Chammas, R., and Roque-Barreira, M.C. (2006). Toxoplasma gondii infection reveals a novel regulatory role for galectin-3 in the interface of innate and adaptive immunity. The American journal of pathology 168, 1910-1920. Blackwell, M. (2011). The fungi: 1, 2, 3 ... 5.1 million species? Am J Bot 98, 426-438. Bose, N., Chan, A.S., Guerrero, F., Maristany, C.M., Qiu, X., Walsh, R.M., Ertelt, K.E., Jonas, A.B., Gorden, K.B., Dudney, C.M., et al. (2013). Binding of Soluble Yeast beta-Glucan to Human Neutrophils and Monocytes is Complement-Dependent. Frontiers in immunology 4, 230. Brechard, S., Plancon, S., and Tschirhart, E.J. (2013). New insights into the regulation of neutrophil NADPH oxidase activity in the phagosome: a focus on the role of lipid and Ca(2+) signaling. Antioxidants & redox signaling 18, 661-676. Breuilh, L., Vanhoutte, F., Fontaine, J., van Stijn, C.M., Tillie-Leblond, I., Capron, M., Faveeuw, C., Jouault, T., van Die, I., Gosset, P., et al. (2007). Galectin-3 modulates immune and inflammatory responses during helminthic infection: impact of galectin-3 deficiency on the functions of dendritic cells. Infection and immunity 75, 5148-5157. Brinkmann, V., and Zychlinsky, A. (2012). Neutrophil extracellular traps: is immunity the second function of chromatin? The Journal of cell biology 198, 773-783. Brown, G.D., Denning, D.W., Gow, N.A., Levitz, S.M., Netea, M.G., and White, T.C. (2012). Hidden killers: human fungal infections. Sci Transl Med 4, 165rv113. Brummer, E., and Stevens, D.A. (1995). Antifungal mechanisms of activated murine bronchoalveolar or peritoneal macrophages for Histoplasma capsulatum. Clinical and experimental immunology 102, 65-70. Bullock, W.E., and Wright, S.D. (1987). Role of the adherence-promoting receptors, CR3, LFA-1, and p150,95, in binding of Histoplasma capsulatum by human macrophages. The Journal of experimental medicine 165, 195-210. Califice, S., Castronovo, V., and Van Den Brule, F. (2004). Galectin-3 and cancer (Review). Int J Oncol 25, 983-992. Chamilos, G., Ganguly, D., Lande, R., Gregorio, J., Meller, S., Goldman, W.E., Gilliet, M., and Kontoyiannis, D.P. (2010). Generation of IL-23 producing dendritic cells (DCs) by airborne fungi regulates fungal pathogenicity via the induction of T(H)-17 responses. PloS one 5, e12955. Chen, H.Y., Fermin, A., Vardhana, S., Weng, I.C., Lo, K.F., Chang, E.Y., Maverakis, E., Yang, R.Y., Hsu, D.K., Dustin, M.L., et al. (2009). Galectin-3 negatively regulates TCR-mediated CD4+ T-cell activation at the immunological synapse. Proceedings of the National Academy of Sciences of the United States of America 106, 14496-14501. Chessa, T.A., Anderson, K.E., Hu, Y., Xu, Q., Rausch, O., Stephens, L.R., and Hawkins, P.T. (2010). Phosphorylation of threonine 154 in p40phox is an important physiological signal for activation of the neutrophil NADPH oxidase. Blood 116, 6027-6036. Clemons, K.V., Darbonne, W.C., Curnutte, J.T., Sobel, R.A., and Stevens, D.A. (2000). Experimental histoplasmosis in mice treated with anti-murine interferon-gamma antibody and in interferon-gamma gene knockout mice. Microbes Infect 2, 997-1001. Colombo, A.L., Tobon, A., Restrepo, A., Queiroz-Telles, F., and Nucci, M. (2011). Epidemiology of endemic systemic fungal infections in Latin America. Medical mycology 49, 785-798. Conti, H.R., Shen, F., Nayyar, N., Stocum, E., Sun, J.N., Lindemann, M.J., Ho, A.W., Hai, J.H., Yu, J.J., Jung, J.W., et al. (2009). Th17 cells and IL-17 receptor signaling are essential for mucosal host defense against oral candidiasis. The Journal of experimental medicine 206, 299-311. Dang, P.M., Dewas, C., Gaudry, M., Fay, M., Pedruzzi, E., Gougerot-Pocidalo, M.A., and El Benna, J. (1999). Priming of human neutrophil respiratory burst by granulocyte/macrophage colony-stimulating factor (GM-CSF) involves partial phosphorylation of p47(phox). The Journal of biological chemistry 274, 20704-20708. de Boer, R.A., van Veldhuisen, D.J., Gansevoort, R.T., Muller Kobold, A.C., van Gilst, W.H., Hillege, H.L., Bakker, S.J., and van der Harst, P. (2012). The fibrosis marker galectin-3 and outcome in the general population. J Intern Med 272, 55-64. Deepe, G.S., Jr. (1994). Role of CD8+ T cells in host resistance to systemic infection with Histoplasma capsulatum in mice. Journal of immunology 152, 3491-3500. Deepe, G.S., Jr., and Gibbons, R.S. (2006). T cells require tumor necrosis factor-alpha to provide protective immunity in mice infected with Histoplasma capsulatum. The Journal of infectious diseases 193, 322-330. Deepe, G.S., Jr., and Gibbons, R.S. (2009). Interleukins 17 and 23 influence the host response to Histoplasma capsulatum. The Journal of infectious diseases 200, 142-151. Duggan, S., Leonhardt, I., Hunniger, K., and Kurzai, O. (2015). Host response to Candida albicans bloodstream infection and sepsis. Virulence 6, 316-326. Dumic, J., Dabelic, S., and Flogel, M. (2006). Galectin-3: an open-ended story. Biochimica et biophysica acta 1760, 616-635. Eissenberg, L.G., Goldman, W.E., and Schlesinger, P.H. (1993). Histoplasma capsulatum modulates the acidification of phagolysosomes. The Journal of experimental medicine 177, 1605-1611. Elad-Sfadia, G., Haklai, R., Balan, E., and Kloog, Y. (2004). Galectin-3 augments K-Ras activation and triggers a Ras signal that attenuates ERK but not phosphoinositide 3-kinase activity. The Journal of biological chemistry 279, 34922-34930. Erkilet, G., Ozpeker, C., Bothig, D., Kramer, F., Rofe, D., Bohms, B., Morshuis, M., Gummert, J., and Milting, H. (2013). The biomarker plasma galectin-3 in advanced heart failure and survival with mechanical circulatory support devices. J Heart Lung Transplant 32, 221-230. Esteban, A., Popp, M.W., Vyas, V.K., Strijbis, K., Ploegh, H.L., and Fink, G.R. (2011). Fungal recognition is mediated by the association of dectin-1 and galectin-3 in macrophages. Proceedings of the National Academy of Sciences of the United States of America 108, 14270-14275. Fan, D., Coughlin, L.A., Neubauer, M.M., Kim, J., Kim, M.S., Zhan, X., Simms-Waldrip, T.R., Xie, Y., Hooper, L.V., and Koh, A.Y. (2015). Activation of HIF-1alpha and LL-37 by commensal bacteria inhibits Candida albicans colonization. Nature medicine 21, 808-814. Farnworth, S.L., Henderson, N.C., Mackinnon, A.C., Atkinson, K.M., Wilkinson, T., Dhaliwal, K., Hayashi, K., Simpson, A.J., Rossi, A.G., Haslett, C., et al. (2008). Galectin-3 reduces the severity of pneumococcal pneumonia by augmenting neutrophil function. The American journal of pathology 172, 395-405. Fermino, M.L., Polli, C.D., Toledo, K.A., Liu, F.T., Hsu, D.K., Roque-Barreira, M.C., Pereira-da-Silva, G., Bernardes, E.S., and Halbwachs-Mecarelli, L. (2011). LPS-induced galectin-3 oligomerization results in enhancement of neutrophil activation. PloS one 6, e26004. Ferraz, L.C., Bernardes, E.S., Oliveira, A.F., Ruas, L.P., Fermino, M.L., Soares, S.G., Loyola, A.M., Oliver, C., Jamur, M.C., Hsu, D.K., et al. (2008). Lack of galectin-3 alters the balance of innate immune cytokines and confers resistance to Rhodococcus equi infection. European journal of immunology 38, 2762-2775. Forsberg, M., Lofgren, R., Zheng, L., and Stendahl, O. (2001). Tumour necrosis factor-alpha potentiates CR3-induced respiratory burst by activating p38 MAP kinase in human neutrophils. Immunology 103, 465-472. Forsman, H., Islander, U., Andreasson, E., Andersson, A., Onnheim, K., Karlstrom, A., Savman, K., Magnusson, M., Brown, K.L., and Karlsson, A. (2011). Galectin 3 aggravates joint inflammation and destruction in antigen-induced arthritis. Arthritis Rheum 63, 445-454. Fridman, W.H. (1991). Fc receptors and immunoglobulin binding factors. FASEB J 5, 2684-2690. Futosi, K., Fodor, S., and Mocsai, A. (2013). Neutrophil cell surface receptors and their intracellular signal transduction pathways. International immunopharmacology 17, 638-650. Gaffen, S.L. (2009). Structure and signalling in the IL-17 receptor family. Nature reviews Immunology 9, 556-567. Gazendam, R.P., van Hamme, J.L., Tool, A.T., van Houdt, M., Verkuijlen, P.J., Herbst, M., Liese, J.G., van de Veerdonk, F.L., Roos, D., van den Berg, T.K., et al. (2014). Two independent killing mechanisms of Candida albicans by human neutrophils: evidence from innate immunity defects. Blood 124, 590-597. Ge, X.N., Bahaie, N.S., Kang, B.N., Hosseinkhani, M.R., Ha, S.G., Frenzel, E.M., Liu, F.T., Rao, S.P., and Sriramarao, P. (2010). Allergen-induced airway remodeling is impaired in galectin-3-deficient mice. Journal of immunology 185, 1205-1214. Gildea, L.A., Morris, R.E., and Newman, S.L. (2001). Histoplasma capsulatum yeasts are phagocytosed via very late antigen-5, killed, and processed for antigen presentation by human dendritic cells. Journal of immunology 166, 1049-1056. Gomez, A.M., Bullock, W.E., Taylor, C.L., and Deepe, G.S., Jr. (1988). Role of L3T4+ T cells in host defense against Histoplasma capsulatum. Infection and immunity 56, 1685-1691. Gullo, A. (2009). Invasive fungal infections: the challenge continues. Drugs 69 Suppl 1, 65-73. Harazono, Y., Kho, D.H., Balan, V., Nakajima, K., Zhang, T., Hogan, V., and Raz, A. (2014). Galectin-3 leads to attenuation of apoptosis through Bax heterodimerization in human thyroid carcinoma cells. Oncotarget 5, 9992-10001. Hawksworth, D.L. (1991). The Fungal Dimension of Biodiversity - Magnitude, Significance, and Conservation. Mycol Res 95, 641-655. Henderson, N.C., Mackinnon, A.C., Farnworth, S.L., Poirier, F., Russo, F.P., Iredale, J.P., Haslett, C., Simpson, K.J., and Sethi, T. (2006). Galectin-3 regulates myofibroblast activation and hepatic fibrosis. Proceedings of the National Academy of Sciences of the United States of America 103, 5060-5065. Horn, D.L., Neofytos, D., Anaissie, E.J., Fishman, J.A., Steinbach, W.J., Olyaei, A.J., Marr, K.A., Pfaller, M.A., Chang, C.H., and Webster, K.M. (2009). Epidemiology and outcomes of candidemia in 2019 patients: data from the prospective antifungal therapy alliance registry. Clinical infectious diseases : an official publication of the Infectious Diseases Society of America 48, 1695-1703. Hsieh, T.J., Lin, H.Y., Tu, Z., Lin, T.C., Wu, S.C., Tseng, Y.Y., Liu, F.T., Hsu, S.T., and Lin, C.H. (2016). Dual thio-digalactoside-binding modes of human galectins as the structural basis for the design of potent and selective inhibitors. Sci Rep 6, 29457. Huang, W., Na, L., Fidel, P.L., and Schwarzenberger, P. (2004). Requirement of interleukin-17A for systemic anti-Candida albicans host defense in mice. The Journal of infectious diseases 190, 624-631. Ifrim, D.C., Bain, J.M., Reid, D.M., Oosting, M., Verschueren, I., Gow, N.A., van Krieken, J.H., Brown, G.D., Kullberg, B.J., Joosten, L.A., et al. (2014). Role of Dectin-2 for host defense against systemic infection with Candida glabrata. Infection and immunity 82, 1064-1073. Jawhara, S., Thuru, X., Standaert-Vitse, A., Jouault, T., Mordon, S., Sendid, B., Desreumaux, P., and Poulain, D. (2008). Colonization of mice by Candida albicans is promoted by chemically induced colitis and augments inflammatory responses through galectin-3. The Journal of infectious diseases 197, 972-980. Jiang, H.R., Al Rasebi, Z., Mensah-Brown, E., Shahin, A., Xu, D., Goodyear, C.S., Fukada, S.Y., Liu, F.T., Liew, F.Y., and Lukic, M.L. (2009). Galectin-3 deficiency reduces the severity of experimental autoimmune encephalomyelitis. Journal of immunology 182, 1167-1173. Jouault, T., El Abed-El Behi, M., Martinez-Esparza, M., Breuilh, L., Trinel, P.A., Chamaillard, M., Trottein, F., and Poulain, D. (2006). Specific recognition of Candida albicans by macrophages requires galectin-3 to discriminate Saccharomyces cerevisiae and needs association with TLR2 for signaling. Journal of immunology 177, 4679-4687. Kao, C.Y., Chen, Y., Thai, P., Wachi, S., Huang, F., Kim, C., Harper, R.W., and Wu, R. (2004). IL-17 markedly up-regulates beta-defensin-2 expression in human airway epithelium via JAK and NF-kappaB signaling pathways. Journal of immunology 173, 3482-3491. Kauffman, C.A. (2007). Histoplasmosis: a clinical and laboratory update. Clin Microbiol Rev 20, 115-132. Kelly, M.N., Kolls, J.K., Happel, K., Schwartzman, J.D., Schwarzenberger, P., Combe, C., Moretto, M., and Khan, I.A. (2005). Interleukin-17/interleukin-17 receptor-mediated signaling is important for generation of an optimal polymorphonuclear response against Toxoplasma gondii infection. Infection and immunity 73, 617-621. Kennedy, A.D., Willment, J.A., Dorward, D.W., Williams, D.L., Brown, G.D., and DeLeo, F.R. (2007). Dectin-1 promotes fungicidal activity of human neutrophils. European journal of immunology 37, 467-478. Koh, A.Y., Kohler, J.R., Coggshall, K.T., Van Rooijen, N., and Pier, G.B. (2008). Mucosal damage and neutropenia are required for Candida albicans dissemination. PLoS pathogens 4, e35. Kohatsu, L., Hsu, D.K., Jegalian, A.G., Liu, F.T., and Baum, L.G. (2006). Galectin-3 induces death of Candida species expressing specific beta-1,2-linked mannans. Journal of immunology 177, 4718-4726. Korn, T., Bettelli, E., Oukka, M., and Kuchroo, V.K. (2009). IL-17 and Th17 Cells. Annual review of immunology 27, 485-517. Kullberg, B.J., and Arendrup, M.C. (2015). Invasive Candidiasis. N Engl J Med 373, 1445-1456. Lai, C.H., Huang, C.K., Chin, C., Yang, Y.T., Lin, H.F., and Lin, H.H. (2007). Indigenous case of disseminated histoplasmosis, Taiwan. Emerg Infect Dis 13, 127-129. Le, H.T., Tran, V.G., Kim, W., Kim, J., Cho, H.R., and Kwon, B. (2012). IL-33 priming regulates multiple steps of the neutrophil-mediated anti-Candida albicans response by modulating TLR and dectin-1 signals. Journal of immunology 189, 287-295. Li, X., Utomo, A., Cullere, X., Choi, M.M., Milner, D.A., Jr., Venkatesh, D., Yun, S.H., and Mayadas, T.N. (2011). The beta-glucan receptor Dectin-1 activates the integrin Mac-1 in neutrophils via Vav protein signaling to promote Candida albicans clearance. Cell host & microbe 10, 603-615. Li, Y., Komai-Koma, M., Gilchrist, D.S., Hsu, D.K., Liu, F.T., Springall, T., and Xu, D. (2008). Galectin-3 is a negative regulator of lipopolysaccharide-mediated inflammation. Journal of immunology 181, 2781-2789. Liang, S.C., Tan, X.Y., Luxenberg, D.P., Karim, R., Dunussi-Joannopoulos, K., Collins, M., and Fouser, L.A. (2006). Interleukin (IL)-22 and IL-17 are coexpressed by Th17 cells and cooperatively enhance expression of antimicrobial peptides. The Journal of experimental medicine 203, 2271-2279. Lin, J.S., Huang, J.H., Hung, L.Y., Wu, S.Y., and Wu-Hsieh, B.A. (2010). Distinct roles of complement receptor 3, Dectin-1, and sialic acids in murine macrophage interaction with Histoplasma yeast. Journal of leukocyte biology 88, 95-106. Lin, J.S., and Wu-Hsieh, B.A. (2004). Functional T cells in primary immune response to histoplasmosis. Int Immunol 16, 1663-1673. Linden, J.R., De Paepe, M.E., Laforce-Nesbitt, S.S., and Bliss, J.M. (2013a). Galectin-3 plays an important role in protection against disseminated candidiasis. Medical mycology 51, 641-651. Linden, J.R., Kunkel, D., Laforce-Nesbitt, S.S., and Bliss, J.M. (2013b). The role of galectin-3 in phagocytosis of Candida albicans and Candida parapsilosis by human neutrophils. Cellular microbiology 15, 1127-1142. Lionakis, M.S., Fischer, B.G., Lim, J.K., Swamydas, M., Wan, W., Richard Lee, C.C., Cohen, J.I., Scheinberg, P., Gao, J.L., and Murphy, P.M. (2012). Chemokine receptor Ccr1 drives neutrophil-mediated kidney immunopathology and mortality in invasive candidiasis. PLoS pathogens 8, e1002865. Lionakis, M.S., Lim, J.K., Lee, C.C., and Murphy, P.M. (2011). Organ-specific innate immune responses in a mouse model of invasive candidiasis. Journal of innate immunity 3, 180-199. Lionakis, M.S., and Netea, M.G. (2013). Candida and host determinants of susceptibility to invasive candidiasis. PLoS pathogens 9, e1003079. Liu, W., Hsu, D.K., Chen, H.Y., Yang, R.Y., Carraway, K.L., 3rd, Isseroff, R.R., and Liu, F.T. (2012). Galectin-3 regulates intracellular trafficking of EGFR through Alix and promotes keratinocyte migration. The Journal of investigative dermatology 132, 2828-2837. Mackinnon, A.C., Gibbons, M.A., Farnworth, S.L., Leffler, H., Nilsson, U.J., Delaine, T., Simpson, A.J., Forbes, S.J., Hirani, N., Gauldie, J., et al. (2012). Regulation of transforming growth factor-beta1-driven lung fibrosis by galectin-3. Am J Respir Crit Care Med 185, 537-546. Majer, O., Bourgeois, C., Zwolanek, F., Lassnig, C., Kerjaschki, D., Mack, M., Muller, M., and Kuchler, K. (2012). Type I interferons promote fatal immunopathology by regulating inflammatory monocytes and neutrophils during Candida infections. PLoS pathogens 8, e1002811. Makni-Maalej, K., Chiandotto, M., Hurtado-Nedelec, M., Bedouhene, S., Gougerot-Pocidalo, M.A., Dang, P.M., and El-Benna, J. (2013). Zymosan induces NADPH oxidase activation in human neutrophils by inducing the phosphorylation of p47phox and the activation of Rac2: involvement of protein tyrosine kinases, PI3Kinase, PKC, ERK1/2 and p38MAPkinase. Biochemical pharmacology 85, 92-100. Martinez-Martinez, E., Calvier, L., Fernandez-Celis, A., Rousseau, E., Jurado-Lopez, R., Rossoni, L.V., Jaisser, F., Zannad, F., Rossignol, P., Cachofeiro, V., et al. (2015). Galectin-3 blockade inhibits cardiac inflammation and fibrosis in experimental hyperaldosteronism and hypertension. Hypertension 66, 767-775. Matusevicius, D., Kivisakk, P., He, B., Kostulas, N., Ozenci, V., Fredrikson, S., and Link, H. (1999). Interleukin-17 mRNA expression in blood and CSF mononuclear cells is augmented in multiple sclerosis. Mult Scler 5, 101-104. McLeish, K.R., Knall, C., Ward, R.A., Gerwins, P., Coxon, P.Y., Klein, J.B., and Johnson, G.L. (1998). Activation of mitogen-activated protein kinase cascades during priming of human neutrophils by TNF-alpha and GM-CSF. Journal of leukocyte biology 64, 537-545. Metzler, K.D., Fuchs, T.A., Nauseef, W.M., Reumaux, D., Roesler, J., Schulze, I., Wahn, V., Papayannopoulos, V., and Zychlinsky, A. (2011). Myeloperoxidase is required for neutrophil extracellular trap formation: implications for innate immunity. Blood 117, 953-959. Mishra, B.B., Li, Q., Steichen, A.L., Binstock, B.J., Metzger, D.W., Teale, J.M., and Sharma, J. (2013). Galectin-3 functions as an alarmin: pathogenic role for sepsis development in murine respiratory tularemia. PloS one 8, e59616. Mocsai, A., Ruland, J., and Tybulewicz, V.L. (2010). The SYK tyrosine kinase: a crucial player in diverse biological functions. Nature reviews Immunology 10, 387-402. Molet, S., Hamid, Q., Davoine, F., Nutku, E., Taha, R., Page, N., Olivenstein, R., Elias, J., and Chakir, J. (2001). IL-17 is increased in asthmatic airways and induces human bronchial fibroblasts to produce cytokines. J Allergy Clin Immunol 108, 430-438. Nacher, M., Adenis, A., Mc Donald, S., Do Socorro Mendonca Gomes, M., Singh, S., Lopes Lima, I., Malcher Leite, R., Hermelijn, S., Wongsokarijo, M., Van Eer, M., et al. (2013). Disseminated histoplasmosis in HIV-infected patients in South America: a neglected killer continues on its rampage. PLoS Negl Trop Dis 7, e2319. Nachtigal, M., Ghaffar, A., and Mayer, E.P. (2008). Galectin-3 gene inactivation reduces atherosclerotic lesions and adventitial inflammation in ApoE-deficient mice. The American journal of pathology 172, 247-255. Nakahara, S., Oka, N., and Raz, A. (2005). On the role of galectin-3 in cancer apoptosis. Apoptosis : an international journal on programmed cell death 10, 267-275. Newman, S.L., Gootee, L., and Gabay, J.E. (1993). Human neutrophil-mediated fungistasis against Histoplasma capsulatum. Localization of fungistatic activity to the azurophil granules. J Clin Invest 92, 624-631. Nieminen, J., St-Pierre, C., Bhaumik, P., Poirier, F., and Sato, S. (2008). Role of galectin-3 in leukocyte recruitment in a murine model of lung infection by Streptococcus pneumoniae. Journal of immunology 180, 2466-2473. Nieminen, J., St-Pierre, C., and Sato, S. (2005). Galectin-3 interacts with naive and primed neutrophils, inducing innate immune responses. Journal of leukocyte biology 78, 1127-1135. Nikawa, H., Samaranayake, L.P., Tenovuo, J., Pang, K.M., and Hamada, T. (1993). The fungicidal effect of human lactoferrin on Candida albicans and Candida krusei. Arch Oral Biol 38, 1057-1063. Pelletier, M., Maggi, L., Micheletti, A., Lazzeri, E., Tamassia, N., Costantini, C., Cosmi, L., Lunardi, C., Annunziato, F., Romagnani, S., et al. (2010). Evidence for a cross-talk between human neutrophils and Th17 cells. Blood 115, 335-343. Perona-Wright, G., Jenkins, S.J., O'Connor, R.A., Zienkiewicz, D., McSorley, H.J., Maizels, R.M., Anderton, S.M., and MacDonald, A.S. (2009). A pivotal role for CD40-mediated IL-6 production by dendritic cells during IL-17 induction in vivo. Journal of immunology 182, 2808-2815. Petry, A., Weitnauer, M., and Gorlach, A. (2010). Receptor activation of NADPH oxidases. Antioxidants & redox signaling 13, 467-487. Rabinovich, G.A., and Toscano, M.A. (2009). Turning 'sweet' on immunity: galectin-glycan interactions in immune tolerance and inflammation. Nature reviews Immunology 9, 338-352. Rappleye, C.A., Eissenberg, L.G., and Goldman, W.E. (2007). Histoplasma capsulatum alpha-(1,3)-glucan blocks innate immune recognition by the beta-glucan receptor. Proceedings of the National Academy of Sciences of the United States of America 104, 1366-1370. Remijsen, Q., Vanden Berghe, T., Wirawan, E., Asselbergh, B., Parthoens, E., De Rycke, R., Noppen, S., Delforge, M., Willems, J., and Vandenabeele, P. (2011). Neutrophil extracellular trap cell death requires both autophagy and superoxide generation. Cell research 21, 290-304. Romani, L., Mencacci, A., Cenci, E., Del Sero, G., Bistoni, F., and Puccetti, P. (1997). An immunoregulatory role for neutrophils in CD4+ T helper subset selection in mice with candidiasis. Journal of immunology 158, 2356-2362. Rommel, C., Camps, M., and Ji, H. (2007). PI3K delta and PI3K gamma: partners in crime in inflammation in rheumatoid arthritis and beyond? Nature reviews Immunology 7, 191-201. Ruas, L.P., Bernardes, E.S., Fermino, M.L., de Oliveira, L.L., Hsu, D.K., Liu, F.T., Chammas, R., and Roque-Barreira, M.C. (2009). Lack of galectin-3 drives response to Paracoccidioides brasiliensis toward a Th2-biased immunity. PloS one 4, e4519. Sa-Nunes, A., Medeiros, A.I., Sorgi, C.A., Soares, E.G., Maffei, C.M., Silva, C.L., and Faccioli, L.H. (2007). Gr-1+ cells play an essential role in an experimental model of disseminated histoplasmosis. Microbes Infect 9, 1393-1401. Saegusa, J., Hsu, D.K., Chen, H.Y., Yu, L., Fermin, A., Fung, M.A., and Liu, F.T. (2009). Galectin-3 is critical for the development of the allergic inflammatory response in a mouse model of atopic dermatitis. The American journal of pathology 174, 922-931. Saksida, T., Nikolic, I., Vujicic, M., Nilsson, U.J., Leffler, H., Lukic, M.L., Stojanovic, I., and Stosic-Grujicic, S. (2013). Galectin-3 deficiency protects pancreatic islet cells from cytokine-triggered apoptosis in vitro. J Cell Physiol 228, 1568-1576. Salvin, S.B. (1953). Immunization of mice against Histoplasma capsulatum. Journal of immunology 70, 267-270. Schnur, R.A., and Newman, S.L. (1990). The respiratory burst response to Histoplasma capsulatum by human neutrophils. Evidence for intracellular trapping of superoxide anion. Journal of immunology 144, 4765-4772. Shan, M., Gentile, M., Yeiser, J.R., Walland, A.C., Bornstein, V.U., Chen, K., He, B., Cassis, L., Bigas, A., Cols, M., et al. (2013). Mucus enhances gut homeostasis and oral tolerance by delivering immunoregulatory signals. Science 342, 447-453. Soloviev, D.A., Jawhara, S., and Fonzi, W.A. (2011). Regulation of innate immune response to Candida albicans infections by alphaMbeta2-Pra1p interaction. Infection and immunity 79, 1546-1558. Song, X., and Qian, Y. (2013). The activation and regulation of IL-17 receptor mediated signaling. Cytokine 62, 175-182. Sundblad, V., Croci, D.O., and Rabinovich, G.A. (2011). Regulated expression of galectin-3, a multifunctional glycan-binding protein, in haematopoietic and non-haematopoietic tissues. Histology and histopathology 26, 247-265. Taylor, P.R., Roy, S., Leal, S.M., Jr., Sun, Y., Howell, S.J., Cobb, B.A., Li, X., and Pearlman, E. (2014). Activation of neutrophils by autocrine IL-17A-IL-17RC interactions during fungal infection is regulated by IL-6, IL-23, RORgammat and dectin-2. Nature immunology 15, 143-151. Taylor, P.R., Tsoni, S.V., Willment, J.A., Dennehy, K.M., Rosas, M., Findon, H., Haynes, K., Steele, C., Botto, M., Gordon, S., et al. (2007). Dectin-1 is required for beta-glucan recognition and control of fungal infection. Nature immunology 8, 31-38. ten Oever, J., Giamarellos-Bourboulis, E.J., van de Veerdonk, F.L., Stelma, F.F., Simon, A., Janssen, M., Johnson, M., Pachot, A., Kullberg, B.J., Joosten, L.A., et al. (2013). Circulating galectin-3 in infections and non-infectious inflammatory diseases. European journal of clinical microbiology & infectious diseases : official publication of the European Society of Clinical Microbiology 32, 1605-1610. Torchinsky, M.B., Garaude, J., Martin, A.P., and Blander, J.M. (2009). Innate immune recognition of infected apoptotic cells directs T(H)17 cell differentiation. Nature 458, 78-82. Underhill, D.M., and Iliev, I.D. (2014). The mycobiota: interactions between commensal fungi and the host immune system. Nature reviews Immunology 14, 405-416. Underhill, D.M., Rossnagle, E., Lowell, C.A., and Simmons, R.M. (2005). Dectin-1 activates Syk tyrosine kinase in a dynamic subset of macrophages for reactive oxygen production. Blood 106, 2543-2550. Urban, C.F., Ermert, D., Schmid, M., Abu-Abed, U., Goosmann, C., Nacken, W., Brinkmann, V., Jungblut, P.R., and Zychlinsky, A. (2009). Neutrophil extracellular traps contain calprotectin, a cytosolic protein complex involved in host defense against Candida albicans. PLoS pathogens 5, e1000639. Urban, C.F., Reichard, U., Brinkmann, V., and Zychlinsky, A. (2006). Neutrophil extracellular traps capture and kill Candida albicans yeast and hyphal forms. Cellular microbiology 8, 668-676. Vautier, S., Drummond, R.A., Redelinghuys, P., Murray, G.I., MacCallum, D.M., and Brown, G.D. (2012). Dectin-1 is not required for controlling Candida albicans colonization of the gastrointestinal tract. Infection and immunity 80, 4216-4222. Vejrazka, M., Micek, R., and Stipek, S. (2005). Apocynin inhibits NADPH oxidase in phagocytes but stimulates ROS production in non-phagocytic cells. Biochimica et biophysica acta 1722, 143-147. Volarevic, V., Milovanovic, M., Ljujic, B., Pejnovic, N., Arsenijevic, N., Nilsson, U., Leffler, H., and Lukic, M.L. (2011). Galectin-3 deficiency prevents concanavalin A- induced hepatitis in mice. Hepatology. Volarevic, V., Milovanovic, M., Ljujic, B., Pejnovic, N., Arsenijevic, N., Nilsson, U., Leffler, H., and Lukic, M.L. (2012). Galectin-3 deficiency prevents concanavalin A-induced hepatitis in mice. Hepatology 55, 1954-1964. Werner, J.L., Gessner, M.A., Lilly, L.M., Nelson, M.P., Metz, A.E., Horn, D., Dunaway, C.W., Deshane, J., Chaplin, D.D., Weaver, C.T., et al. (2011). Neutrophils produce interleukin 17A (IL-17A) in a dectin-1- and IL-23-dependent manner during invasive fungal infection. Infection and immunity 79, 3966-3977. Williams, D.M., Graybill, J.R., and Drutz, D.J. (1978). Histoplasma capsulatum infection in nude mice. Infection and immunity 21, 973-977. Womiloju, T.O., Miller, J.D., Mayer, P.M., and Brook, J.R. (2003). Methods to determine the biological composition of particulate matter collected from outdoor air. Atmos Environ 37, 4335-4344. Woods, J.P. (2003). Knocking on the right door and making a comfortable home: Histoplasma capsulatum intracellular pathogenesis. Curr Opin Microbiol 6, 327-331. Wu-Hsieh, B.A., and Howard, D.H. (1987). Inhibition of the intracellular growth of Histoplasma capsulatum by recombinant murine gamma interferon. Infection and immunity 55, 1014-1016. Wu-Hsieh, B.A., Lee, G.S., Franco, M., and Hofman, F.M. (1992). Early activation of splenic macrophages by tumor necrosis factor alpha is important in determining the outcome of experimental histoplasmosis in mice. Infection and immunity 60, 4230-4238. Xiao, Y.Q., Freire-de-Lima, C.G., Schiemann, W.P., Bratton, D.L., Vandivier, R.W., and Henson, P.M. (2008). Transcriptional and translational regulation of TGF-beta production in response to apoptotic cells. Journal of immunology 181, 3575-3585. Yang, Y.L., Wang, A.H., Wang, C.W., Cheng, W.T., Li, S.Y., Lo, H.J., and Hospitals, T. (2008). Susceptibilities to amphotericin B and fluconazole of Candida species in Taiwan Surveillance of Antimicrobial Resistance of Yeasts 2006. Diagnostic microbiology and infectious disease 61, 175-180. Yano, J., Palmer, G.E., Eberle, K.E., Peters, B.M., Vogl, T., McKenzie, A | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/18902 | - |
dc.description.abstract | 半乳糖凝集素-3廣泛地分佈在細胞內外甚至是膜上,它具有一個可辨識醣類的碳端及一個胜肽尾端。當許多文獻探討了它在自體免疫疾病、癌細胞轉移、細菌和寄生蟲感染、以及纖維化疾病中的角色,它在真菌感染中的重要性卻鮮少有人著墨。真菌感染是一種隱型殺手──據臨床統計指出,即便接受了抗真菌藥物的治療,真菌造成的全身性感染患者仍有高達一半的死亡率,顯示如何控制真菌感染及提供該感染有效治療的方法是全球的重要議題。而我的研究顯示了內生性的半乳糖凝集素-3會負調控先天免疫細胞抗組織胞漿菌及白色念珠菌的感染。
鮮少有人在組織胞漿菌感染時引發症狀,但若是免疫低落或免疫不全的病人在感染後卻極易發展成全身性感染,進而造成死亡。當肺部組織胞漿症的清除需仰賴第一型和第十七型免疫反應,我的研究指出半乳糖凝集素-3會負調控樹突細胞生成IL-17A相關的細胞激素之能力,進而造成CD4 T細胞和嗜中性顆粒球生成IL-17A的能力下降。IL-17A的存在可協助IFN-γ活化巨噬細胞、促使巨噬細胞內組織胞漿菌之生長被抑制。相較於一般小鼠,半乳糖凝集素-3基因剔除的小鼠感染後體內真菌量也因有較高量IL-17A生成而下降。以靜脈注射方式將樹突細胞送入感染的小鼠體內顯示了半乳糖凝集素-3對宿主IL-17A免疫反應和其體內真菌清除之調控乃是經由抑制樹突細胞生成細胞激素之能力造成。 白色念珠菌分佈在人類的皮膚和黏膜表面,是一種伺機性的雙性型真菌。在台灣醫療照護機構內全身性感染案例中,念珠菌感染佔了第一位。白色念珠菌之感染仰賴嗜中性顆粒球進行清除。我們發現未刺激前人類和小鼠的嗜中性顆粒球的半乳糖凝集素-3僅表現在胞內,而白色念珠菌刺激才誘使其在細胞表面被偵測到。當細胞透過CR3辨識調理過的白色念珠菌後,會透過活化磷酸激酶Syk促使細胞生成活性氧,直接毒殺真菌。半乳糖凝集素-3則會抑制Syk的活化,造成毒殺能力下降。共免疫沉降法和螢光染色顯示胞內的半乳糖凝集素-3可直接和Syk作用。而半乳糖凝集素-3基因剔除的小鼠,比起一般小鼠,在全身性白色念珠菌感染後體內真菌數量較低、腎臟病變程度也減緩、死亡率顯著下降。進一步以靜脈注射方式將嗜中性顆粒球送入感染的小鼠體內則證明了半乳糖凝集素-3是藉由調控嗜中性顆粒球的功能而抑制宿主抗真菌之能力。不僅是對實驗用菌株,比較了從病患血液中取得的臨床菌株,我們發現半乳糖凝集素-3也可以抑制嗜中性顆粒球毒殺這些臨床菌株的能力。人類嗜中性顆粒球在半乳糖凝集素-3拮抗劑處理後或以siRNA轉染的方式減少半乳凝集素-3基因表現後,其負責毒殺真菌的活性氧生成量也顯著上升。我們的研究提出了抑制嗜中性顆粒球胞內的半乳糖凝集素-3是一種可行的全身性白色念珠菌治療方式。 | zh_TW |
dc.description.abstract | Galectin-3 (Gal3), belonging to the galectin family, has an evolutionarily conserved C-terminal carbohydrate-recognition domain and a unique N-terminal peptide. While it has been reported to modulate host response to autoimmune diseases, cancer metastasis, bacterial and parasite infections, and fibrosis, there are few studies address its role in fungal infection. Fungal infection as a hidden killer for human beings on the Earth leads to more than 50% mortality when disseminated even in patients with anti-fungal treatment. How to control its spread and provide a promising therapeutic strategy are universal issues. My studies on dimorphic Histoplasma capsulatum infection and opportunistic Candida albicans infection reveal the importance of endogenous gal3 in innate cell response to fungi.
While most people live in endemic area infected by Histoplasma without any symptoms, its infection easily disseminates in immuno-depressed or immunocompromised patients and leads to death. The clearance of pulmonary Histoplasma infection is dependent on both Th1 and Th17 responses. My study shows that gal3 negatively regulated bone marrow-derived and splenic dendritic cell IL-17A-axis cytokine production. The level of IL-17A production by both CD4 T cells and neutrophils was higher in gal3-/- mice after systemic Histoplasma infection. IL-17A alone or combined with IFN-γ activates macrophage to inhibit the growth of intracellular Histoplasma. Gal3-/- mice had lower fungal burden in the spleen compared to gal3+/+ mice. Neutralizing IL-17A increased fungal burden in gal3-/- mice to a level comparable to that in gal3+/+ mice, while neutralizing IFN-γ increased fungal burden in both gal3+/+ and gal3-/- mice. Adoptive transfer of dendritic cells showed that cell intrinsic gal3 in dendritic cells negatively regulated host IL-17A-axis cytokine production and fungal clearance. In this study, we demonstrated a negative role of intrinsic gal3 in dendritic cell IL-17A-axis cytokine production as well as in fungal clearance. Candida albicans is an opportunistic dimorphic fungus, which is a commensal in the mucosa surface and skin in most humans. Invasive candidiasis is the first leading overall health-associated infection as well as bloodstream infection in intensive care units in Taiwan. Neutrophils are the major effector cells to clear fungal infection. We show that unstimulated human and mouse neutrophils express galectin-3 intracellularly, and it becomes detectable on the cell surface after stimulation by opsonized Candida. Upon CR3 engagement with opsonized Candida, galectin-3 downregulates Syk-mediated ROS production and subsequent killing of fungus. Co-immunoprecipitation and immunofluorescence staining reveal that cytosolic gal3 physically interacts with Syk. Moreover, galectin-3 deficiency ameliorates systemic candidiasis by reducing fungal burden, renal pathology, and mortality. Adoptive transfer experiments demonstrate that cell intrinsic gal3 negatively regulates neutrophil effector function in candidiasis. Additionally, the effect of galectin-3 on neutrophil anti-Candida function and host resistance to candidiasis is tested in clinical isolates. Treatment with galectin-3 antagonist or siRNA enhances human neutrophil ROS production. Our work raises the possibility that blocking gal3 in neutrophils may be a promising therapeutic strategy for treating systemic candidiasis. | en |
dc.description.provenance | Made available in DSpace on 2021-06-08T01:38:52Z (GMT). No. of bitstreams: 1 ntu-105-D00449001-1.pdf: 5334375 bytes, checksum: 1b74224329a5cda84544686d487ec8f9 (MD5) Previous issue date: 2016 | en |
dc.description.tableofcontents | 中文摘要 1
Abstract 3 Chapter 1. Introduction 11 Part I. Galectin-3 as an immunoregulatory mediator 12 Part II. Exogenous and endogenous galectin-3 13 Part III. Fungal infections as hidden killers for humans 14 Part IV. Histoplasma capsulatum 16 A. Histoplasma capsulatun and histoplasmosis 16 B. Host defense Histoplasma infection 17 C. Macrophages as both host cells of and effector cells to clear Histoplasma 18 D. Th17 immunity 18 Part V. Candida albicans 19 A. Candida infection and host defense 19 B. Neutrophil anti-Candida functions 20 C. Neutrophil receptors to recognize Candida albicans 21 D. NADPH oxidase-mediated respiratory burst in neutrophils 22 Chapter 2. Specific aims 24 Aim 1: To study the role of endogenous galectin-3 in systemic histoplasmosis 24 1-1. To study the role of endogenous galectin-3 in dendritic cell cytokine production in response to Histoplasma infection 24 1-2. To investing whether and how galectin-3 modulates T cell responses to Histoplasma infection 24 Aim 2: To study the role of endogenous galectin-3 in systemic candidiasis 24 2-1. To study the role of endogenous galectin-3 in neutrophil fungicidal activity against Candida 24 2-2. To study the mechanism by which galectin-3 regulates neutrophil fungicidal activity 24 2-3. To assess the role of endogenous galectin-3 in systemic candidiasis 24 Chapter 3. Materials and Methods 25 Part I. Materials 26 A. Mice and ethics statement 26 B. Antibodies used in flow cytometric analysis, immunofluorescence staining and Western blotting 26 C. ELISA 28 D. Primer sequences used in quantitative RT-PCR 29 E. Buffers and Culture mediums 30 Part II. Methods 33 A. Hstoplasma capsulatum infection 33 B. Candida albicans infection 40 Chapter 4. Results 45 Part I. The role of gal3 in dendritic cell response to Histoplasma infection 46 1. Gal3 negatively regulates the production of IL-17A-axis cytokines by dendritic cells after Histoplasma stimulation 46 2. Gal3 negatively regulates Th17 differentiation after infection 47 3. IL-23 stimulates neutrophils to produce IL-17A 48 4. Gal3-mediated inhibition of fungal clearance is through negative regulation of IL-17A response 50 5. IL-17A activates macrophages to inhibit intracellular growth of Histoplasma 50 6. The presence of gal3 in dendritic cells downregulates IL-17A-axis cytokines and diminishes the ability of the host to clear fungal infection 51 Part II. The role of gal3 in neutrophil response to Candida infection 52 1. Upregulation of gal3 expression in neutrophil response to opsonized Candida 52 2. Gal3 negatively regulates neutrophil ROS production, but not anti-microbial peptide expression and NETosis and subsequent killing of Candida 52 3. Gal3 negatively regulates CR3, but not dectin-1 and Fc receptor, downstream ROS-dependent killing of Candida in neutrophils 54 4. Gal3 physically interacts with Syk and downregulates ROS production through negative regulation of Syk and PKCβ2 phosphorylation 55 5. Gal3-/- mice are more resistant to systemic Candida infection 56 6. Gal3 deficiency enhances fungicidal activity of renal infiltrating neutrophils by increasing ROS production 57 7. The negative effect of gal3 on host defense against systemic candidiasis is dependent on CR3 but not dectin-1 58 8. Neutrophil intrinsic gal3 suppresses host defense against Candida 58 9. The negative effect of gal3 on neutrophil anti-Candida functions is generalizable to clinical isolates 59 10. Gal3 negatively regulates human neutrophil ROS response to opsonized Candida 60 Chapter 5. Discussion 61 Part I. Endogenous gal3 and systemic histoplasmosis 62 Part II. Endogenous gal3 and systemic candidiasis 67 Part III. The compartment where gal3 is determines its effect on phagocyte cellular responses 75 Chapter 6. References 77 List of Figures Chapter 7. Figures 93 Figure 1. Gal3 negatively modulates IL-17A-axis cytokine production in dendritic cell response to Histoplasma stimulation. 94 Figure 2. Gal3 downregulates the level of IL-17A-axis cytokines in spleen after systemic Histoplasma infection. 96 Figure 3. The presence of endogenous gal3 reduces the ability of splenic dendritic cells to express IL-17A-axis cytokines in systemic Histoplasma infection. 98 Figure 4. Endogenous gal3 suppresses Th17 and enhances Th1 responses to systemic Histoplasma infection. 100 Figure 5. Intrinsic gal3 is not involved in naive CD4+ T cell differentiation toward Th1 or Th17 cells. 102 Figure 6. Higher numbers of splenic CD4+ T cells and neutrophils in gal3-/- mice produce IL-17A after systemic Histoplasma infection than in gal3+/+ mice. 104 Figure 8. Thioglycollate-elicited neutrophils produce IL-17A in response to IL-23 stimulation. 108 Figure 9. Gal3 negatively regulates c-Raf-mediated lL-23 production by dendritic cells in response to Histoplasma. 110 Figure 10. Gal3 reduces host ability to clear systemic Histoplasma infection. 112 Figure 11. While IFNγ contributes to fungal clearance in both gal3+/+ and gal3-/- mice, IL-17A participates only in gal3-/- mice defense against systemic Histoplasma infection. 114 Figure 12. IL-17A enhances both IFN-γ-dependent and -independent inhibitory effects of macrophages on the growth of intracellular Histoplasma. 116 Figure 13. Adoptive transfer of gal3-/- dendritic cells promotes IL-17A response and fungal clearance. 118 Figure 14. Opsonized Candida upregulates cytosolic gal3 expression in neutrophils. 120 Figure 15. Cytosolic gal3 does not specifically co-localize with engulfed Candida. 122 Figure 16. Cytosolic gal3 does not interact with engulfed Candida. 124 Figure 17. Gal3 negatively regulates ROS-dependent killing of Candida by neutrophil. 126 Figure 18. Gal3 has only marginal effect on neutrophil expression of antimicrobial peptides. 128 Figure 19. Gal3 is not involved in Candida-induced NET formation. 130 Figure 20. Complement receptor 3 mediates neutrophil killing of opsonized Candida. 132 Figure 21. Dectin-1 and Fc receptor are not involved in neutrophil anti-Candida function. 134 Figure 22. Dectin-1 is involved in bone marrow neutrophil ROS production in response to unopsonized zymosan but not to opsonized zymosan and Candida. 136 Figure 23. Gal3 negatively regulates CR3-mediated killing of Candida by neutrophils. 138 Figure 24. Gal3 does not interacts with CR3 before and after Candida stimulation. 140 Figure 25. The negative effect of gal3 on neutrophil anti-Candida function is not dependent on dectin-1. 142 Figure 26. Neutrophil ROS response to Candida is dependent on Syk and PKCβ2 activation. 144 Figure 27. CR3 engagement activates Syk in neutrophil response to opsonized Candida, while CR3 and dectin-1 are not involved in PKCβ2 activation. 146 Figure 28. Syk and PKCβ2 activation in neutrophil response to Candida is negatively regulated by gal3. 148 Figure 29. Gal3 physically interacts with Syk in neutrophil response to opsonized Candida. 150 Figure 30. Gal3 does not associate with PKCβ2 after stimulation with opsonized Candida. 152 Figure 31. The level of gal3 in sera increases in response to systemic Candida infection. 154 Figure 32. gal3-/- mice sustain less renal dysfunction compared to gal3+/+ mice after systemic Candida infection . 156 Figure 33. Gal3-/- mice exhibit less severe histopathology in the kidney than gal3+/+ mice after systemic Candida infection. 158 Figure 34. The presence of gal3 exacerbates the severity of systemic Candida infection. 160 Figure 35. More number of Candida hyphae in kidney of infected gal3+/+ mice after systemic Candida infection compared to gal3-/- mice. 162 Figure 36. The negative effect of gal3 in host defense against Candida infection is through neutrophil production of ROS. 164 Figure 37. Gal3 does not affect renal and blood neutrophil recruitment after systemic Candida infection. 166 Figure 38. Gal3 negatively regulates neutrophil activation after Candida infection. 168 Figure 39. Gal3 does not affect neutrophil-attracting chemokine expression after Candida infection. 170 Figure 40. The negative effect of gal3 on host defense against systemic candidiasis is dependent on CR3 but not dectin-1. 172 Figure 41. Adoptive transfer of gal3-/- neutrophils reduces fungal burdens in recipient mice. 174 Figure 42. Adoptive transfer of gal3-/- littermate neutrophils reduces fungal burdens in recipient mice. 176 Figure 43. Adoptive transfer of gal3-/- neutrophils reduces fungal burdens in ncf-1-/- recipient mice. 178 Figure 44. To test the effect of gal3 on neutrophil response to Candida clinical isolates. 180 Figure 45. Inhibiting or silencing gal3 upregulates ROS production in human neutrophil response to opsonized Candida. 182 | |
dc.language.iso | en | |
dc.title | 半乳糖凝集素-3對先天免疫細胞抗真菌功能之調控 | zh_TW |
dc.title | The Immunomodulatory Role of Galectin-3 in Innate Immune Response to Fungal Infection | en |
dc.type | Thesis | |
dc.date.schoolyear | 104-2 | |
dc.description.degree | 博士 | |
dc.contributor.oralexamcommittee | 劉扶東(Fu-Tong Liu),陳宜君(Yee-Chun Chen),繆希椿(Shi-Chuen Miaw),林錫賢(Hsi-Hsien Lin) | |
dc.subject.keyword | 半乳糖凝集素-3,樹突細胞,嗜中性顆粒球,組織胞漿菌,白色念珠菌,細胞激素,活性氧,磷酸激?, | zh_TW |
dc.subject.keyword | galectin-3,dendritic cell,neutrophil,Histoplasma,Candida,IL-17,IL-23,ROS,Syk,TD139, | en |
dc.relation.page | 183 | |
dc.identifier.doi | 10.6342/NTU201603518 | |
dc.rights.note | 未授權 | |
dc.date.accepted | 2016-08-23 | |
dc.contributor.author-college | 醫學院 | zh_TW |
dc.contributor.author-dept | 免疫學研究所 | zh_TW |
顯示於系所單位: | 免疫學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-105-1.pdf 目前未授權公開取用 | 5.21 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。