Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電子工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/18872
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor吳忠幟(Chung-Chih Wu)
dc.contributor.authorWei-Lung Tsaien
dc.contributor.author蔡維隆zh_TW
dc.date.accessioned2021-06-08T01:38:09Z-
dc.date.copyright2017-02-08
dc.date.issued2016
dc.date.submitted2016-10-18
dc.identifier.citationChapter1
[1] M. Pope, H. Kallmann, and P. Magnante, J. Chem. Phys., 38, 2042, 1963.
[2] W. Helfrich and W. G. Schneider, Phys. Rev. Lett., 14, 229, 1965.
[3] C. W. Tang and S. A. VanSlyke, Appl. Phys. Lett., 51, 913, 1987.
[4] J. H. Burroughes, D. D. C. Bradley, A. R. Brown, R. N. Marks, K. Mackay, R. H. Friend, P. L. Burns, and A. B. Holmes, Nature, 347, 539, 1990.
[5] C. C. Wu, C. W. Chen, C. L. Lin, and C. J. Yang, J. Disp. Technol., 1, 248, 2005.
[6] B. W. D’ Andrade and S. R. Forrest, Adv. Mater., 16, 1585, 2004.
[7] M. A. Baldo, D. F. O’Brien, Y. You, A. Shoustikov, S. Sibley, M. E. Thompson, and S. R. Forrest, Nature, 395, 151-154, 1998.
[8] Y. Kawamura, K. Goushi, J. Brooks, J.J. Brown, H. Sasabe, and C. Adachi, Appl. Phys. Lett., 86, 071104, 2005.
[9] Y. L. Tung, S. W. Lee, Y. Chi, Y. T. Tao, C. H. Chien, Y. M. Cheng, P. T. Chou, S. M. Peng, and C. S. Liu, J. Mater. Chem., 15, 460-464, 2005.
[10] D. Tanaka, H. Sasabe, Y. J. Li, S. J. Su, T. Takeda, and J. Kido, Jpn. J. Appl. Phys., 46, L10-L12, 2007.
[11] J. C. Deaton, S. C. Switalski, D. Y. Kondakov, R. H. Young, T. D. Pawlik, D. J. Giesen, S. F. Mickenberg, and J. C. Peters, J. Am. Chem. Soc., 132, 9499–9508, 2010.
[12]O. Bolton, K. Lee, H. J. Kim, K. Y. Lin, and J. Kim, Nature Chem., 3, 205–210, 2011.
[13] D. Y. Kondakov, T. D. Pawlik, T. K. Hatwar, and J. P. Spindler, J. Appl. Phys., 106, 124510, 2009.
[14] H. Uoyama, K. Goushi, K. Shizu, H. Nomura, and C. Adachi, Nature, 492, 234, 2012.
[15] G. Mehes, H. Nomura, Q. Zhang, T. Nakagawa, and C. Adachi, Angew. Chem. Int. Ed., 51, 11311, 2012.
[16] Q. Zhang, J. Li, K. Shizu, S. Huang, S. Hirata, H. Miyazaki, and C. Adachi, J. Am. Chem. Soc., 134, 14706, 2012.
[17] J. Li, T. Nakagawa, J. MacDonald, Q. Zhang, H. Nomura, H. Miyazaki, and C. Adachi, Adv. Mater., 2013, 25, 3319, 2013.
[18] F. B. Dias, K. N. Bourdakos, V. Jankus, K. C. Moss, K. T. Kamtekar, V. Bhalla, J. Santos, M. R. Bryce, and A. P. Monkman, Adv. Mater., 25, 3707, 2013.
[19] Q. Zhang, B. Li, S. Huang, H. Nomura, H. Tanaka, and C. Adachi, Nat. Photon., 8, 325, 2014.
[20] H. Wang, L. Xie, Q. Peng, L. Meng, Y. Wang, Y. Yi, and P. Wang, Adv. Mater., 26, 5198, 2014.
[21] Y. Tao, K. Yuan, T. Chen, P. Xu, H. Li, R. Chen, C. Zheng, L. Zhang, and W. Huang, Adv. Mater., 26, 7931, 2014.
[22] R. Czerwieniec, K. Kowalski, and H. Yersin, Dalton Trans., 42, 9826, 2013.
[23] R. Czerwieniec, J. B. Yu, and H. Yersin, Inorg. Chem., 50, 8293, 2011.
chapter2
[1] a) V. W. W. Yam and K. M. C. Wong, Chem. Commun., 47, 11579, 2011. b) G. Zhou,
W. Y. Wong and X. Yang, Chem. Asian J., 6, 1706, 2011. c) K. S. Yook and J. Y. Lee, Adv. Mater., 24, 3169, 2012. d) H. Sasabe, J. Kido, and Eur. J. Org. Chem., 2013, 7653, 2013. e) Y. Chi, B. Tong, and P. T. Chou, Coord. Chem. Rev., 281, 1, 2014. f) X. Yang, X. Xu, and G. Zhou, J. Mater. Chem. C, 3, 913, 2015.
[2] H. Yersin, A. F. Rausch, R. Czerwieniec, T. Hofbeck, and T. Fischer, Coord. Chem.
Rev., 255, 2622, 2011.
[3] M. S. Lin, S. J. Yang, H. W. Chang, Y. H. Huang, Y. T. Tsai, C. C. Wu, S. H. Chou, E. Mondal, and K. T. Wong, J. Mater. Chem., 22, 16114, 2012.
[4] a) D. Yokoyama, J. Mater. Chem., 21, 19187, 2011. b) K. H. Kim, S. Lee, C. K. Moon, S. Y. Kim, Y. S. Park, J. H. Lee, J. Woo Lee, J. Huh, Y. You, and J. J. Kim, Nat. Commun., 5, 4769, 2014. c) C. Mayr, S. Y. Lee, T. D. Schmidt, T. Yasuda, C. Adachi, and W. Brütting, Adv. Funct. Mater., 24, 5232, 2014. d) C. K. Moon, K. H. Kim, J. W. Lee, and J. J. Kim, Chem. Mater., 27, 2767, 2015.
[5] P. Liehm, C. Murawski, M. Furno, B. Lüssem, K. Leo, and M. C. Gather, Appl. Phys. Lett., 101, 253304, 2012.
[6] M. J. Jurow, C. Mayr, T. D. Schmidt, T. Lampe, P. I. Djurovich, W. Brutting, and M. E. Thompson, Nat. Mater., 15, 85-91, 2016.
[7] C. W. Chen, Y. J. Lu, C. C. Wu, E. H. E. Wu, C. W. Chu, and Y. Yang, Appl. Phys. Lett., 87, 241121, 2005.
[8] a) H. Sasabe, K. Minamoto, Y. J. Pu, M. Hirasawa, and J. Kido, Org. Electron., 13, 2615, 2012. b) T. Fleetham, J. Ecton, Z. Wang, N. Bakken, and J. Li, Adv. Mater., 25, 2573, 2013. c) C. W. Lee and J. Y. Lee, Adv. Mater., 25, 5450, 2013. d) Q. Wang, I. W. H. Oswald, X. Yang, G. Zhou, H. Jia, Q. Qiao, Y. Chen, J. Hoshikawa-Halbert, and B. E. Gnade, Adv. Mater., 26, 8107, 2014. e) D. Xia, B. Wang, B. Chen, S. Wang, B. Zhang, J. Ding, L. Wang, X. Jing, and F. Wang, Angew. Chem. Int. Ed., 53, 1048, 2014. f) Y. Wang, S. Wang, N. Zhao, B. Gao, S. Shao, J. Ding, L. Wang, X. Jing, and F. Wang, Polym. Chem., 6, 1180, 2015.
chapter3
[1] T. Duan, T. K. Chang, Y. Chi, J. Y. Wang, Z. N. Chen, W. Y. Hung, C. H. Chen, and G. H. Lee Dalton Trans., 44, 14613, 2015.
[2] T. Y. Li, X. Liang, L. Zhou, C. Wu, S. Zhang, X. Liu, G. Z. Lu, L. S. Xue, Y. X. Zheng, and J. L. Zuo. Inorg. Chem., 54, 161, 2015.
[3] a) C. Adachi, R. C. Kwong, P. Djurovich, V. Adamovich, M. A. Baldo, M. E. Thompson, and S. R. Forrest, Appl. Phys Lett., 79, 2082, 2001. b) H. R. Park, Y. Y. Yi, and Y. Ha, Molecular Crystals and Liquid Crystals, 567, 156, 2012. c) S. Y. Ahn and Y. Ha, Molecular Crystals and Liquid Crystals, 504, 59, 2009. d) T. Sajoto, P. I. Djurovich, A. B. Tamayo, J. Oxgaard, W. A. Goddard III, and M. E. Thompson, J. Am. Chem. Soc., 131, 9813, 2009. e) A. F. Rausch, M. E. Thompson, and H. Yersin. Inorg. Chem., 48, 1928, 2009. f) H. R. Park, D. H. Lim, Y. K. Kim, and Y. Ha, Journal of Nanoscience and Nanotechnology, 12, 668, 2012. g) A. B. Tamayo, S. Garon, T. Sajoto, P. I. Djurovich, I. M. Tsyba, R. Bau, and M. E. Thompson Inorg. Chem., 44, 8723, 2005. h) C. H. Chang, C. C. Chen, C. C. Wu, C. H. Yang, and Y. Chi, Organic Electronics, 10, 1364, 2009. i) S. J. Yeh, M. F, Wu, C, T. Chen, Y. H. Song, Y. Chi, M. H., Ho, S. F. Hsu, and C.H. Chen Adv. Mater., 17, 285, 2005. j) C. H. Yang, Y. M. Cheng, Y. Chi, C. J. Hsu, F. C. Fang, K. T. Wong, P. T. Chou, C. H. Chang, M. H. Tsai, and C. C. Wu Angew. Chem. Int. Ed., 46, 2418, 2007. k) C. H. Yang, S. W. Li, and Y. Chi, Inorg. Chem., 44, 7770, 2005. l) Y. Chi and P. T. Chou, Chem. Soc. Rev., 39, 638, 2010. m) M. J. Jurow, C. Mayr, T. D. Schmidt, T. Lampe, P. I. Djurovich, W. Brütting, and M. E. Thompson, Nature, 15, 85, 2016.
[4] L. Ding, S. C. Dong, Z. Q. Jiang, H. Chen, and L. S. Liao Adv. Funct. Mater., 25, 645, 2015.
[5] a) C. D. Sunesh, K. Shanmugasundaram, M. S. Subeesh, R. K. Chitumalla, J. Jang, and Y. Choe, ACS Appl. Mater. Interfaces, 7, 7741, 2015 (b) S. Lamansky, P. Djurovich, D. Murphy, F. A. Razzaq, H. E. Lee, C. Adachi, P. E. Burrows, S. R. Forrest, and M. E. Thompson, J. Am. Chem. Soc., 123, 4304, 2001.
[6] a) M. S. Lin, S. J. Yang, H. W. Chang, Y. H. Huang, Y. T. Tsai, C. C. Wu, S. H. Chou, E. Mondal, and K. T. Wong, J. Mater. Chem., 22, 16114, 2012.
[7] a) J. S. Kim, P. K. H. Ho, N. C. Greenham, and R. H. Friend, J. Appl. Phys., 88, 1073, 2000 . b) P. K. H. Ho, J. S. Kim, J. H. Burroughes, H. Becker, S. F. Y. Li, T. M. Brown, F. Cacialli, and R. H. Friend, Nature, 404, 481, 2000. c) L. H. Smith, J. A. E. Wasey, I. D. W. Samuel, W. L. Barnes , Adv. Funct. Mater., 15, 1839, 2005. d) J. M. Ziebarth and M. D. McGehee, J. Appl. Phys., 97, 064502, 2005. e) M. Flämmich, M. C. Gather, N. Danz, D. Michaelis, A. H. Brauer, K. Meerholz, and A. Tunnermann, Org. Electron., 11, 1039, 2010. f) H. W. Lin, C. L. Lin, H. H. Chag, Y. T. Lin, C. C. Wu, Y. M. Chen, R. T. Chen, Y. Y. Chien, and K. T. Wong, J. Appl. Phys., 95, 881, 2004. g) H. W. Lin, C. L. Lin, C. C. Wu, T. C. Chao, and K. T. Wong, Org. Electron., 8, 189, 2007. h) D. Yokoyama, A. Sakaguchi, M. Suzuki, and C. Adachi, Org. Electron., 10, 127, 2009. i) D. Yokoyama, H. Sasabe, Y. Furukawa, C. Adachi, and J. Kido, Adv. Funct. Mater., 21, 2011, 1375. j) J. Frischeisen, D. Yokoyama, A. Endo, C. Adachi, and W. Brütting, Org.Electron., 12 , 809, 2011. k) M. Flämmich, J. Frischeisen, D. S. Setz, D. Michaelis, B. C. Krummacher, T. D. Schmidt, W. Brütting, and N. Danz, Org. Electron., 12, 1663, 2011. l) T. D. Schmidt, D. S. Setz, M. Flämmich, J. Frischeisen, D. Michaelis, B. C. Krummacher, N. Danz, and W. Brütting, Appl. Phys. Lett., 99, 163302, 2011. m) L. Penninck, F. Steinbacher, R. Krause, and K. Neyts, Org. Electron., 13, 3079, 2012. n) P. Liehm, C. Murawski, M. Furno, B. Lüssem, K. Leo, and M. C. Gather, Appl. Phys. Lett., 25, 253304, 2012. o) W. Brütting, J. Frischeisen, T. D. Schmidt, B. J. Scholz, and C. Mayr, Phys. Status Solidi A, 210, 44, 2013. p) S. Y. Kim, W. I. Jeong, C. Mayr, Y. S. Park, K. H. Kim, J. H. Lee , C. K. Moon, W. Brütting, and J. J. Kim Adv. Funct. Mater., 23, 3896, 2013.
[8] a) L. Xiao, S. J. Su, Y. Agata, H. Lan, and J. Kido, Adv. Mater., 21, 1271, 2009. b) D. Tanaka, T. Takeda, T. Chiba, S. Watanabe, and J. Kido, Chem. Lett., 36, 262, 2007. c) M. S. Lin, S.-J. Yang, H. W. Chang, Y. H. Huang, Y. T. Tsai, C. C. Wu, S. H. Chou, E. Mondal, and K. T. Wong, J. Mater. Chem., 22, 16114, 2012. d) C. C. Wu, Y. T. Lin, K. T. Wong, R. T. Chen, and Y. Y. Chien, Adv. Mater., 16, 61–65, 2004. e) D. Liu, H. Ren, L. Deng, and T. Zhang, ACS Appl. Mater. Interfaces, 5, 4937, 2013.
[9] a) L. S. Cui, Y. Liu, X. Y. Liu, Z. Q. Jiang, and L. S. Liao, ACS Appl. Mater. Interfaces, 7, 11007−11014, 2015. b) B. Tong, Q. Mei, D. Chen, M. Lu, Synth. Met., 162, 1701, 2012.
chapter4
[1] M. A. Baldo, D. F. O’Brien, Y. You, A. Shoustikov, M. E. Thompson, and S. R. Forrest, Nature, 395, 151-154, 1998.
[2] C. Fan and C. Yang, Chem. Soc. Rev., 43, 6439-6469, 2014.
[3] S. Gong, Y. Chen, J. Luo, C. Yang, C. Zhong, J. Qin, and D. Ma, Adv. Funct. Mater., 21, 1168-1178, 2011.
[4] A. Endo, M. Ogasawara, A. Takahashi, D. Yokoyama, Y. Kato, and C. Adachi, Adv. Mater., 21, 4802-4806, 2009.
[5] T. Nakagawa, S. Y. Ku, K. T. Wong, and C. Adachi, Chem. Commun., 48, 9580-9582, 2012.
[6] H. Uoyama, K. Goushi, K. Shizu, H. Nomura, and C. Adachi, Nature., 492, 234-238, 2012.
[7] H. Tanaka, K. Shizu, H. Miyasaki, and C. Adachi, Chem. Commun., 48, 11392-11394, 2012.
[8] H. Wang, L. Xie, Q. Peng, L. Meng, Y. Wang, Y. Yi, and P. Wang, Adv. Mater., 26, 5198-5204, 2014.
[9] Q. Zhang, Bo. Li, S. Huang, H. Nomura, H. Tanaka, and C. Adachi, Nature Photonics, 8, 326-332, 2014.
[10] J. I. Nishide, H. Nakanotani, Y. Hiraga, and C. Adachi, Appl. Phys. Lett., 104, 233304, 2014.
[11] B. S. Kim and J. Y. Lee, Adv. Funct. Mater., 24, 3970-3977, 2014.
[12] C. C. Wu, Y. T. Lin, K. T. Wong, R. T. Chen, and Y. Y. Chien, Adv. Mater., 16, 61-65, 2004.
[13] Q. Wang, L. W. H. Oswald, X. Yang, G. Zhou, H. Jia, Q. Qiao, Y. Chen, J. Hoshikawa-Halbert, and B. E. Gnade, Adv. Mater., 26, 8107-8113, 2014.
[14] Q. Zhang, D. Tsang, H. Kuwabara, Y. Hatae, B. Li, T. Takahashi, Y. Lee, T. Yasuda, and C. Adachi, Adv. Mater., 27, 2096-2100, 2015.
[15] K. Albrecht, K. Matsuoka, K. Fujita, and K. Yamamoto, Angew. Chemie., 127, 5769-5774, 2015.
[16] M. S. Lin, S. J. Yang, H. W. Chang, Y. H. Huang, Y. T. Tsai, C. C. Wu, S. H. Chou, E. Mondal, and K. T. Wong, J. Mater. Chem., 22, 16114-16120, 2012.
[17] C. C. Wu, Y. T. Lin, K. T. Wong, R. T. Chen, and Y. Y. Chien, Adv. Mater., 16, 61-65, 2004.
[18] L. Xiao, Z. Chen, B. Qu, J. Luo, S. Kong, Q. Gong, and J. Kido, Adv. Mater., 23, 926-952, 2011.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/18872-
dc.description.abstract有機發光二極體被視為重要的次世代顯示技術與照明技術,所以元件的效率與壽命備受重視。另外近年來為了降低有機發光體的成本,國際上有研究團隊提出熱激活化延遲螢光的概念,在未使用重金屬摻雜的情形下達到比傳統螢光元件還高的效率。因此在本篇論文中,我們針對新穎磷光材料(銥金屬錯合物)與熱激活化延遲螢光材料做光物理與電性上的分析,並進一步地製作出高效率的有機發光元件。
首先論文的第一部分,利用雙三牙配位銥金屬錯合物在光物理的分析,我們得知這一系列RGB的材料具有90%以上的量子效率(PLQY),接著個別製成元件,其元件外部量子效率(EQE)皆有27%以上,甚至綠光元件更可達到31%。另外利用RGB不同波長的摻雜材料混和出各種色溫的白光元件,這些元件外部量子效率皆有25~26%。
第二部分接續磷光材料的研究,目前藍光磷光元件有著壽命短、波長不夠短等缺點,於是我們利用新穎的銥金屬錯合物材料(MS 2、MS 17、MS19)製作出高效率的藍光元件。因為這些材料在光物理的分析上具有將近100%的量子效率,並且發光層有76%左右的水平電偶極矩,因此藍光元件外部量子效率可達到31%。另外在元件可靠度的測試上,新穎的銥金屬錯合物材料的元件壽命(LT50)比起一般常用的FIrpic材料還來的長很多。
論文的最後部分,我們分析DMAC-TRZ這一分子單重態最低能階與三重態最低能階之間的能隙小至46meV,具有非常顯著的熱激活化延遲螢光現象,將其應用在OLED元件作為發光材料,最大外部量子效率可達26%,其表現足以媲美現今市售磷光有機發光二極體。此外,若應用於非摻雜式有機發光元件,元件最大外部量子效率可達到20%。
zh_TW
dc.description.abstractOrganic light-emitting diodes (OLEDs) have attracted much attention due to their potential for future display and lighting applications. To enhance OLED performances and reduce cost for displays and lighting, we focused on the investigation of high-efficiency organic light-emitting materials in this thesis.
In the first part of this thesis, a new class of neutral bis-tridentate Ir(III) metal complexes that show nearly unitary red, green, and blue emissions are employed for the fabrication of both monochrome and white emitting organic light-emitting diodes, among which greens can device gives the external quantum efficiency exceeding 31%.
In the second part, Ir(III) complexes incorporating diazine-containing cyclometalating ligands are highly promising blue phosphorescent emitters having nearly unitary PLQYs and preferential horizontal emitting dipole orientations. Using these Ir complexes, we obtained efficient blue phosphorescent OLEDs with external quantum efficiency (EQE) exceeding 31%, small efficiency roll-off, and long operation lifetimes.
Finally, a thermally activated delayed fluorescent (TADF) emitter (DMAC-TRZ) was used either as the emitting dopant in a host or as the non-doped (neat) emitting layer to achieve high EL EQEs of up to 26.5% and 20% in OLEDs, respectively.
en
dc.description.provenanceMade available in DSpace on 2021-06-08T01:38:09Z (GMT). No. of bitstreams: 1
ntu-105-D01943025-1.pdf: 3511505 bytes, checksum: 83a82c5ca9d3c9532726cf35bac26911 (MD5)
Previous issue date: 2016
en
dc.description.tableofcontents中文摘要 i
ABSTRACT ii
CONTENTS iii
LIST OF TABLES vi
LIST OF FIGURES vii
Chapter 1 Introduction
1.1 Overview of Organic Light-Emitting Devices 1
1.2 Organic light-emitting materials for OLEDs 3
1.3 Thesis Organization 5
Reference 6
Chapter 2 Achieving EQE Exceeding 31% in OLEDs Using Bis-Tridentate Ir(III) Complexes with Nearly Unitary RGB Phosphorescence
2.1 Introduction 8
2.2 Methods 9
2.2.1 Materials 9
2.2.2 Photophysical characteristics 9
2.2.3 Device fabrication and characteristics 10
2.3 Results and Discussions 12
2.4 Summary 17
References 18
Tables and Figures 20
Chapter 3 Iridium Complexes Having Phenyl-pyrimidine Cyclometalating Ligands for Efficient Blue Phosphorescent Organic Light Emitting Devices with Low Efficiency Roll-off and Long Operating Lifetimes
3.1 Introduction 35
3.2 Methods 37
3.2.1 Materials 37
3.2.2 Photophysical characteristics 37
3.2.3 Device fabrication and characteristics 38
3.3 Results and Discussions 40
3.4 Summary 48
References 49
Tables and Figures 53
Chapter 4 Versatile Thermally Activated Delayed Fluorescence Emitter for Both Highly Efficient Doped and Non-Doped Organic Light Emitting Devices
4.1 Introduction 63
4.2 Methods 65
4.2.1 Materials 65
4.2.2 Photophysical characteristics 65
4.2.3 Device fabrication and characteristics 66
4.3 Results and Discussions 68
4.4 Summary 74
References 75
Tables and Figures 75
Chapter 5 Summary
5.1 Summary 90
dc.language.isoen
dc.title高效率有機發光材料與元件研究zh_TW
dc.titleInvestigation of high-efficiency organic light-emitting materials and devicesen
dc.typeThesis
dc.date.schoolyear105-1
dc.description.degree博士
dc.contributor.oralexamcommittee季昀(Yun Chi),汪根欉(Ken-Tsung Wong),蔡志宏(Chih-Hung Tsai),陳重嘉(Chung-Chia Chen),謝信宏
dc.subject.keyword有機發光元件,白光有機發光元件,銥金屬錯合物,水平電偶極矩,元件可靠度,熱激活化延遲螢光,非摻雜式有機發光元件,zh_TW
dc.subject.keywordOLEDs,White OLEDs,Ir complexes,dipole orientations,operation lifetimes,thermally activated delayed fluorescent,non-doped OLEDs,en
dc.relation.page91
dc.identifier.doi10.6342/NTU201603679
dc.rights.note未授權
dc.date.accepted2016-10-19
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept電子工程學研究所zh_TW
顯示於系所單位:電子工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-105-1.pdf
  目前未授權公開取用
3.43 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved