Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 機械工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/18867
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor范士岡
dc.contributor.authorMeng-Tsung Changen
dc.contributor.author章孟琮zh_TW
dc.date.accessioned2021-06-08T01:38:05Z-
dc.date.copyright2017-02-08
dc.date.issued2016
dc.date.submitted2016-10-28
dc.identifier.citation[1] Lippmann, G. (1875). Relations entre les phénomènes électriques et capillaires (Doctoral dissertation, Gauthier-Villars).
[2] B. Berge, C.R. Acad. Sci. Paris, Série 2, 1993, 317, 157-163.
[3] Cho, S. K., Moon, H., & Kim, C. J. (2003). Creating, transporting, cutting, and merging liquid droplets by electrowetting-based actuation for digital microfluidic circuits. Microelectromechanical Systems, Journal of, 12(1), 70-80.
[4] Pollack, M. G., Fair, R. B., & Shenderov, A. D. (2000). Electrowetting-based actuation of liquid droplets for microfluidic applications. Applied Physics Letters, 77(11), 1725-1726.
[5] Becker, H., & Heim, U. (2000). Hot embossing as a method for the fabrication of polymer high aspect ratio structures. Sensors and Actuators A: Physical, 83(1), 130-135.
[6] Zheng, B., Gerdts, C. J., & Ismagilov, R. F. (2005). Using nanoliter plugs in microfluidics to facilitate and understand protein crystallization. Current opinion in structural biology, 15(5), 548-555.
[7] Song, H., Chen, D. L., & Ismagilov, R. F. (2006). Reactions in droplets in microfluidic channels. Angewandte chemie international edition, 45(44), 7336-7356.
[8] He, M., Edgar, J. S., Jeffries, G. D., Lorenz, R. M., Shelby, J. P., & Chiu, D. T. (2005). Selective encapsulation of single cells and subcellular organelles into picoliter-and femtoliter-volume droplets. Analytical Chemistry, 77(6), 1539-1544.
[9] Dendukuri, D., Tsoi, K., Hatton, T. A., & Doyle, P. S. (2005). Controlled synthesis of nonspherical microparticles using microfluidics. Langmuir, 21(6), 2113-2116.
[10] Nie, Z., Li, W., Seo, M., Xu, S., & Kumacheva, E. (2006). Janus and ternary particles generated by microfluidic synthesis: design, synthesis, and self-assembly. Journal of the American Chemical Society, 128(29), 9408-9412.
[11] Tang, S. K., Li, Z., Abate, A. R., Agresti, J. J., Weitz, D. A., Psaltis, D., & Whitesides, G. M. (2009). A multi-color fast-switching microfluidic droplet dye laser. Lab on a Chip, 9(19), 2767-2771.
[12] Li, Z., Zhang, Z., Emery, T., Scherer, A., & Psaltis, D. (2006). Single mode optofluidic distributed feedback dye laser. Optics Express, 14(2), 696-701.
[13] Wolfe, D. B., Conroy, R. S., Garstecki, P., Mayers, B. T., Fischbach, M. A., Paul, K. E., ... & Whitesides, G. M. (2004). Dynamic control of liquid-core/liquid-cladding optical waveguides. Proceedings of the National Academy of Sciences of the United States of America, 101(34), 12434-12438.
[14] Kuiper, S., & Hendriks, B. H. W. (2004). Variable-focus liquid lens for miniature cameras. Applied physics letters, 85(7), 1128-1130.
[15] Tsai, C. G., & Yeh, J. A. (2010). Circular dielectric liquid iris. Optics letters, 35(14), 2484-2486.
[16] Li, L., Liu, C., Ren, H., & Wang, Q. H. (2013). Adaptive liquid iris based on electrowetting. Optics letters, 38(13), 2336-2338.
[17] Smith, N. R., Abeysinghe, D. C., Haus, J. W., & Heikenfeld, J. (2006). Agile wide-angle beam steering with electrowetting microprisms. Optics Express, 14(14), 6557-6563.
[18] Yang, H., Han, Y. H., Zhao, X. W., Nagai, K., & Gu, Z. Z. (2006). Thermal responsive microlens arrays. Applied physics letters, 89(11), 1121.
[19] Wan, Z., Zeng, H., & Feinerman, A. (2006). Area-tunable micromirror based on electrowetting actuation of liquid-metal droplets. Applied physics letters, 89(20), 201107.
[20] Comiskey, B., Albert, J. D., Yoshizawa, H., & Jacobson, J. (1998). An electrophoretic ink for all-printed reflective electronic displays. Nature, 394(6690), 253-255.ISO 690
[21] http://www.eink.com
[22] http://www.macbookone.com/2010/06/sipix.html
[23] Liang, R. C., Hou, J., Zang, H., Chung, J., & Tseng, S. (2003). Microcup® displays: Electronic paper by roll‐to‐roll manufacturing processes. Journal of the Society for Information Display, 11(4), 621-628.
[24] https://www.qualcomm.com/products/mirasol/technology
[25] Hayes, Robert A., and B. J. Feenstra. 'Video-speed electronic paper based on electrowetting.' Nature 425.6956 (2003): 383-385.
[26] http://www.printedelectronicsworld.com/articles/5183/on-a-roll-why-e-ink-is-still-the-leader-in-e-paper
[27] Tadros, T. F. Emulsion Formation, Stability, and Rheology. Emulsion Formation and Stability, 1-75.
[28] Shields, M., Ellis, R., & Saunders, B. R. (2001). A creaming study of weakly flocculated and depletion flocculated oil-in-water emulsions. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 178(1), 265-276.
[29] Wooster, T. J., Golding, M., & Sanguansri, P. (2008). Impact of oil type on nanoemulsion formation and Ostwald ripening stability. Langmuir, 24(22), 12758-12765.
[30] Myers, D. (2005). Surfactant science and technology. John Wiley & Sons.
[31] Aulton, M. E. (2002). Pharmaceutics: The science of dosage form design. Churchill livingstone.
[32] Schubert, H., & Engel, R. (2004). Product and formulation engineering of emulsions. Chemical Engineering Research and Design, 82(9), 1137-1143.
[33] Walstra, P. (1993). Principles of emulsion formation. Chemical Engineering Science, 48(2), 333-349.
[34] Preziosi, V., Perazzo, A., Caserta, S., Tomaiuolo, G., & Guido, S. (2013). Phase inversion emulsification. Chemical Engineering Transactions, 32, 1585-1590.
[35] McClements, D. J. (2011). Edible nanoemulsions: fabrication, properties, and functional performance. Soft Matter, 7(6), 2297-2316.
[36] Fernandez, P., André, V., Rieger, J., & Kühnle, A. (2004). Nano-emulsion formation by emulsion phase inversion. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 251(1), 53-58.
[37] Anton, N., Gayet, P., Benoit, J. P., & Saulnier, P. (2007). Nano-emulsions and nanocapsules by the PIT method: an investigation on the role of the temperature cycling on the emulsion phase inversion. International Journal of Pharmaceutics, 344(1), 44-52.
[38] Shui, L., van den Berg, A., & Eijkel, J. C. (2009). Interfacial tension controlled W/O and O/W 2-phase flows in microchannel. Lab on a Chip, 9(6), 795-801.
[39] Bhattacharya, S., Datta, A., Berg, J. M., & Gangopadhyay, S. (2005). Studies on surface wettability of poly (dimethyl) siloxane (PDMS) and glass under oxygen-plasma treatment and correlation with bond strength. Microelectromechanical Systems, Journal of, 14(3), 590-597.
[40] Collins, D. J., Neild, A., Liu, A. Q., & Ai, Y. (2015). The poisson distribution and beyond: methods for microfluidic droplet production and single cell encapsulation. Lab on a Chip, 15(17), 3439-3459.
[41] Utada, A. S., Lorenceau, E., Link, D. R., Kaplan, P. D., Stone, H. A., & Weitz, D. A. (2005). Monodisperse double emulsions generated from a microcapillary device. Science, 308(5721), 537-541.
[42] Chu, L. Y., Utada, A. S., Shah, R. K., Kim, J. W., & Weitz, D. A. (2007). Controllable monodisperse multiple emulsions. Angewandte Chemie International Edition, 46(47), 8970-8974.
[43] Thorsen, T., Roberts, R. W., Arnold, F. H., & Quake, S. R. (2001). Dynamic pattern formation in a vesicle-generating microfluidic device. Physical review letters, 86(18), 4163.
[44] Okushima, S., Nisisako, T., Torii, T., & Higuchi, T. (2004). Controlled production of monodisperse double emulsions by two-step droplet breakup in microfluidic devices. Langmuir, 20(23), 9905-9908.
[45] Ganán-Calvo, A. M., & Gordillo, J. M. (2001). Perfectly monodisperse microbubbling by capillary flow focusing. Physical review letters, 87(27), 274501.
[46] Anna, S. L., Bontoux, N., & Stone, H. A. (2003). Formation of dispersions using “flow focusing” in microchannels. Applied physics letters, 82(3), 364-366.
[47] Hashimoto, M., Garstecki, P., & Whitesides, G. M. (2007). Synthesis of Composite Emulsions and Complex Foams with the use of Microfluidic Flow‐Focusing Devices. Small, 3(10), 1792-1802.
[48] De Menech, M., Garstecki, P., Jousse, F., & Stone, H. A. (2008). Transition from squeezing to dripping in a microfluidic T-shaped junction. journal of fluid mechanics, 595, 141-161.
[49] Christopher, G. F., Noharuddin, N. N., Taylor, J. A., & Anna, S. L. (2008). Experimental observations of the squeezing-to-dripping transition in T-shaped microfluidic junctions. Physical Review E, 78(3), 036317.
[50] http://www.scbt.com/datasheet-260906-3-ethoxyperfluoro-2-methylhexane.html
[51] Wisser, F. M., Schumm, B., Mondin, G., Grothe, J., & Kaskel, S. (2015). Precursor strategies for metallic nano-and micropatterns using soft lithography. Journal of Materials Chemistry C, 3(12), 2717-2731.
[52] Pitto-Barry, A., & Barry, N. P. (2014). Pluronic® block-copolymers in medicine: from chemical and biological versatility to rationalisation and clinical advances.Polymer Chemistry, 5(10), 3291-3297.
[53] http://www.sigmaaldrich.com/
[54] https://www.google.com/patents/US7116467
[55] Holtze, C., Rowat, A. C., Agresti, J. J., Hutchison, J. B., Angile, F. E., Schmitz, C. H. J., ... & Johnson, J. S. (2008). Biocompatible surfactants for water-in-fluorocarbon emulsions. Lab on a Chip, 8(10), 1632-1639.
[56] 'Hydrophobic and lyophobic coating'Zhang, H., & Lamb, R. N. (2005). U.S. Patent Application No. 11/576,787.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/18867-
dc.description.abstract本實驗結合微流道(Microchannel)與介電濕潤(Electrowetting on dielectric,EWOD)兩種微流體技術建立顯示結構,並驗證其介電濕潤顯示之功能。目前的電濕潤顯示器以微機電製程建立像素結構,再進行液體的封填,本實驗目標為透過微流道技術將可使像素結構的建立與液體封填在一片微流體晶片中即可達成。策略為以微流道產生雙層乳化液滴陣列作為像素陣列,再以介電濕潤控制核心液滴的形狀,藉以達到顯示之功效。 我們以三種可固化液體作為乳化液滴結構之連續相(環境),分別為UV光固化之MD 700、PEGDA水溶液與熱固化之PDMS。以水溶液、油性液體作為分散相(液滴),搭配界面活性劑或長鏈高黏性液體分子特性使乳化液滴穩定堆疊,以形成陣列。 研究中先以單層乳化液滴陣列作為初步材料性質測試,再進行雙層乳化液滴陣列的實驗。 單層乳化液滴陣列實驗中建立了MD 700包覆水、PDMS包覆甘油水溶液、PDMS包覆Novec 7500與PEGDA水溶液包覆矽油,一共四種陣列結構,並以此結果進一步建立雙層乳化液滴陣列,其中以PEGDA水溶液為連續相,矽油為外層液滴,Novec 7500作為內層液滴形成之陣列結構排列最規則,並有良好的尺寸一致性。 將此陣列結構(單一乳化液滴直徑200 μm,高度150 μm)置於介電濕潤結構中,施以160 V,100 kHz 之交流電訊號可成功使核心液滴因介電濕潤而自球狀攤平,並在移除電壓後回復至初始狀態,驗證了以微流道結合介電濕潤達成顯示之功能。zh_TW
dc.description.abstractWe combined formation of double emulsions in microchannel and deformation of the inner droplet with electrowetting-on-dielectric (EWOD) to demonstrate an electrowetting display (EWD) avoiding sophisticated fabrication with the photolithography process and ink injection that current EWD faces. We used microfluidic emulsion to form the pixels and to pack the double emulsions in a single microfluidic chip with microchannels. The strategy was producing a double emulsion array with microchannels and controlling the shapes of the inner droplets by EWOD to achieve the display functionalities. Three curable liquids were adopted and investigated as the continuous phase of the double emulsion: UV curable MD 700, PEGDA, and thermally curable PDMS. The dispersed phases contained inner and outer droplets of immiscible fluids. The emulsions were stabilized by surfactants or the viscosity of the continuous phase composed of long-chain molecules. We first studied the creation of single emulsion arrays with four different combinations: water in MD 700, glycerin in PDMS, Novec 7500 in PDMS, and silicone oil in PEGDA. We further examined and succeeded to form double emulsion arrays that were uniformly and regularly arranged using PEGDA , silicone oil, and Novec 7500 as the continuous phase, outer droplet, and inner droplet, respectively. The emulsion array composed of outer droplets with diameter of 200 μm and height of 150 μm was actuated with EWOD by applying a 160 Vpp and 100 kHz AC signal. The inner droplets spread as voltage applied and recovered as voltage removed which demonstrated the function of a double emulsion electrowetting display.en
dc.description.provenanceMade available in DSpace on 2021-06-08T01:38:05Z (GMT). No. of bitstreams: 1
ntu-105-R03522111-1.pdf: 6590315 bytes, checksum: 597ea5c89be7b4aad786663e580e9c9d (MD5)
Previous issue date: 2016
en
dc.description.tableofcontents致謝 I
中文摘要 II
ABSTRACT III
圖目錄 VI
第一章 緒論 1
1-1 前言 1
1-2 微流體系統 2
1-2.1. 介電濕潤 2
1-2.2. 微流道 4
1-3 光流體系統 8
1-3.1 光學鏡與光圈 8
1-3.2 電子紙 14
1-4 研究目的 18
第二章 理論介紹 19
2-1 乳化液滴原理 19
2-1.1 乳化液滴的穩定性 20
2-1.2 介面活性劑 24
2-2 微流道原理 27
2-2.1 流道親疏水性 27
2-2.2 流道幾何設計 29
2-2.3 乳化液滴切分機制與毛細管數(capillary number, Ca) 37
2-3 介電濕潤理論 39
第三章 實驗架構、設備與製程 41
3-1 實驗藥品 41
3-1.1 乳化液滴系統液體 41
3-1.2 界面活性劑 43
3-1.3 染劑 46
3-2 實驗設計與架構 46
3-2.1 微流道系統 49
3-3 晶片製程 51
3-3.1 微流道製程 51
第四章 實驗結果與探討 56
4-1. 運用微流道產生乳化液滴 56
4-1.1 單層乳化液滴 56
4-1.2 雙層乳化液滴 61
4-2. 雙層乳化液滴陣列的介電濕潤現象 80
第五章 結論與未來展望 85
參考文獻 87
附錄 91
實驗藥品與設備規格 91
實驗藥品 91
實驗設備 91
dc.language.isozh-TW
dc.title以固化之雙層乳化液滴陣列實現介電濕潤顯示zh_TW
dc.titleElectrowetting display with a curable double emulsion arrayen
dc.typeThesis
dc.date.schoolyear105-1
dc.description.degree碩士
dc.contributor.oralexamcommittee陳賢燁,陳國慶
dc.subject.keyword光流體,顯示器,乳化液滴,陣列結構,電濕潤,zh_TW
dc.subject.keywordoptofluidics,display,emulsion,array structure,electrowetting,en
dc.relation.page91
dc.identifier.doi10.6342/NTU201603699
dc.rights.note未授權
dc.date.accepted2016-10-29
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept機械工程學研究所zh_TW
顯示於系所單位:機械工程學系

文件中的檔案:
檔案 大小格式 
ntu-105-1.pdf
  目前未授權公開取用
6.44 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved