請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/18858
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 徐宏民 | |
dc.contributor.author | Wen-Feng Cheng | en |
dc.contributor.author | 鄭文峰 | zh_TW |
dc.date.accessioned | 2021-06-08T01:37:57Z | - |
dc.date.copyright | 2017-02-16 | |
dc.date.issued | 2016 | |
dc.date.submitted | 2016-12-05 | |
dc.identifier.citation | [1] Haibin Liu, Bo Luo, and Dongwon Lee. Location type classification using tweet content. In Machine Learning and Applications (ICMLA), 2012 11th International Conference on, volume 1, pages 232–237. IEEE, 2012.
[2] Mao Ye, Peifeng Yin, and Wang-Chien Lee. Location recommendation for location- based social networks. In Proceedings of the 18th SIGSPATIAL International Con- ference on Advances in Geographic Information Systems, pages 458–461. ACM, 2010. [3] Mao Ye, Peifeng Yin, Wang-Chien Lee, and Dik-Lun Lee. Exploiting geograph- ical influence for collaborative point-of-interest recommendation. In Proceedings of the 34th international ACM SIGIR conference on Research and development in Information Retrieval, pages 325–334. ACM, 2011. [4] YuZheng,LizhuZhang,ZhengxinMa,XingXie,andWei-YingMa.Recommending friends and locations based on individual location history. ACM Transactions on the Web (TWEB), 5(1):5, 2011. [5] Takeshi Sakaki, Makoto Okazaki, and Yutaka Matsuo. Earthquake shakes twitter users: real-time event detection by social sensors. In Proceedings of the 19th inter- national conference on World wide web, pages 851–860. ACM, 2010. [6]JunghoonChae,DennisThom,HaraldBosch,YunJang,RossMaciejewski,DavidS Ebert, and Thomas Ertl. Spatiotemporal social media analytics for abnormal event detection and examination using seasonal-trend decomposition. In Visual Analytics Science and Technology (VAST), 2012 IEEE Conference on, pages 143–152. IEEE, 2012. [7] Jianshu Weng and Bu-Sung Lee. Event detection in twitter. ICWSM, 11:401–408, 2011. [8] Vincent W Zheng, Yu Zheng, Xing Xie, and Qiang Yang. Collaborative location and activity recommendations with gps history data. In Proceedings of the 19th international conference on World wide web, pages 1029–1038. ACM, 2010. [9] Vincent W Zheng, Yu Zheng, Xing Xie, and Qiang Yang. Towards mobile intelli- gence: Learning from gps history data for collaborative recommendation. Artificial Intelligence, 184:17–37, 2012. [10] Xiangye Xiao, Yu Zheng, Qiong Luo, and Xing Xie. Inferring social ties between users with human location history. Journal of Ambient Intelligence and Humanized Computing, 5(1):3–19, 2014. [11] DashunWang,DinoPedreschi,ChaomingSong,FoscaGiannotti,andAlbert-Laszlo Barabasi. Human mobility, social ties, and link prediction. In Proceedings of the 17th ACM SIGKDD international conference on Knowledge discovery and data mining, pages 1100–1108. ACM, 2011. [12] Wen Li, Pavel Serdyukov, Arjen P de Vries, Carsten Eickhoff, and Martha Larson. The where in the tweet. In Proceedings of the 20th ACM international conference on Information and knowledge management, pages 2473–2476. ACM, 2011. [13] Zhiyuan Cheng, James Caverlee, and Kyumin Lee. You are where you tweet: a content-based approach to geo-locating twitter users. In Proceedings of the 19th ACM international conference on Information and knowledge management, pages 759–768. ACM, 2010. [14] Hau-wen Chang, Dongwon Lee, Mohammed Eltaher, and Jeongkyu Lee. @ phillies tweeting from philly? predicting twitter user locations with spatial word usage. In Proceedings of the 2012 International Conference on Advances in Social Networks Analysis and Mining (ASONAM 2012), pages 111–118. IEEE Computer Society, 2012. [15] Kisung Lee, Raghu K Ganti, Mudhakar Srivatsa, and Ling Liu. When twitter meets foursquare: tweet location prediction using foursquare. In Proceedings of the 11th International Conference on Mobile and Ubiquitous Systems: Computing, Network- ing and Services, pages 198–207. ICST (Institute for Computer Sciences, Social- Informatics and Telecommunications Engineering), 2014. [16] Zhiyuan Cheng, James Caverlee, Krishna Yeswanth Kamath, and Kyumin Lee. To- ward traffic-driven location-based web search. In Proceedings of the 20th ACM in- ternational conference on Information and knowledge management, pages 805–814. ACM, 2011. [17] MaoYe,KrzysztofJanowicz,ChristophMülligann,andWang-ChienLee.Whatyou are is when you are: the temporal dimension of feature types in location-based social networks. In Proceedings of the 19th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems, pages 102–111. ACM, 2011. [18] YairMovshovitz-Attias,QianYu,MartinCStumpe,VinayShet,SachaArnoud,and Liron Yatziv. Ontological supervision for fine grained classification of street view storefronts. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 1693–1702, 2015. [19] Tatsuya Fujisaka, Ryong Lee, and Kazutoshi Sumiya. Discovery of user behav- ior patterns from geo-tagged micro-blogs. In Proceedings of the 4th International Conference on Uniquitous Information Management and Communication, page 36. ACM, 2010. [20] Rong-En Fan, Kai-Wei Chang, Cho-Jui Hsieh, Xiang-Rui Wang, and Chih-Jen Lin. Liblinear: A library for large linear classification. The Journal of Machine Learning Research, 9:1871–1874, 2008. [21] Markus Koskela and Jorma Laaksonen. Convolutional network features for scene recognition. In Proceedings of the ACM International Conference on Multimedia, pages 1169–1172. ACM, 2014. [22] Bolei Zhou, Agata Lapedriza, Jianxiong Xiao, Antonio Torralba, and Aude Oliva. Learning deep features for scene recognition using places database. In Advances in Neural Information Processing Systems, pages 487–495, 2014. [23]YangqingJia,EvanShelhamer,JeffDonahue,SergeyKarayev,JonathanLong,Ross Girshick, Sergio Guadarrama, and Trevor Darrell. Caffe: Convolutional architecture for fast feature embedding. In Proceedings of the ACM International Conference on Multimedia, pages 675–678. ACM, 2014. [24] Quoc V Le and Tomas Mikolov. Distributed representations of sentences and docu- ments. arXiv preprint arXiv:1405.4053, 2014. [25] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781, 2013. [26] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean. Dis- tributed representations of words and phrases and their compositionality. In Ad- vances in neural information processing systems, pages 3111–3119, 2013. [27] Tomas Mikolov, Wen-tau Yih, and Geoffrey Zweig. Linguistic regularities in con- tinuous space word representations. In HLT-NAACL, pages 746–751, 2013. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/18858 | - |
dc.description.abstract | 有鑒於社群媒體的盛行,人們現在非常熱衷於在各個社群媒體上分 享自己的日常生活,而這些使用者的使用特性又與使用的地點有著強 烈的關聯性,因此,如何去了解分析地點的特性便成了一個社群媒體 上很重要的問題,並且在許多的應用上都扮演著重要的角色。但是, 一個具有挑戰性的困難點在於社群網路上單獨一篇的文章發佈往往不 足以蘊含足夠的資訊來分析地點的性質,為了對抗這樣的瓶頸,我們 同時地使用了一個地點的複數則文章以及其對應的相關資訊來進行 地點類別的分類。我們在 Instagram 上蒐集了百萬則量級的文章發表, 同時也蒐集了這些文章的相對應關聯資訊,包含但不限於發表時間、 GPS、以及使用者的資料,並且使用了 Foursquare 的預先定義地點類 別來做為我們的分類類別(包含了食物、夜生活、辦公、學校等......), 我們也提出了一個突破社群媒體資料收集限制的標籤數據蒐集方法。 在這裏,我們運用了來自複數則發表文章的豐富資訊來訓練我們的多 重模型,並且在超過十則文章的地點上,即使在充滿雜訊的條件下, 也達到了 73.18% 的分類準確度,而我們不只提出一個相當穩固的分類 模型,同時,我們也運用了社群媒體上的關聯性,來提升非熱門地點 的分類準確度,並且得到了超過 15% 的相對準確度提升。 | zh_TW |
dc.description.abstract | Due to the popularity of social media, people are willing to share their daily life in social media (e.g., Instagram, Facebook). Since the strong connection between location and users' behavior, understanding the properties of locations has been widely required in several applications in social media. However, it is a challenging problem to estimate location properties from single post. To tackle this problem, we first collect million-scale posts (photos) from Instagram including all the contextual information (e.g., time, GPS, user profile). We observe that we can utilize additional and pre-defined categories (location types) from Foursquare as ground truth, and leverage social features---multi-modality features from social media---for measuring the remaining location types. Based on the statistics from our collected Instagram and Foursquare locations, only 16\% locations in Instagram can map to the locations in Foursquare (i.e., known location types such as food, nightlife spot, residence). Therefore, in this work, we focus on location type classification by leveraging rich and informative posts belong to the location. We not only propose a robust model by engaging multi-modality features, but also overcome the quandary of posts scarcity for unpopular (new discovered) locations by applying social features. We conduct experiments on our collected million-scale dataset. Even by using noisy and diverse data from Instagram, we still achieve an outstanding 73.18% accuracy for locations with more than 10 posts. Meanwhile, for unpopular locations, we can further achieve 15% relative improvement. | en |
dc.description.provenance | Made available in DSpace on 2021-06-08T01:37:57Z (GMT). No. of bitstreams: 1 ntu-105-R02944026-1.pdf: 2367066 bytes, checksum: aef3018b96e54614730f1adc93edc3ca (MD5) Previous issue date: 2016 | en |
dc.description.tableofcontents | 試委員審定書 ii
Acknowledgement iii Chinese Abstract iv Abstract v Contents vii List of Figures ix List of Tables x 1 Introduction 1 2 Related Works 5 3 Data 7 3.1 Dataset ................................... 7 3.2 Datacollect................................. 8 4 Problem Formulation 10 4.1 Problemdefinition ............................. 10 4.2 Approachoverview............................. 11 5 Approach 13 5.1 Imagecontent................................ 13 5.2 Textcontent................................. 15 5.3 Temporaldistribution............................ 16 5.4 Fusion.................................... 17 6 Reinforce for Unpopular Locations 18 6.1 Neighbors.................................. 18 6.2 Users’historicalposts............................ 19 7 Experiments 20 7.1 Intermediatemodel ............................. 20 7.2 Reinforcemodel............................... 22 7.3 Result.................................... 23 8 Conclusion 24 Bibliography 25 | |
dc.language.iso | en | |
dc.title | 利用多重模型進行社群網路之地點分類 | zh_TW |
dc.title | Location Classification on Social Media by Multi-Modality
Engagement | en |
dc.type | Thesis | |
dc.date.schoolyear | 105-1 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 陳祝嵩,葉梅珍 | |
dc.subject.keyword | 社群媒體,多重模型,機器學習,深度學習,分類,地點, | zh_TW |
dc.subject.keyword | Social Media,Multi-Modality,Classification,Deep Learning,Location, | en |
dc.relation.page | 28 | |
dc.identifier.doi | 10.6342/NTU201603781 | |
dc.rights.note | 未授權 | |
dc.date.accepted | 2016-12-06 | |
dc.contributor.author-college | 電機資訊學院 | zh_TW |
dc.contributor.author-dept | 資訊網路與多媒體研究所 | zh_TW |
顯示於系所單位: | 資訊網路與多媒體研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-105-1.pdf 目前未授權公開取用 | 2.31 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。