請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/18804
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 鄧述諄(Shu-Chun Tung) | |
dc.contributor.author | Cheng-Yen Chang | en |
dc.contributor.author | 張正妍 | zh_TW |
dc.date.accessioned | 2021-06-08T01:27:23Z | - |
dc.date.copyright | 2015-03-12 | |
dc.date.issued | 2014 | |
dc.date.submitted | 2014-07-30 | |
dc.identifier.citation | 1. Conrad, M.N., et al., RAP1 protein interacts with yeast telomeres in vivo: overproduction alters telomere structure and decreases chromosome stability. Cell, 1990. 63(4): p. 739-50.
2. Bianchi, A. and D. Shore, How telomerase reaches its end: mechanism of telomerase regulation by the telomeric complex. Mol Cell, 2008. 31(2): p. 153-65. 3. Longhese, M.P., DNA damage response at functional and dysfunctional telomeres. Genes Dev, 2008. 22(2): p. 125-40. 4. Loeb, L.A., Human cancers express mutator phenotypes: origin, consequences and targeting. Nat Rev Cancer, 2011. 11(6): p. 450-7. 5. Vodenicharov, M.D. and R.J. Wellinger, DNA degradation at unprotected telomeres in yeast is regulated by the CDK1 (Cdc28/Clb) cell-cycle kinase. Mol Cell, 2006. 24(1): p. 127-37. 6. McClintock, B., The Behavior in Successive Nuclear Divisions of a Chromosome Broken at Meiosis. Proc Natl Acad Sci U S A, 1939. 25(8): p. 405-16. 7. Wellinger, R.J. and V.A. Zakian, Everything you ever wanted to know about Saccharomyces cerevisiae telomeres: beginning to end. Genetics, 2012. 191(4): p. 1073-105. 8. Marcand, S., E. Gilson, and D. Shore, A protein-counting mechanism for telomere length regulation in yeast. Science, 1997. 275(5302): p. 986-90. 9. Pardo, B. and S. Marcand, Rap1 prevents telomere fusions by nonhomologous end joining. EMBO J, 2005. 24(17): p. 3117-27. 10. Wotton, D. and D. Shore, A novel Rap1p-interacting factor, Rif2p, cooperates with Rif1p to regulate telomere length in Saccharomyces cerevisiae. Genes Dev, 1997. 11(6): p. 748-60. 11. Moretti, P. and D. Shore, Multiple interactions in Sir protein recruitment by Rap1p at silencers and telomeres in yeast. Mol Cell Biol, 2001. 21(23): p. 8082-94. 12. Konig, P., et al., The crystal structure of the DNA-binding domain of yeast RAP1 in complex with telomeric DNA. Cell, 1996. 85(1): p. 125-36. 13. Gilson, E., et al., Distortion of the DNA double helix by RAP1 at silencers and multiple telomeric binding sites. J Mol Biol, 1993. 231(2): p. 293-310. 14. Shore, D. and K. Nasmyth, Purification and cloning of a DNA binding protein from yeast that binds to both silencer and activator elements. Cell, 1987. 51(5): p. 721-32. 15. Lieb, J.D., et al., Promoter-specific binding of Rap1 revealed by genome-wide maps of protein-DNA association. Nat Genet, 2001. 28(4): p. 327-34. 16. Longtine, M.S., et al., A yeast telomere binding activity binds to two related telomere sequence motifs and is indistinguishable from RAP1. Curr Genet, 1989. 16(4): p. 225-39. 17. Kupiec, M., Biology of telomeres: lessons from budding yeast. FEMS Microbiology Reviews, 2014. 38(2): p. 144-171. 18. Vodenicharov, M.D., N. Laterreur, and R.J. Wellinger, Telomere capping in non-dividing yeast cells requires Yku and Rap1. EMBO J, 2010. 29(17): p. 3007-19. 19. Bonetti, D., et al., Shelterin-like proteins and Yku inhibit nucleolytic processing of Saccharomyces cerevisiae telomeres. PLoS Genet, 2010. 6(5): p. e1000966. 20. Shi, T., et al., Rif1 and Rif2 shape telomere function and architecture through multivalent Rap1 interactions. Cell, 2013. 153(6): p. 1340-53. 21. Ribeyre, C. and D. Shore, Anticheckpoint pathways at telomeres in yeast. Nat Struct Mol Biol, 2012. 19(3): p. 307-13. 22. Marcand, S., A Protein-Counting Mechanism for Telomere Length Regulation in Yeast. Science, 1997. 275(5302): p. 986-990. 23. Hardy, C.F., L. Sussel, and D. Shore, A RAP1-interacting protein involved in transcriptional silencing and telomere length regulation. Genes Dev, 1992. 6(5): p. 801-14. 24. Hirano, Y., K. Fukunaga, and K. Sugimoto, Rif1 and rif2 inhibit localization of tel1 to DNA ends. Mol Cell, 2009. 33(3): p. 312-22. 25. Negrini, S., et al., DNA breaks are masked by multiple Rap1 binding in yeast: implications for telomere capping and telomerase regulation. Genes Dev, 2007. 21(3): p. 292-302. 26. Kabir, S., A. Sfeir, and T. de Lange, Taking apart Rap1: An adaptor protein with telomeric and non-telomeric functions. Cell Cycle, 2010. 9(20): p. 4061-4067. 27. Marcand, S., et al., Multiple pathways inhibit NHEJ at telomeres. Genes Dev, 2008. 22(9): p. 1153-8. 28. Lescasse, R., et al., End-joining inhibition at telomeres requires the translocase and polySUMO-dependent ubiquitin ligase Uls1. EMBO J, 2013. 32(6): p. 805-15. 29. Tham, W.H. and V.A. Zakian, Transcriptional silencing at Saccharomyces telomeres: implications for other organisms. Oncogene, 2002. 21(4): p. 512-21. 30. Kyrion, G., et al., RAP1 and telomere structure regulate telomere position effects in Saccharomyces cerevisiae. Genes Dev, 1993. 7(7A): p. 1146-59. 31. Luo, K., M.A. Vega-Palas, and M. Grunstein, Rap1-Sir4 binding independent of other Sir, yKu, or histone interactions initiates the assembly of telomeric heterochromatin in yeast. Genes Dev, 2002. 16(12): p. 1528-39. 32. Moretti, P., et al., Evidence that a complex of SIR proteins interacts with the silencer and telomere-binding protein RAP1. Genes Dev, 1994. 8(19): p. 2257-69. 33. Hecht, A., S. Strahl-Bolsinger, and M. Grunstein, Spreading of transcriptional repressor SIR3 from telomeric heterochromatin. Nature, 1996. 383(6595): p. 92-6. 34. Palladino, F., et al., SIR3 and SIR4 proteins are required for the positioning and integrity of yeast telomeres. Cell, 1993. 75(3): p. 543-55. 35. Tseng, S.F., J.J. Lin, and S.C. Teng, The telomerase-recruitment domain of the telomere binding protein Cdc13 is regulated by Mec1p/Tel1p-dependent phosphorylation. Nucleic Acids Res, 2006. 34(21): p. 6327-36. 36. McGee, J.S., et al., Reduced Rif2 and lack of Mec1 target short telomeres for elongation rather than double-strand break repair. Nat Struct Mol Biol, 2010. 17(12): p. 1438-45. 37. Paeschke, K., et al., Pif1 family helicases suppress genome instability at G-quadruplex motifs. Nature, 2013. 497(7450): p. 458-62. 38. Cockell, M.M., S. Perrod, and S.M. Gasser, Analysis of Sir2p domains required for rDNA and telomeric silencing in Saccharomyces cerevisiae. Genetics, 2000. 154(3): p. 1069-83. 39. Albuquerque, C.P., et al., A multidimensional chromatography technology for in-depth phosphoproteome analysis. Mol Cell Proteomics, 2008. 7(7): p. 1389-96. 40. Smolka, M.B., et al., Proteome-wide identification of in vivo targets of DNA damage checkpoint kinases. Proc Natl Acad Sci U S A, 2007. 104(25): p. 10364-9. 41. Morrow, D.M., et al., TEL1, an S. cerevisiae homolog of the human gene mutated in ataxia telangiectasia, is functionally related to the yeast checkpoint gene MEC1. Cell, 1995. 82(5): p. 831-40. 42. Sanchez, Y., et al., Regulation of RAD53 by the ATM-like kinases MEC1 and TEL1 in yeast cell cycle checkpoint pathways. Science, 1996. 271(5247): p. 357-60. 43. Gasch, A.P., et al., Genomic expression responses to DNA-damaging agents and the regulatory role of the yeast ATR homolog Mec1p. Mol Biol Cell, 2001. 12(10): p. 2987-3003. 44. Greenwell, P.W., et al., TEL1, a gene involved in controlling telomere length in S. cerevisiae, is homologous to the human ataxia telangiectasia gene. Cell, 1995. 82(5): p. 823-9. 45. Ritchie, K.B., J.C. Mallory, and T.D. Petes, Interactions of TLC1 (which encodes the RNA subunit of telomerase), TEL1, and MEC1 in regulating telomere length in the yeast Saccharomyces cerevisiae. Mol Cell Biol, 1999. 19(9): p. 6065-75. 46. Traven, A. and J. Heierhorst, SQ/TQ cluster domains: concentrated ATM/ATR kinase phosphorylation site regions in DNA-damage-response proteins. Bioessays, 2005. 27(4): p. 397-407. 47. Shiloh, Y., ATM and ATR: networking cellular responses to DNA damage. Curr Opin Genet Dev, 2001. 11(1): p. 71-7. 48. Platt, J.M., et al., Rap1 relocalization contributes to the chromatin-mediated gene expression profile and pace of cell senescence. Genes Dev, 2013. 27(12): p. 1406-20. 49. Romano, G.H., et al., Environmental stresses disrupt telomere length homeostasis. PLoS Genet, 2013. 9(9): p. e1003721. 50. Harari, Y., et al., Nature vs nurture: interplay between the genetic control of telomere length and environmental factors. Cell Cycle, 2013. 12(22): p. 3465-70. 51. Feeser, E.A. and C. Wolberger, Structural and functional studies of the Rap1 C-terminus reveal novel separation-of-function mutants. J Mol Biol, 2008. 380(3): p. 520-31. 52. Levy, D.L. and E.H. Blackburn, Counting of Rif1p and Rif2p on Saccharomyces cerevisiae telomeres regulates telomere length. Mol Cell Biol, 2004. 24(24): p. 10857-67. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/18804 | - |
dc.description.abstract | 端粒是維持染色體末端穩定性重要的構造,在酵母菌中,Rap1為一DNA結合蛋白,能和有結合關係的蛋白質一起作用去保護端粒,防止染色體末端和另外一條染色體末端因為修復的關係而不正常的連結在一起(NHEJ),並且保護端粒不會受到由端粒酶調控所引起不正常端粒延長的現象。在本篇研究中我們發現,在端粒縮短及DNA雙股斷裂下能引起Rap1蛋白質中絲胺酸731位點上發生磷酸化的現象,並且這個磷酸化是透過Mec1/Tel1所控制。我們也發現Rap1的磷酸化能保護端粒,防止端粒和端粒之間以直接黏接的方式形成連結的結構。除此之外,我們發現Rap1的磷酸化能夠促使Rap1和Rif2蛋白質停留在端粒上。總結以上,我們的發現暗示Rap1蛋白質的磷酸化對於端粒的調控是重要的。 | zh_TW |
dc.description.abstract | Telomere maintenance is required for chromosome stability. In yeast Saccharomyces cerevisiae, the telomeres double strands binder, Rap1, together with interaction proteins protects telomeres from end-to-end fusion and telomere-mediated elongation. In this study, we found that under telomere shortening and double strand breaks, Rap1 serine 731 could be phosphorylated by Mec1/Tel1 check point kinases. Importantly, Rap1 phosphorylation could protect telomeres from non-homologous end join (NHEJ). Moreover, the phosphorylation could enhance Rap1 and Rif2 proteins binding on telomeres. All together, these results suggest that phosphorylation on Rap1 serves as an essential post-translational modification mark on telomere regulation. | en |
dc.description.provenance | Made available in DSpace on 2021-06-08T01:27:23Z (GMT). No. of bitstreams: 1 ntu-103-R01445112-1.pdf: 1440023 bytes, checksum: eb207cc8add7870df8c8d9c844884c45 (MD5) Previous issue date: 2014 | en |
dc.description.tableofcontents | 口試委員會審定書………………………………………………………….……..……#
誌謝……………………………………………………………………...……………... 1 中文摘要……………………………………………………………………...………... 3 ABSTRACT…………………………………………………………………..………...4 CONTENTS…………………………………………………………………..………...5 Chapter 1 Introduction………………………………………………………………8 Chapter 2 Materials and Methods……………………………………………..…..13 2.1 Yeast Strains…………………………………………………………………...13 2.2 Southern Blot Analysis and Telomere Length Measurement………………….13 2.3 Antibodies and Western Blot Analysis………………………………………...13 2.4 Immunoprecipitation-Kinase Analysis………………………………………...14 2.5 Chromatin Immunoprecipitation……………………………………….…...…15 2.6 Amplification of the Telomere-Telomere Fusions by PCR……………………15 2.7 Telomeric Silencing Assays…………………………………………………....16 Chapter 3 Results………………………………………………………………...….17 3.1 Rap1pS731 Affects Telomere Length Maintenance…………………………...17 3.2 Phosphorylation of Rap1-S731 Depends on Mec1 and Tel1……………...…...18 3.3 Telomere Length Regulation of Phosphorylation of Rap1-S731 under MMS Treatment and yku80Δ cells…………………………………………………….19 3.4 Phosphorylation of Rap1-S731 Has Higher Rap1 and Rif2 Binding on Telomeres……………………………………………………………………….20 3.5 Phosphorylation of Rap1-S731 Prevents Telomere-telomere Fusions……...…21 3.6 Phosphorylation of Rap1-S731 Is Not Involved in Telomere Position Effect…22 3.7 Rap1 Phosphorylation Affects Both Rif1 and Rif2 Dependent Telomere Length Regulation……………………………………………………………………..23 Chapter 4 Discussion……………………………………………………………......25 4.1 The Phosphorylation of Rap1-S731 Is Dependent on Mec1 and Tell…………25 4.2 Phosphorylation of Rap1-S731 Exhibits Higher Rap1 Binding on Telomeres..27 4.3 Phosphorylation of Rap1-S731 Prevents Telomere-telomere Fusions…...……27 4.4 Phosphorylation of Rap1-S731 Shows No Direct Effect on TPE………..…....28 4.5 Rap1 Phosphorylation Affects Both Rif1 and Rif2 Dependent Telomere Length Regulation………………………………………………………………………29 4.6 Model for Phosphorylation of Rap1-S731 on Telomere Regulation…………..30 Chapter 5 References…………………………………………………………….....31 Chapter 6 Tables and Figures ….……………………………………………….…36 Table 1 Yeast Strains Used in This Study………………………………………….36 Table 2 Kinase Prediction by Protein Sequence…………………………………...39 Figure 1 Telomere Analysis of Rap1Phosphorylation Mutants...………………….40 Figure 2 Phosphorylation of Rap1-S731 Is Dependent on Mec1 and Tel1………..41 Figure 3 Telomere Length Regulation of Phosphorylation of Rap1-S731 under MMS Treatment and yku80Δ Cells………………………………………………......43 Figure 4 Phosphorylation of Rap1-S731 Presents Higher Rap1 and Rif2 Protein Bindings on Telomeres………………………………………………………………45 Figure 5 Phosphorylation at Rap1-S731 Could Suppress Telomere-telomere Fusions……………………………………………………………………………….47 Figure 6 Phosphorylation on Rap1-S731 Is Not related to Silencing Effect on Telomeres…………………………………………………………………………….48 Figure 7 Rap1 Phosphorylation Affects Both Rif1 and Rif2 Dependent Telomere Length Regulation…………………………………………………………………...50 Figure 8 Schematic Illustration of the Function of Rap1-S731 Phosphorylation on Telomeres……………………………………………………………...…………..…52 Figure S1 LC-Mass/Mass Analysis of Phosphorylation on Rap1…………………53 | |
dc.language.iso | en | |
dc.title | 探討Rap1蛋白質磷酸化在端粒的功能 | zh_TW |
dc.title | Investigating the Functions of Phosphorylated Rap1 on Telomere Regulation | en |
dc.type | Thesis | |
dc.date.schoolyear | 102-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 林敬哲(Jing-Jer Lin),李財坤(Tsai-Kun Li) | |
dc.subject.keyword | Rap1,磷酸化,NHEJ,端粒調控,Rif2,Mec1,Tel1, | zh_TW |
dc.subject.keyword | Rap1,Phosphorylation,NHEJ,Telomere regulation,Rif2,Mec1,Tel1, | en |
dc.relation.page | 54 | |
dc.rights.note | 未授權 | |
dc.date.accepted | 2014-07-30 | |
dc.contributor.author-college | 醫學院 | zh_TW |
dc.contributor.author-dept | 微生物學研究所 | zh_TW |
顯示於系所單位: | 微生物學科所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-103-1.pdf 目前未授權公開取用 | 1.41 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。