請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/18797完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳永芳(Yang-Fang Chen) | |
| dc.contributor.author | Tsuei-Shin Wu | en |
| dc.contributor.author | 吳翠心 | zh_TW |
| dc.date.accessioned | 2021-06-08T01:26:49Z | - |
| dc.date.copyright | 2014-08-01 | |
| dc.date.issued | 2014 | |
| dc.date.submitted | 2014-07-31 | |
| dc.identifier.citation | 1 K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, 'Electric field effect in atomically thin carbon
films,' Science 306 (5696), 666-669 (2004). 2 F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, 'Graphene photonics and optoelectronics,' Nature Photonics 4 (9), 611-622 (2010). 3 Hyeon Suk Shin Manish Chhowalla, Goki Eda,Lain-Jong Li,Kian Ping Loh, Hua Zhang, 'The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets,' Nature Chemistry 5, 12 (2013). 4 Kin Fai Mak, Changgu Lee, James Hone, Jie Shan, and Tony F. Heinz, 'Atomically Thin MoS2: A New Direct-Gap Semiconductor,' Physical Review Letters 105 (13) (2010). 5 T. Cao, G. Wang, W. Han, H. Ye, C. Zhu, J. Shi, Q. Niu, P. Tan, E. Wang, B. Liu, and J. Feng, 'Valley-selective circular dichroism of monolayer molybdenum disulphide,' Nature Communications 3, 887 (2012). 6 B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, and A. Kis, 'Singlelayer MoS2 transistors,' Nature Nanotechnology 6 (3), 147-150 (2011). 7 K. F. Mak, K. He, J. Shan, and T. F. Heinz, 'Control of valley polarization in monolayer MoS2 by optical helicity,' Nature Nanotechnology 7 (8), 494-498 (2012). 8 Di Xiao, Gui-Bin Liu, Wanxiang Feng, Xiaodong Xu, and Wang Yao, 'Coupled Spin and Valley Physics in Monolayers of MoS2 and Other Group-VI Dichalcogenides,' Physical Review Letters 108 (19) (2012). 9 H. Zeng, J. Dai, W. Yao, D. Xiao, and X. Cui, 'Valley polarization in MoS2 monolayers by optical pumping,' Nature Nanotechnology 7 (8), 490-493 (2012). 10 Wang Yao, Di Xiao, and Qian Niu, 'Valley-dependent optoelectronics from inversion symmetry breaking,' Physical Review B 77 (23) (2008). 11 Changgu Lee, Hugen Yan, Louis E. Brus, Tony F. Heinz, James Hone, and Sunmin Ryu, 'Anomalous Lattice Vibrations of Single- and Few-Layer MoS2,' ACS Nano 4 (5), 2695-2700 (2010). 12 A. Molina-Sanchez and L. Wirtz, 'Phonons in single-layer and few-layer MoS2 and WS2,' Physical Review B 84 (15) (2011). 13 A. Kuc, N. Zibouche, and T. Heine, 'Influence of quantum confinement on the electronic structure of the transition metal sulfide TS2,' Physical Review B 83 (24) (2011). 14 A. Splendiani, L. Sun, Y. Zhang, T. Li, J. Kim, C. Y. Chim, G. Galli, and F. Wang, 'Emerging photoluminescence in monolayer MoS2,' Nano Letters 10 (4), 1271-1275 (2010). 15 Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, and M. S. Strano, 'Electronics and optoelectronics of two-dimensional transition metal dichalcogenides,' Nature Nanotechnology 7 (11), 699-712 (2012). 16 S. Kim, A. Konar, W. S. Hwang, J. H. Lee, J. Lee, J. Yang, C. Jung, H. Kim, J. B. Yoo, J. Y. Choi, Y. W. Jin, S. Y. Lee, D. Jena, W. Choi, and K. Kim, 'High-mobility and low-power thin-film transistors based on multilayer MoS2 crystals,' Nature Communications 3, 1011 (2012). 17 Saptarshi Das and Joerg Appenzeller, 'Screening and interlayer coupling in multilayer MoS2,' physica status solidi (RRL) - Rapid Research Letters 7 (4), 268-273 (2013). 18 S. Das and J. Appenzeller, 'Where does the current flow in two-dimensional layered systems?,' Nano Letters 13 (7), 3396-3402 (2013). 19 Donald Neamen, Semiconductor Physics And Devices. (McGraw-Hill, Inc., 2003). 20 W. Choi, M. Y. Cho, A. Konar, J. H. Lee, G. B. Cha, S. C. Hong, S. Kim, J. Kim, D. Jena, J. Joo, and S. Kim, 'High-detectivity multilayer MoS2 phototransistors with spectral response from ultraviolet to infrared,' Advanced Materials 24 (43), 5832-5836 (2012). 21 Zongyou Yin, Hai Li, Hong Li, Lin Jiang, Yumeng Shi, Yinghui Sun, Gang Lu, Qing Zhang, Xiaodong Chen, and Hua Zhang, 'Single-Layer MoS2 Phototransistors,' ACS Nano 6 (1), 74-80 (2011). 22 Chung-Chiang Wu, Deep Jariwala, Vinod K. Sangwan, Tobin J. Marks, Mark C. Hersam, and Lincoln J. Lauhon, 'Elucidating the Photoresponse of Ultrathin MoS2 Field-Effect Transistors by Scanning Photocurrent Microscopy,' The Journal of Physical Chemistry Letters 4 (15), 2508-2513 (2013). 23 O. Lopez-Sanchez, D. Lembke, M. Kayci, A. Radenovic, and A. Kis, 'Ultrasensitive photodetectors based on monolayer MoS2,' Nature Nanotechnology 8 (7), 497-501 (2013). 24 R. S. Sundaram, M. Engel, A. Lombardo, R. Krupke, A. C. Ferrari, P. Avouris, and M. Steiner, 'Electroluminescence in single layer MoS2,' Nano Letters 13 (4), 1416-1421 (2013). 25 M. Buscema, M. Barkelid, V. Zwiller, H. S. van der Zant, G. A. Steele, and A. Castellanos-Gomez, 'Large and tunable photothermoelectric effect in single-layer MoS2,' Nano Letters 13 (2), 358-363 (2013). 26 H. S. Lee, S. W. Min, Y. G. Chang, M. K. Park, T. Nam, H. Kim, J. H. Kim, S. Ryu, and S. Im, 'MoS2 nanosheet phototransistors with thickness-modulated optical energy gap,' Nano Letters 12 (7), 3695-3700 (2012). 27 A. Pospischil, M. M. Furchi, and T. Mueller, 'Solar-energy conversion and light emission in an atomic monolayer p-n diode,' Nature Nanotechnology 9 (4), 257-261 (2014). 28 J. S. Ross, P. Klement, A. M. Jones, N. J. Ghimire, J. Yan, D. G. Mandrus, T. Taniguchi, K. Watanabe, K. Kitamura, W. Yao, D. H. Cobden, and X. Xu, 'Electrically tunable excitonic light-emitting diodes based on monolayer WSe2 pn junctions,' Nature Nanotechnology 9 (4), 268-272 (2014). 29 B. W. Baugher, H. O. Churchill, Y. Yang, and P. Jarillo-Herrero, 'Optoelectronic devices based on electrically tunable p-n diodes in a monolayer dichalcogenide,' Nature Nanotechnology 9 (4), 262-267 (2014). 30 A. K. Geim and I. V. Grigorieva, 'Van der Waals heterostructures,' Nature 499 (7459), 419-425 (2013). 31 Chul-Ho Lee, Gwan-Hyoung Lee, Arend M. van der Zande, Wenchao Chen, Yilei Li, Minyong Han, Xu Cui, Ghidewon Arefe, Colin Nuckolls, Tony F. Heinz, Jing Guo, James Hone, and Philip Kim, 'Atomically thin p-n junctions with van der Waals heterointerfaces,' arXiv:1403.3062 (2014). 32 Rui Cheng, Dehui Li, Hailong Zhou, Chen Wang, Anxiang Yin, Shan Jiang, Yuan Liu, Yu Chen, Yu Huang, and Xiangfeng Duan, 'Electroluminescence and photocurrent generation from atomically sharp WSe2/MoS2 heterojunction p-n diodes,' arXiv:1403.3447 (2014). 33 Marco M. Furchi, Andreas Pospischil, Florian Libisch, Joachim Burgdorfer, and Thomas Mueller, 'Photovoltaic effect in an electrically tunable van der Waals heterojunction ' arXiv:1403.2652 (2014). 34 H. Fang, C. Battaglia, C. Carraro, S. Nemsak, B. Ozdol, J. S. Kang, H. A. Bechtel, S. B. Desai, F. Kronast, A. A. Unal, G. Conti, C. Conlon, G. K. Palsson, M. C. Martin, A. M. Minor, C. S. Fadley, E. Yablonovitch, R. Maboudian, and A. Javey, 'Strong interlayer coupling in van der Waals heterostructures built from singlelayer chalcogenides,' Proceedings of the National Academy of Sciences of the United States of America 111 (17), 6198-6202 (2014). 35 Pasqual Rivera, John R. Schaibley, Aaron M. Jones, Jason S. Ross, Sanfeng Wu, Grant Aivazian, Philip Klement, Nirmal J. Ghimire, Jiaqiang Yan, D. G. Mandrus, Wang Yao, and Xiaodong Xu, 'Observation of Long-Lived Interlayer Excitons in Monolayer MoSe2-WSe2 Heterostructures,' arXiv:1403.4985 (2014). 36 K. Kośmider and J. Fernandez-Rossier, 'Electronic properties of the MoS2-WS2 heterojunction,' Physical Review B 87 (7) (2013). 37 X. Xu, N. M. Gabor, J. S. Alden, A. M. van der Zande, and P. L. McEuen, 'Photothermoelectric effect at a graphene interface junction,' Nano Letters 10 (2), 562-566 (2010). 38 Deep Jariwala, Vinod K. Sangwan, Lincoln J. Lauhon, Tobin J. Marks, and Mark C. Hersam, 'Emerging Device Applications for Semiconducting TwoDimensional Transition Metal Dichalcogenides,' ACS Nano 8 (2), 1102-1120 (2014). 39 A. Castellanos-Gomez, M. Barkelid, A. M. Goossens, V. E. Calado, H. S. J. van der Zant, and G. A. Steele, 'Laser-Thinning of MoS2: On Demand Generation of a Single-Layer Semiconductor,' Nano Letters 12 (6), 3187-3192 (2012). 40 J. Wu, H. Li, Z. Yin, H. Li, J. Liu, X. Cao, Q. Zhang, and H. Zhang, 'Layer thinning and etching of mechanically exfoliated MoS2 nanosheets by thermal annealing in air,' Small 9 (19), 3314-3319 (2013). 41 Yulu Liu, Haiyan Nan, Xing Wu, Wei Pan, Wenhui Wang, Jing Bai, Weiwei Zhao, Litao Sun, Xinran Wang, and Zhenhua Ni, 'Layer-by-Layer Thinning of MoS2 by Plasma,' ACS Nano 7 (5), 4202-4209 (2013). 42 Simone Bertolazzi, Daria Krasnozhon, and Andras Kis, 'Nonvolatile Memory Cells Based on MoS2/Graphene Heterostructures,' ACS Nano 7 (4), 3246-3252 (2013). 43 S. Y. Chen, P. H. Ho, R. J. Shiue, C. W. Chen, and W. H. Wang, 'Transport/magnetotransport of high-performance graphene transistors on organic molecule-functionalized substrates,' Nano Letters 12 (2), 964-969 (2012). 44 'Olympus SLMPLN 100X Objective', (Edmund Optics Inc, 101 East Gloucester Pike, Barrington, NJ 08007-1380 USA, 2014). 45 'Raman spectroscopy', (Wikipedia, 2014). 46 Stephen J. Fonash, 'Solar Cell Device Physics (2nd Edition)', (Elsevier). 47 Nardeep Kumar, Jiaqi He, Dawei He, Yongsheng Wang, and Hui Zhao, 'Charge carrier dynamics in bulk MoS2 crystal studied by transient absorption microscopy,' Journal of Applied Physics 113 (13), 133702 (2013). 48 Marco Bernardi, Maurizia Palummo, and Jeffrey C. Grossman, 'Extraordinary Sunlight Absorption and One Nanometer Thick Photovoltaics Using TwoDimensional Monolayer Materials,' Nano Letters 13 (8), 3664-3670 (2013). 49 Rion Graham and Dong Yu, 'Scanning Photocurrent Microscopy in Semiconductor Nanostructures,' Modern Physics Letters B 27 (25), 1330018 (2013). 50 M. Fontana, T. Deppe, A. K. Boyd, M. Rinzan, A. Y. Liu, M. Paranjape, and P. Barbara, 'Electron-hole transport and photovoltaic effect in gated MoS2 Schottky junctions,' Scientific reports 3, 1634 (2013). 51 Saptarshi Das, Hong-Yan Chen, Ashish Verma Penumatcha, and Joerg Appenzeller, 'High Performance Multilayer MoS2 Transistors with Scandium Contacts,' Nano Letters 13 (1), 100-105 (2012). 52 C. Gong, L. Colombo, R. M. Wallace, and K. Cho, 'The unusual mechanism of partial Fermi level pinning at metal-MoS2 interfaces,' Nano Letters 14 (4), 1714-1720 (2014). 53 Jiahao Kang, Wei Liu, and Kaustav Banerjee, 'High-performance MoS2 transistors with low-resistance molybdenum contacts,' Applied Physics Letters 104 (9), 093106 (2014). 54 W. Zhang, C. P. Chuu, J. K. Huang, C. H. Chen, M. L. Tsai, Y. H. Chang, C. T. Liang, Y. Z. Chen, Y. L. Chueh, J. H. He, M. Y. Chou, and L. J. Li, 'Ultrahighgain photodetectors based on atomically thin graphene-MoS2 heterostructures,' Scientific Reports 4, 3826 (2014). 55 M. R. Esmaeili-Rad and S. Salahuddin, 'High performance molybdenum disulfide amorphous silicon heterojunction photodetector,' Scientific Reports 3, 2345 (2013). 56 W. J. Yu, Y. Liu, H. Zhou, A. Yin, Z. Li, Y. Huang, and X. Duan, 'Highly efficient gate-tunable photocurrent generation in vertical heterostructures of layered materials,' Nature Nanotechnology 8 (12), 952-958 (2013). 57 D. Jariwala, V. K. Sangwan, C. C. Wu, P. L. Prabhumirashi, M. L. Geier, T. J. Marks, L. J. Lauhon, and M. C. Hersam, 'Gate-tunable carbon nanotube-MoS2 heterojunction p-n diode,' Proceedings of the National Academy of Sciences of the United States of America 110 (45), 18076-18080 (2013). 58 Oriol Lopez-Sanchez, Esther Alarcon Llado, Volodymyr Koman, Anna Fontcuberta i Morral, Aleksandra Radenovic, and Andras Kis, 'Light Generation and Harvesting in a van der Waals Heterostructure,' ACS Nano 8 (3), 3042-3048 (2014). 59 Anthony Ayari, Enrique Cobas, Ololade Ogundadegbe, and Michael S. Fuhrer, 'Realization and electrical characterization of ultrathin crystals of layered transition-metal dichalcogenides,' Journal of Applied Physics 101 (1), 014507 (2007). 60 A. J. Chiquito, C. A. Amorim, O. M. Berengue, L. S. Araujo, E. P. Bernardo, and E. R. Leite, 'Back-to-back Schottky diodes: the generalization of the diode theory in analysis and extraction of electrical parameters of nanodevices,' Journal of physics. Condensed matter : an Institute of Physics journal 24 (22), 225303 (2012). 61 Simon Sze, Physics of Semiconductor Devices. (Wiley-Interscience, 1981). 62 L. L. Chang, 'The conduction properties of GeGaAs1−xPx n−n heterojunctions,' Solid-State Electronics 8 (9), 721-728 (1965). 63 Saptarshi Das, Abhijith Prakash, Ramon Salazar, and Joerg Appenzeller, 'Toward Low-Power Electronics: Tunneling Phenomena in Transition Metal Dichalcogenides,' ACS Nano 8 (2), 1681-1689 (2014). 64 R. L. Anderson, 'Experiments on Ge-GaAs heterojunctions,' Solid-State Electronics 5 (5), 341-351 (1962). | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/18797 | - |
| dc.description.abstract | 二硫化鉬自旋/能帶谷的自由度,及落在可見光範圍的能隙,使得此材料在光電應用上具有前瞻性。最近已有許多團隊使用過渡金屬硫族化物( TMD )材料形成P-N 接面。在本論文中,我們將展示建立在二硫化鉬上的新結構–橫向異質接面。此橫向異質接面的結構是基於單層、多層二硫化鉬能帶結構本質上的差異。我們使用剝離法得到單層連著多層的二硫化鉬薄片,此薄片即可形成橫向的異質接面元件。內建電場的存在被驗證於克爾文力顯微鏡(KPFM)、截止狀態的光電流分佈、源極-汲極電壓相關的電流分布,及不對稱的電流密度-電壓曲線。光伏效應可見於無外加電壓下的光電流分佈及照光下的電流密度-電壓曲線。迅速的光開關電流變化,及穩定的表現也在實驗中被觀察到。從閘極電壓相關的電流分佈及電流密度-電壓曲線中,我們發現可用全域閘極電壓來調變能階校準。在單層/多層交界的電流大小隨著閘極電壓下降而增強,以及因著閘極電壓上升而變線性的電流密度-電壓曲線,指出單層二硫化鉬的費米能階對閘極電壓的變化較大。此實現於二維新穎TMD 材料上的橫向異質接面結構,及使用全域閘極電壓調變能階校準的可行性開啟了通往物理研究及科技應用的門。 | zh_TW |
| dc.description.abstract | The spin/valley degree of freedom and the bandgap in visible light range make MoS2 a promising material for optoelectronic applications. Several groups have reported construction of p-n junction based on Transition-Metal Dichalcogenide (TMD) recently. In this thesis, a new architecture – lateal heterojunction – based on MoS2 is demonstrated. The optoelectronic properties of the lateal heterostructure is determined by the difference of intrinsic band structures of monolalyer and multilayer MoS2. The lateralheterojunction devices are realized by choosing monolayer/multilayer MoS2 after mechanical exfoliation. The existence of built-in field is examined by Kelvin Probe Force Microscope (KPFM), photocurrent mapping at off state, bias-voltage dependent photocurrent mapping, and the asymmetric J-V curve. The photovoltaic effect is observed by performing photocurrent mapping and J-V curve under illumination. Prompt optical switching with robust performance are observed. From the back-gate voltage dependent photocurrent mapping and J-V curves, we achieve the modulation of band alignment by global gating. We observed the enhanced photocurrent at the interface as back-gate voltage lowered and the J-V curve grew linear as back-gate voltage increased, both suggesting that the the Fermi level of monolayer MoS2 is more sensitive to the back-gate voltage. The realization of the lateral heterojunction based on the novel two-dimensional TMD materials and the band alignment modulation by global gating open the avenue to both physical research and technological applications. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-08T01:26:49Z (GMT). No. of bitstreams: 1 ntu-103-R01245005-1.pdf: 2602378 bytes, checksum: f4444fe3b8fa1c10e5d76c7bf4ecafa0 (MD5) Previous issue date: 2014 | en |
| dc.description.tableofcontents | 誌謝.......................................................I
摘要......................................................II ABSTRACT.................................................III CONTENTS..................................................IV LIST OF FIGURES...........................................VI PUBLICATION...............................................XI Chapter 1 Introduction....................................1 1.1 Two-Dimensional Material..............................1 1.2 Molybdenum Disulphide (MoS2)..........................1 1.3 Thickness-Dependent Properties.................................................3 1.4 Photoconductivity and Photocurrent....................8 1.5 Overview..............................................9 Chapter 2 Motivation and Thesis Structure................10 Chapter 3 Experiment Method..............................13 3.1 Device Fabrication...............................................13 3.2 Experiment Setup.....................................18 Chapter 4 Result and Discussion I — Optical Measurements..............................................21 4.1 Raman Spectra........................................21 4.1.1 Principle of Raman Spectroscopy....................21 4.1.2 Experiment Results.................................21 4.2 Recombination Spectrum from Photoluminescence ( PL ) Spectra...................................................24 4.3 Photovoltaic Effect..................................26 4.3.1 Principle of Photovoltaic Effect...................26 4.3.2 Photovoltaic Effect in Monolayer/Multilayer MoS2 System ..................................................30 4.4 Absorption Spectrum from Spectrally Resolved Photocurrent..............................................32 4.5 Photocurrent Mapping.................................36 4.5.1 Principle of Photocurrent Mapping..................36 4.5.2 Method to Acquire Photocurrent.....................37 4.5.3 Excitation Power...................................38 4.5.4 Contact-Dependent Photocurrent Mapping.............39 4.5.5 Back-Gate-Dependent Photocurrent Mapping...........44 4.5.6 Bias-Voltage-Dependent Photocurrent Mapping........49 4.6 Optical Switching....................................50 Chapter 5 Result and Discussion II – Electrical Properties................................................52 5.1 Current Density-Voltage (J-V ) Chracteristic.........52 5.1.1 J-V Curves under Dark and Light Condition..........52 5.1.2 Back-Gate-Voltage-Dependent J-V Curves.............54 5.1.3 Temperature-Dependent J-V Curves...................56 5.2 Field-Effect Mobility................................57 5.2.1 Mobility before Illumination.......................58 5.2.2 Mobility after Illumination........................60 Chapter 6 Summary and Future Work........................62 Reference.................................................65 | |
| dc.language.iso | en | |
| dc.title | 單層/多層二硫化鉬橫向異質接面的光電特性 | zh_TW |
| dc.title | Optoelectronic Properties of MoS2 Monolayer/Multilayer Lateral Heterojunction | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 102-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.coadvisor | 王偉華(Wei-Hua Wang) | |
| dc.contributor.oralexamcommittee | 崔祥辰(Hsiang Chen Chui) | |
| dc.subject.keyword | 二硫化鉬,異質接面,橫向,光伏,閘極調變效率, | zh_TW |
| dc.subject.keyword | MoS2,heterojunction,lateral,photovoltaic,gating efficiency, | en |
| dc.relation.page | 72 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2014-07-31 | |
| dc.contributor.author-college | 理學院 | zh_TW |
| dc.contributor.author-dept | 應用物理所 | zh_TW |
| 顯示於系所單位: | 應用物理研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-103-1.pdf 未授權公開取用 | 2.54 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
