請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/18792完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 廖秀娟(Hsiu-Chuan Liao) | |
| dc.contributor.author | Hsin Yen | en |
| dc.contributor.author | 嚴信 | zh_TW |
| dc.date.accessioned | 2021-06-08T01:26:25Z | - |
| dc.date.copyright | 2014-08-21 | |
| dc.date.issued | 2014 | |
| dc.date.submitted | 2014-07-31 | |
| dc.identifier.citation | Alvarez, O.A., Jager, T., Kooijman, S.A.L.M., Kammenga, J.E., 2005. Responses to stress of Caenorhabditis elegans populations with different reproductive strategies.Functional Ecology 19, 656-664.
Auffan, M., Rose, J., Bottero, J.Y., Lowry, G.V., Jolivet, J.P., Wiesner, M.R., 2009. Towards a definition of inorganic nanoparticles from an environmental, health and safety perspective. Nature Nanotechnology 4, 634-641. Baan, R., Straif, K., Grosse, Y., Secretan, B., Ghissassi, F.E., Cogliano, V., 2006. Carcinogenicity of carbon black, titanium dioxide, and talc. The Lancet Oncology 7, 295-296. Baun, A., Hartmann, N.B., Grieger, K., Kusk, K.O., 2008. Ecotoxicity of engineered nanoparticles to aquatic invertebrates: a brief review and recommendations for future toxicity testing. Ecotoxicology 17, 387-395. Billoir, E., da Silva Ferrao-Filho, A., Laure Delignette-Muller, M., Charles, S., 2009. DEBtox theory and matrix population models as helpful tools in understanding the interaction between toxic cyanobacteria and zooplankton. Journal of Theoretical Biology 258, 380-388. Borm, P.J., Schins, R.P., Albrecht, C., 2004. Inhaled particles and lung cancer, part B: paradigms and risk assessment. Journal International of Cancer 110, 3-14. Brooks, A., Lithgow, G.J., Johnson, T.E., 1994. Mortality rates in a genetically heterogeneous population of Caenorhabditis elegans. Science 263, 668-671. Byerly, L., Cassada, R.C., Russell, R.L., 1976. The life cycle of the nematode Caenorhabditis elegans. I. Wild-type growth and reproduction. Developmental Biology 51, 23-33. Bystrzejewska-Piotrowska, G., Golimowski, J., Urban, P.L., 2009. Nanoparticles: their potential toxicity, waste and environmental management. Waste Management 29, 2587-2595. Cartaxana, A., 2003. Growth of the prawn Palaemon longirostris (Decapoda, Palaemonidae) in Mira River and estuary, SW Portugal. Journal of Crustacean Biology 23, 251-257. Casals-Casas, C., Desvergne, B., 2011. Endocrine disruptors: from endocrine to metabolic disruption. Annual Review of Physiology 73, 135-162. Caswell, H., 2001. Matrix Population Models: Construction, Analysis, and Interpretation. Sinauer associates, Sunderland, Massachusetts. Chen, B.C., Liao, C.M., 2004. Population models of farmed abalone Haliotis diversicolor supertexta exposed to waterborne zinc. Aquaculture 242, 251-269. Chen, H.W., Su, S.F., Chien, C.T., Lin, W.H., Yu, S.L., Chou, C.C., Chen, J.J., Yang, P.C., 2006. Titanium dioxide nanoparticles induce emphysema-like lung injury in mice. FASEB journal : official publication of the Federation of American Societies for Experimental Biology 20, 2393-2395. Chio, C.P., Chen, W.Y., Chou, W.C., Hsieh, N.H., Ling, M.P., Liao, C.M., 2012. Assessing the potential risks to zebrafish posed by environmentally relevant copper and silver nanoparticles. The Science of the Total Environment 420, 111-118. Chow, J.C., Watson, J.G., Savage, N., Solomon, C.J., Cheng, Y.S., McMurry, P.H., Corey, L.M., Bruce, G.M., Pleus, R.C., Biswas, P., Wu, C.Y., 2005. Nanoparticles and the environment. Journal of the Air & Waste Management Association 55, 1411-1417. Elsaesser, A., Howard, C.V., 2012. Toxicology of nanoparticles. Advanced Drug Delivery Reviews 64, 129-137. Federici, G., Shaw, B.J., Handy, R.D., 2007. Toxicity of titanium dioxide nanoparticles to rainbow trout (Oncorhynchus mykiss): gill injury, oxidative stress, and other physiological effects. Aquatic Toxicology 84, 415-430. Freckman, D.W., Baldwin, J.G., 1990. Nematoda. In Dindal, D.I., (Ed.), Soil biology guide. John Wiley & Sons Publisher, New York, pp. 155-200. Garg, M.L., Rao, B.R., Redmond, C.K., 1970. Maximum-likelihood estimation of the parameters of the Gompertz survival function. Journal of Applied Statistics 19, 152–159. Gottschalk, F., Kost, E., Nowack, B., 2013. Engineered nanomaterials in water and soils: a risk quantification based on probabilistic exposure and effect modeling. Environmental Toxicology and Chemistry 32, 1278-1287. Gottschalk, F., Sonderer, T., Scholz, R.W., Nowack, B., 2009. Modeled Environmental Concentrations of Engineered Nanomaterials (TiO2, ZnO, Ag, CNT, Fullerenes) for Different Regions. Environmental Science and Technology 43, 9216-9222. Graves, A.L., Boyd, W.A., Williams, P.L., 2005. Using transgenic Caenorhabditis elegans in soil toxicity testing. Archives of Environmental Contamination and Toxicology 48, 490-494. Hassellov, M., Readman, J.W., Ranville, J.F., Tiede, K., 2008. Nanoparticle analysis and characterization methodologies in environmental risk assessment of engineered nanoparticles. Ecotoxicology 17, 344-361. Hill, A.V., 1913. The Combinations of Haemoglobin with Oxygen and with Carbon Monoxide. Biochemical Journal 7, 471-480. Iavicoli, I., Fontana, L., Leso, V., Bergamaschi, A., 2013. The Effects of Nanomaterials as Endocrine Disruptors. International Journal of Molecular Science 14, 16732-16801. Jager, T., Alvarez, O.A., Kammenga, J.E., Kooijman, S.A.L.M., 2005. Modelling nematode life cycles using dynamic energy budgets. Functional Ecology 19, 136-144. Ju-Nam, Y., Lead, J.R., 2008. Manufactured nanoparticles: an overview of their chemistry, interactions and potential environmental implications. The Science of the Total Environment 400, 396-414. Khare, P., Sonane, M., Pandey, R., Ali, S., Gupta, K.C., Satish, A., 2011. Adverse effects of TiO2 and ZnO nanoparticles in soil nematode, Caenorhabditis elegans. Journal of Biomedical Nanotechnology 7, 116-117. Kim, S.W., Kwak, J.I., An, Y.J., 2013. Multigenerational study of gold nanoparticles in Caenorhabditis elegans: transgenerational effect of maternal exposure. Environmental Science and Technology 47, 5393-5399. Lee, K.P., Trochimowicz, H.J., Reinhardt, C.F., 1985. Pulmonary response of rats exposed to titanium dioxide (TiO2) by inhalation for two years. Toxicology and Applied Pharmacology 79, 179-192. Leeuwen, C.J.v., Hermens, J.L.M., 1995. Risk assessment of chemicals : an introduction. Kluwer Academic Publishers, Dordrecht ; Boston. Lenaerts, I., van Eygen, S., van Fleteren, J., 2007. Adult-limited dietary restriction slows gompertzian aging in Caenorhabditis elegans. Annals of the New York Academy of Sciences 1100, 442-448. Leung, M.C., Williams, P.L., Benedetto, A., Au, C., Helmcke, K.J., Aschner, M., Meyer, J.N., 2008. Caenorhabditis elegans: an emerging model in biomedical and environmental toxicology. Toxicological sciences : an official journal of the Society of Toxicology 106, 5-28. Levine, K.E., Fernando, R.A., Lang, M., Essader, A., Wong, B.A., 2003. Development, and validation of a high-throughput method for the determination of titanium dioxide in rodent lung and lung-associated lymph node tissues. Analystical Letters 36, 563-576. Li, W.H., Ju, Y.R., Liao, C.M., Liao, V.H.C., 2014. Assessment of selenium toxicity on the life cycle of Caenorhabditis elegans. Ecotoxicology. DOI 10. 1007/s10646-014-1267-x. Liao, C.M., Chiang, K.C., Tsai, J.W., 2006. Bioenergetics-based matrix population modeling enhances life-cycle toxicity assessment of tilapia Oreochromis mossambicus exposed to arsenic. Environmental Toxicology 21, 154-165. Liao, C.M., Chiang, Y.H., Chio, C.P., 2009. Assessing the airborne titanium dioxide nanoparticle-related exposure hazard at workplace. Journal of Hazardous Materials 162, 57-65. Long, T.C., Saleh, N., Tilton, R.D., Lowry, G.V., Veronesi, B., 2006. Titanium dioxide (P25) produces reactive oxygen species in immortalized brain microglia (BV2): implications for nanoparticle neurotoxicity. Environmental Science and Technology 40, 4346-4352. Lovern, S.B., Klaper, R., 2006. Daphnia magna mortality when exposed to titanium dioxide and fullerene (C-60) nanoparticles. Environmental Toxicology and Chemistry 25, 1132-1137. Lu, X., Liu, Y., Kong, X., Lobie, P.E., Chen, C., Zhu, T., 2013. Nanotoxicity: a growing need for study in the endocrine system. Small 9, 1654-1671. Masciangioli, T.M., Zhang, W.X., 2003. Environmental technologies at the nanoscale. Abstract of paper- American of Chemical Society 225, U952-U952. Morgan, K., 2005. Development of a preliminary framework for informing the risk analysis and risk management of nanoparticles. Risk Analysis 25, 1621-1635. Mueller, N.C., Nowack, B., 2008. Exposure modeling of engineered nanoparticles in the environment. Environmental Science and Technology 42, 4447-4453. Mueller, N.C., Braun, J., Bruns, J., Cernik, M., Rissing, P., Rickerby, D., Nowack, B., 2012. Application of nanoscale zero valent iron (NZVI) for groundwater remediation in Europe. Environmental Science and Pollution Research International 19, 550-558. Nass, R., Blakely, R.D., 2003. The Caenorhabditis elegans dopaminergic system: opportunities for insights into dopamine transport and neurodegeneration. Annul Review Pharmacology and Toxicology 43, 521-544. Neher, D.A., 2001. Role of nematodes in soil health and their use as indicators. Journal of Nematology 33, 161-168. Nowack, B., Bucheli, T.D., 2007. Occurrence, behavior and effects of nanoparticles in the environment. Environmental Pollution 150, 5-22. Oberdorster, G., Oberdorster, E., Oberdorster, J., 2005. Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles. Environmental Health Perspectives 113, 823-839. Panacek, A., Prucek, R., Safarova, D., Dittrich, M., Richtrova, J., Benickova, K., Zboril, R., Kvitek, L., 2011. Acute and chronic toxicity effects of silver nanoparticles (NPs) on Drosophila melanogaster. Environmental Science and Technology 45, 4974-4979. Riddle, D.L., 2003. Neurobiology of aging: hormonal regulation of development and longevity in C. elegans. Alzheimer disease and associated disorders 17 Suppl 2, S42-44. Roh, J.Y., Park, Y.K., Park, K., Choi, J., 2010. Ecotoxicological investigation of CeO2 and TiO2 nanoparticles on the soil nematode Caenorhabditis elegans using gene expression, growth, fertility, and survival as endpoints. Environmental Toxicology and Pharmacology 29, 167-172. Rui, Q., Zhao, Y., Wu, Q., Tang, M., Wang, D., 2013. Biosafety assessment of titanium dioxide nanoparticles in acutely exposed nematode Caenorhabditis elegans with mutations of genes requires foe oxidative stress or stress response. Chemosphere 10, 2289-2296 Schmid, G.n., 2010. Nanoparticles : from theory to application. Wiley-VCH, Weinheim. Serpone, N., Dondi, D., Albini, A., 2007. Inorganic and organic UV filters: Their role and efficacy in sunscreens and suncare product. Inorganica Chimica Acta 360, 794-802. Shah, V., 2010. Environmental impacts of engineered nanoparticles. Environmental Toxicology and Chemistry 29, 2389-2390. Shi, H., Magaye, R., Castranova, V., Zhao, J., 2013. Titanium dioxide nanoparticles: a review of current toxicological data. Particle and Fibre Toxicology 10, 15. Shimizu, M., Tainaka, H., Oba, T., Mizuo, K., Umezawa, M., Takeda, K., 2009. Maternal exposure to nanoparticulate titanium dioxide during the prenatal period alters gene expression related to brain development in the mouse. Particle and Fibre Toxicology 6, 20. Sohlenius, B., 1980. Abundance, biomass and contribution to energy flow by soil nematodes in terrestrial ecosystems. Oikos 34, 186-194. Sulston, J., Hodgkin, J., 1998. Methods. In Wood., W.B., (Ed.), The Nematode Caenorhabditis elegans. Cold Spring Harbor Laboratory Press, New York, pp. 587-606. Takeda, K., Suzuki, K.I., Ishihara, A., Kubo-Irie, M., Fujimoto, R., Tabata, M., Oshio, S., Nihei, Y., Ihara, T., Sugamata, M., 2009. Nanoparticles Transferred from Pregnant Mice to Their Offspring Can Damage the Genital and Cranial Nerve Systems. Journal of Health Science 55, 95-102. Thiruvenkatachari, R., Vigneswaran, S., Moon, I.S., 2008. A review on UV/TiO2 photocatalytic oxidation process. Korean Journal of Chemical Engineering 25, 64-72. Tratnyek, P.G., Johnson, R.L., 2006. Nanotechnologies for environmental cleanup. Nano Today 1, 44-48. Trouiller, B., Reliene, R., Westbrook, A., Solaimani, P., Schiestl, R.H., 2009. Titanium dioxide nanoparticles induce DNA damage and genetic instability in vivo in mice. Cancer Research 69, 8784-8789. Tsalik, E.L., Hobert, O., 2003. Functional mapping of neurons that control locomotory behavior in Caenorhabditis elegans. Journal of Neurobiology 56, 178-197. U.S. Environmental Protection Agency. 2009 Nanomaterial case studies: nonoscale titanium dioxide in water treatment and in topical sunscreen. EPA-600-R-09--057. Washington, DC. Vanfleteren, J.R., De Vreese, A., Braeckman, B.P., 1998. Two-parameter logistic and Weibull equations provide better fits to survival data from isogenic populations of Caenorhabditis elegans in axenic culture than does the Gompertz model. The journals of gerontol. Series A. Biology Science and Medical Science 53, B393-403; Discussion B404-398. Vankessel, W.H.M., Zaalberg, R.W.B., Seinen, W., 1989. Testing Environmental-Pollutants on Soil Organisms - a Simple Assay to Investigate the Toxicity of Environmental-Pollutants on Soil Organisms, Using Cdcl2 and Nematodes. Ecotoxicology and Environmental Safety 18, 181-190. von Bertalanffy, L. 1938. A quantitative theory of organic growth. Human Biology 10, 181– 213. Wang, H., Wick, R.L., Xing, B., 2009. Toxicity of nanoparticulate and bulk ZnO, Al2O3 and TiO2 to the nematode Caenorhabditis elegans. Environmental Pollution 157, 1171-1177. Weibull, W., 1951. A Statistical Distribution Function of Wide Applicability. Journal of Applied Mechanics-Transactions of the ASEM 18, 293-297. Westerhoff, P., Song, G., Hristovski, K., Kiser, M.A., 2011. Occurrence and removal of titanium at full scale wastewater treatment plants: implications for TiO2 nanomaterials. Journal of Environmental Monitoring 13, 1195-1203. Wigginton, N.S., Haus, K.L., Hochella, M.F., Jr., 2007. Aquatic environmental nanoparticles. Journal of Environmental Monitoring 9, 1306-1316. Wren JF, Kille P, Spurgeon DJ, Swain S, Sturzenbaum SR, Jager T (2011) Application of physiologically based modelling and transcriptomics to probe the systems toxicology of aldicarb for Caenorhabditis elegans (Maupas 1900). Ecotoxicology 20, 397–408 Wu, Q., Wang, W., Li, Y., Li, Y., Ye, B., Tang, M., Wang, D., 2012. Small sizes of TiO2-NPs exhibit adverse effects at predicted environmental relevant concentrations on nematodes in a modified chronic toxicity assay system. Journal of Hazardous Materials 243, 161-168. Wu, Q.L., Nouara, A., Li, Y.P., Zhang, M., Wang, W., Tang, M., Ye, B.P., Ding, J.D., Wang, D.Y., 2013. Comparison of toxicities from three metal oxide nanoparticles at environmental relevant concentrations in nematode Caenorhabditis elegans. Chemosphere 90, 1123-1131. Zhang, X., Sun, H., Zhang, Z., Niu, Q., Chen, Y., Crittenden, J.C., 2007. Enhanced bioaccumulation of cadmium in carp in the presence of titanium dioxide nanoparticles. Chemosphere 67, 160-166. Zhu, X., Chang, Y., Chen, Y., 2010. Toxicity and bioaccumulation of TiO2 nanoparticle aggregates in Daphnia magna. Chemosphere 78, 209-215. 謝俊明。2008。奈米職場皮膚暴露評估。行政院勞工委員會勞工安全衛生研究所 報告IOSH96-A322。 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/18792 | - |
| dc.description.abstract | 近年來,奈米粒子已被視為潛在的新興環境污染物。而其中,奈米二氧化鈦為現今最廣為使用的奈米粒子之一。奈米二氧化鈦會影響生物體之神經系統以及生殖系統外,更有致癌的可能性,可能會對人類健康及生物造成潛在風險。過去已有研究證實,奈米二氧化鈦會對環境生物產生致死之風險。但對於非致死毒性效應之風險過去鮮少被探討。因此,本研究利用秀麗隱桿線蟲(Caenorhabditis elegans)作為奈米二氧化鈦風險評估之模式生物,探討奈米二氧化鈦之環境神經毒性風險以及族群風險。本研究結果顯示,較小粒徑(4 nm)的奈米二氧化鈦之暴露會造成更大的神經毒性以及氧化壓力之風險。同時,本研究也證實,高濃度奈米二氧化鈦的暴露會造成C. elegans死亡、成長抑制和繁殖系統損害等不利效應。藉由模式擬合該毒理數據,結果發現C. elegans的族群成長率隨奈米二氧化鈦暴露濃度上升會有明顯下降之現象。此外,本研究亦更進一步指出,當C. elegans族群受奈米二氧化鈦之危害,其子代族群會承受更為嚴重之風險。本研究結果可應用於未來實際調查現地生物之環境風險 | zh_TW |
| dc.description.abstract | Nanoparticles (NPs) have been considered as potential emerging contaminants in the environment. Titanium dioxide nanoparticles (TiO2-NPs) are one of the most used NPs in the world. TiO2-NPs caused toxic effect on the nervous system and the reproductive system of the organisms. In addition TiO2-NPs might induce possible carcinogenesis. Thus, TiO2-NPs might induce potential risks to human health and other organisms. Several studies have demonstrated that TiO2-NPs caused lethality to the environment organisms. However, for the potential risk of sub-lethal effect of TiO2-NPs have not assessed. In the present study, Caenorhabditis elegans (C. elegans) was used as risk assessment model organism to assess the potential neurotoxic risk and population risk upon TiO2-NPs exposure. The results showed that smaller size of TiO2-NPs (4 nm) exposure resulted in higher neurotoxic and oxidative stress risk. Moreover, the results showed that TiO2-NPs exposure caused C. elegans mortality, growth inhibition and reproduction decline. By fitting the toxicological data, modeling result showed that population growth rates of C. elegans were decreased as the concentration of TiO2-NPsincrease. In addition, when C. elegans populations were exposed of TiO2-NPs, the progeny population exhibited high risk of population decline. Results from this study can provide valuable information for environmental risk assessment. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-08T01:26:25Z (GMT). No. of bitstreams: 1 ntu-103-R01622022-1.pdf: 2914768 bytes, checksum: 947fdc3fbfa12d7502d8cf76b48524f8 (MD5) Previous issue date: 2014 | en |
| dc.description.tableofcontents | 致謝.......................................................................................................I
ABSTRCT…………………………………………………............................…..III 中文摘要…………………………..………………….…….............................…V 目錄……………………………………………….....………..........................…VI 圖次………………………………………………....…...............................……IX 表次……………………………………………...…………................................X 壹、 研究動機………………………………….....…............….......................1 貳、 文獻探討與研究目的………………………………...............................…2 2.1奈米粒子 (Nanoparticles)……………………………..........................…..2 2.2奈米二氧化鈦 (Titanium dioxide Nanoparticles)……………...…..……..3 2.3奈米二氧化鈦的毒性效應……………..………………………………..………4 2.3.1脊椎生物的探討………………………………………………………….....…4 2.3.2非脊椎生物的探討……………………………………………………….....…4 2.4奈米物質環境風險評估…………………………………………………..………5 2.4.1秀麗隱桿線蟲(Caenorhabditis elegans)作為風險評估之模式生物….....5 2.4.2奈米物質環境風險評估……………………………………......……………..6 2.4.3奈米二氧化鈦對C. elegans族群之潛在風險…………………………..…...7 2.5研究目的……………………………………………………………………….....8 2.5.1以C. elegans為模式生物評估奈米二氧化鈦的環境神經毒性風險…….....8 2.5.2奈米二氧化鈦對C. elegans族群之風險評估……………………………....9 參、材料與方法…………………………………………….........................…..11 3.1以C. elegans為模式生物評估奈米二氧化鈦的環境神經毒性風險…………11 3.1.1研究方法與數據收集…………………………………………………....…..11 3.1.2效應評估…………………………………………………………………......14 3.1.3暴露評估………………………………………………………….....……….14 3.1.4預測風險閾值……………………………………………………………......15 3.1.5風險值計算…………………………………………………………......……15 3.1.6不確定性分析………………………………………………………......……16 3.2奈米二氧化鈦對C. elegans族群之風險評估…………………………………16 3.2.1族群風險評估架構…………………………………………………......……16 3.2.2實驗藥品……………………………………………………………......……16 3.2.3 C. elegans生長條件……………………………………………………..…17 3.2.4 C. elegans存活率、成長和繁殖試驗………………………………..……17 3.2.5子代之毒性分析試驗…………………………………………………......…18 3.2.6實驗資料分析…………………………………………………………...…...21 3.2.7參數的計算模式模擬………………………………………………......……22 3.2.8階段矩陣族群模式………………………………………………………......23 3.2.9靈敏度與不確定性分析……………………………………………...………24 肆、結果………………………………………………...........................………25 4.1以C. elegans為模式生物評估奈米二氧化鈦的環境神經毒性風險…………25 4.1.1劑量反應評估………………………………………………………….....….25 4.1.2閾值(γ)計算……………………………………………………………....….29 4.1.3風險值的描述…………………………………………………………..….…32 4.2奈米二氧化鈦對C. elegans族群之風險評估…………………………………35 4.2.1奈米二氧化鈦對C. elegans的毒性效應………………………….………..35 4.2.2 C. elegans暴露於奈米二氧化鈦之存活率與成長率……………..……...39 4.2.3 C. elegans存活和成長率的估計…………………………………..……...43 4.2.4轉移機率(Pi,Gi及Fi)的估計…………………………………………….....46 4.2.5 C. elegans暴露於奈米二氧化鈦的族群成長率………………..…….......49 4.2.6族群成長率轉移機率的敏感度分析………………………...……………...51 伍、討論……………………………………………………..........................….53 5.1奈米二氧化鈦對C. elegans毒性效應之探討…………………………………53 5.2奈米二氧化鈦環境神經毒風險探討……………………………………….…..54 5.3奈米二氧化鈦造成C. elegans族群風險探討…………………………………55 陸、結論及未來建議…………………………………...........................………57 6.1結論……………………………………….………………………………..……58 6.2未來建議…………………………………………………………………………58 柒、參考文獻………………………………………….............................…….59 捌、附錄……………………………………………….........................………..74 | |
| dc.language.iso | zh-TW | |
| dc.title | 以秀麗隱桿線蟲做為模式生物評估奈米二氧化鈦之生態環境風險 | zh_TW |
| dc.title | Ecological risk evaluation of titanium dioxide nanoparticles in Caneorhabdities elegans | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 102-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 吳劍侯,邱嘉斌,陳韋妤 | |
| dc.subject.keyword | 奈米二氧化鈦,秀麗隱桿線蟲,環境神經毒風險,族群風險, | zh_TW |
| dc.subject.keyword | Titanium dioxide nanoparticles,Caenorhabditis elegans,neurotoxic risk,population risk, | en |
| dc.relation.page | 74 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2014-07-31 | |
| dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
| dc.contributor.author-dept | 生物環境系統工程學研究所 | zh_TW |
| 顯示於系所單位: | 生物環境系統工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-103-1.pdf 未授權公開取用 | 2.85 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
