Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 生物環境系統工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/18766
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor廖秀娟
dc.contributor.authorWen-Hsuan Lien
dc.contributor.author李汶軒zh_TW
dc.date.accessioned2021-06-08T01:24:38Z-
dc.date.copyright2014-08-17
dc.date.issued2014
dc.date.submitted2014-08-01
dc.identifier.citationAlper, S., McBride, S. J., Lackford, B., Freedman, J. H., and Schwartz, D. A. (2007). Specificity and complexity of the Caenorhabditis elegans innate immune response. Mol Cell Biol 27, 5544-5553.
An, J. H., and Blackwell, T. K. (2003). SKN-1 links C. elegans mesendodermal specification to a conserved oxidative stress response. Genes Dev 17, 1882-1893.
Arbogast, S., and Ferreiro, A. (2010). Selenoproteins and protection against oxidative stress: selenoprotein N as a novel player at the crossroads of redox signaling and calcium homeostasis. Antioxid Redox Signal 12, 893-904.
Arner, E. S. (2009). Focus on mammalian thioredoxin reductases--important selenoproteins with versatile functions. Biochim Biophys Acta 1790, 495-526.
Arner, E. S., and Holmgren, A. (2000). Physiological functions of thioredoxin and thioredoxin reductase. Eur J Biochem 267, 6102-6109.
Arodin, L., Miranda-Vizuete, A., Swoboda, P., and Fernandes, A. P. (2014). Protective effects of the thioredoxin and glutaredoxin systems in dopamine-induced cell death. Free Radic Biol Med 73C, 328-336.
Arthur, J. R., McKenzie, R. C., and Beckett, G. J. (2003). Selenium in the immune system. J Nutr 133, 1457S-1459S.
Bainbridge, D. R. (1976). Use of (75Se)L-Selenomethionine as a label for lymphoid cells. Immunology 30, 135-144.
Battin, E. E., and Brumaghim, J. L. (2009). Antioxidant activity of sulfur and selenium: a review of reactive oxygen species scavenging, glutathione peroxidase, and metal-binding antioxidant mechanisms. Cell Biochem Biophys 55, 1-23.
Beck, M. A., Levander, O. A., and Handy, J. (2003). Selenium deficiency and viral infection. J Nutr 133, 1463S-1467S.
Behne, D., and Kyriakopoulos, A. (2001). Mammalian selenium-containing proteins. Annu Rev Nutr 21, 453-473.
Behne, D., and Wolters, W. (1983). Distribution of selenium and glutathione peroxidase in the rat. J Nutr 113, 456-461.
Bellinger, F. P., Raman, A. V., Reeves, M. A., and Berry, M. J. (2009). Regulation and function of selenoproteins in human disease. Biochem J 422, 11-22.
Benton, D., and Cook, R. (1991). The impact of selenium supplementation on mood. Biol Psychiatry 29, 1092-1098.
Bjornstedt, M., Hamberg, M., Kumar, S., Xue, J., and Holmgren, A. (1995). Human thioredoxin reductase directly reduces lipid hydroperoxides by NADPH and selenocystine strongly stimulates the reaction via catalytically generated selenols. J Biol Chem 270, 11761-11764.
Boehler, C. J., Raines, A. M., and Sunde, R. A. (2013). Deletion of thioredoxin reductase and effects of selenite and selenate toxicity in Caenorhabditis elegans. PloS one 8, e71525.
Brenner, S. (1974). The genetics of Caenorhabditis elegans. Genetics 77, 71-94.
Broome, C. S., McArdle, F., Kyle, J. A., Andrews, F., Lowe, N. M., Hart, C. A., Arthur, J. R., and Jackson, M. J. (2004). An increase in selenium intake improves immune function and poliovirus handling in adults with marginal selenium status. Am J Clin Nutr 80, 154-162.
Brown, K. M., and Arthur, J. R. (2001). Selenium, selenoproteins and human health: a review. Public Health Nutr 4, 593-599.
Buettner, C., Harney, J. W., and Berry, M. J. (1999). The Caenorhabditis elegans homologue of thioredoxin reductase contains a selenocysteine insertion sequence (SECIS) element that differs from mammalian SECIS elements but directs selenocysteine incorporation. J Biol Chem 274, 21598-21602.
Burk, R. F., and Hill, K. E. (2009). Selenoprotein P-expression, functions, and roles in mammals. Biochim Biophys Acta 1790, 1441-1447.
Campa, A., Shor-Posner, G., Indacochea, F., Zhang, G., Lai, H., Asthana, D., Scott, G. B., and Baum, M. K. (1999). Mortality risk in selenium-deficient HIV-positive children. J Acquir Immune Defic Syndr Hum Retrovirol 20, 508-513.
Cannon, J. R., and Greenamyre, J. T. (2011). The role of environmental exposures in neurodegeneration and neurodegenerative diseases. Toxicol Sci 124, 225-250.
Cassata, G., Kagoshima, H., Andachi, Y., Kohara, Y., Durrenberger, M. B., Hall, D. H., and Burglin, T. R. (2000). The LIM homeobox gene ceh-14 confers thermosensory function to the AFD neurons in Caenorhabditis elegans. Neuron 25, 587-597.
Chang, L. W. (1996). Introduction to neurotoxicology of metals. In Toxicology of Metals (L. W. Chang, Ed.), pp. 509-510. Lewis Publishers CRC, Bocca Raton.
Chen, Y. C., Prabhu, K. S., and Mastro, A. M. (2013). Is selenium a potential treatment for cancer metastasis? Nutrients 5, 1149-1168.
Chiba, C. M., and Rankin, C. H. (1990). A developmental analysis of spontaneous and reflexive reversals in the nematode Caenorhabditis elegans. J Neurobiol 21, 543-554.
Coburn, C. M., and Bargmann, C. I. (1996). A putative cyclic nucleotide-gated channel is required for sensory development and function in C. elegans. Neuron 17, 695-706.
Cocheme, H. M., and Murphy, M. P. (2008). Complex I is the major site of mitochondrial superoxide production by paraquat. J Biol Chem 283, 1786-1798.
Corrigan, F. M., Besson, J. A., and Ward, N. I. (1991). Red cell caesium, lithium and selenium in abstinent alcoholics. Alcohol Alcohol 26, 309-314.
Croll, N. A. (1975). Behavioural analysis of nematode movement. Adv Parasitol 13, 71-122.
Cummins, C., and Anderson, P. (1988). Regulatory myosin light-chain genes of Caenorhabditis elegans. Mol Cell Biol 8, 5339-5349.
Darr, D., and Fridovich, I. (1995). Adaptation to oxidative stress in young, but not in mature or old, Caenorhabditis elegans. Free Radic Biol Med 18, 195-201.
Dawson, R., Jr., Beal, M. F., Bondy, S. C., Di Monte, D. A., and Isom, G. E. (1995). Excitotoxins, aging, and environmental neurotoxins: implications for understanding human neurodegenerative diseases. Toxicol Appl Pharmacol 134, 1-17.
de Castro, E., Hegi de Castro, S., and Johnson, T. E. (2004). Isolation of long-lived mutants in Caenorhabditis elegans using selection for resistance to juglone. Free Radic Biol Med 37, 139-145.
de Grey, A. D. (1997). A proposed refinement of the mitochondrial free radical theory of aging. Bioessays 19, 161-166.
de Grey, A. D. (2000). The reductive hotspot hypothesis: an update. Arch Biochem Biophys 373, 295-301.
Dharmalingam, K., Tan, B. K., Mahmud, M. Z., Sedek, S. A., Majid, M. I., Kuah, M. K., Sulaiman, S. F., Ooi, K. L., Khan, N. A., Muhammad, T. S., Tan, M. W., and Shu-Chien, A. C. (2012). Swietenia macrophylla extract promotes the ability of Caenorhabditis elegans to survive Pseudomonas aeruginosa infection. J Ethnopharmacol 139, 657-663.
Dodig, S., and Čepelak, I. (2004). The facts and controversies about selenium. Acta Pharm 54, 261-276.
Dow, J. M., Clarke, B. R., Milligan, D. E., Tang, J. L., and Daniels, M. J. (1990). Extracellular proteases from Xanthomonas campestris pv. campestris, the black rot pathogen. Appl Environ Microbiol 56, 2994-2998.
Durai, S., Vigneshwari, L., and Balamurugan, K. (2013). Caenorhabditis elegans-based in vivo screening of bioactives from marine sponge-associated bacteria against Vibrio alginolyticus. J Appl Microbiol 115, 1329-1342.
Estes, K. A., Dunbar, T. L., Powell, J. R., Ausubel, F. M., and Troemel, E. R. (2009). bZIP transcription factor zip-2 mediates an early response to Pseudomonas aeruginosa infection in Caenorhabditis elegans. Proc Natl Acad Sci U S A 107, 2153-2158.
Estevez, A. O., Morgan, K. L., Szewczyk, N. J., Gems, D., and Estevez, M. (2014). The neurodegenerative effects of selenium are inhibited by FOXO and PINK1/PTEN regulation of insulin/insulin-like growth factor signaling in Caenorhabditis elegans. Neurotoxicology 41, 28-43.
Estevez, A. O., Mueller, C. L., Morgan, K. L., Szewczyk, N. J., Teece, L., Miranda-Vizuete, A., and Estevez, M. (2012). Selenium induces cholinergic motor neuron degeneration in Caenorhabditis elegans. Neurotoxicology 33, 1021-1032.
Evans, E. A., Kawli, T., and Tan, M. W. (2008). Pseudomonas aeruginosa suppresses host immunity by activating the DAF-2 insulin-like signaling pathway in Caenorhabditis elegans. PLoS Pathog 4, e1000175.
Ewbank, J. J. (2006). Signaling in the immune response. WormBook, 1-12.
Finkel, T., and Holbrook, N. J. (2000). Oxidants, oxidative stress and the biology of ageing. Nature 408, 239-247.
Finley, J. W., and Penland, J. G. (1998). Adequacy or deprivation of dietary selenium in healthy men: clinical and psychological findings. J Trace Elem Exp Med 11, 11-27.
Fridovich, I. (1995). Superoxide radical and superoxide dismutases. Annu Rev Biochem 64, 97-112.
Furuyama, T., Nakazawa, T., Nakano, I., and Mori, N. (2000). Identification of the differential distribution patterns of mRNAs and consensus binding sequences for mouse DAF-16 homologues. Biochem J 349, 629-634.
Gami, M. S., and Wolkow, C. A. (2006). Studies of Caenorhabditis elegans DAF-2/insulin signaling reveal targets for pharmacological manipulation of lifespan. Aging Cell 5, 31-37.
Gill, M. S. (2006). Endocrine targets for pharmacological intervention in aging in Caenorhabditis elegans. Aging Cell 5, 23-30.
Gladyshev, V. N., Krause, M., Xu, X. M., Korotkov, K. V., Kryukov, G. V., Sun, Q. A., Lee, B. J., Wootton, J. C., and Hatfield, D. L. (1999). Selenocysteine-containing thioredoxin reductase in C. elegans. Biochem Biophys Res Commun 259, 244-249.
Gravato-Nobre, M. J., and Hodgkin, J. (2005). Caenorhabditis elegans as a model for innate immunity to pathogens. Cell Microbiol 7, 741-751.
Gromer, S., Eubel, J. K., Lee, B. L., and Jacob, J. (2005). Human selenoproteins at a glance. Cell Mol Life Sci 62, 2414-2437.
Guarente, L., and Kenyon, C. (2000). Genetic pathways that regulate ageing in model organisms. Nature 408, 255-262.
Hall, E. D. (1987). Intensive anti-oxidant pretreatment retards motor nerve degeneration. Brain Res 413, 175-178.
Hall, E. D., and Braughler, J. M. (1986). Role of lipid peroxidation in post-traumatic spinal cord degeneration: a review. Cent Nerv Syst Trauma 3, 281-294.
Halliwell, B., and Gutteridge, J. M. (1984). Lipid peroxidation, oxygen radicals, cell damage, and antioxidant therapy. Lancet 1, 1396-1397.
Hatfield, D. L., and Gladyshev, V. N. (2002). How selenium has altered our understanding of the genetic code. Mol Cell Biol 22, 3565-3576.
Hawkes, W. C., and Hornbostel, L. (1996). Effects of dietary selenium on mood in healthy men living in a metabolic research unit. Biol Psychiatry 39, 121-128.
Henderson, S. T., and Johnson, T. E. (2001). daf-16 integrates developmental and environmental inputs to mediate aging in the nematode Caenorhabditis elegans. Curr Biol 11, 1975-1980.
Hoeven, R., McCallum, K. C., Cruz, M. R., and Garsin, D. A. (2011). Ce-Duox1/BLI-3 generated reactive oxygen species trigger protective SKN-1 activity via p38 MAPK signaling during infection in C. elegans. PLoS Pathog 7, e1002453.
Hoffmann, P. R., and Berry, M. J. (2008). The influence of selenium on immune responses. Mol Nutr Food Res 52, 1273-1280.
Holmgren, A. (1989). Thioredoxin and glutaredoxin systems. J Biol Chem 264, 13963-13966.
Hsiang, J., and Diaz, E. (2011). Lead and developmental neurotoxicity of the central nervous system Current Neurobiology 2, 35-42.
Hsu, F. L., Li, W. H., Yu, C. W., Hsieh, Y. C., Yang, Y. F., Liu, J. T., Shih, J., Chu, Y. J., Yen, P. L., Chang, S. T., and Liao, V. H. (2012). In vivo antioxidant activities of essential oils and their constituents from leaves of the Taiwanese Cinnamomum osmophloeum. Journal of agricultural and food chemistry 60, 3092-3097.
Huang, Z., Rose, A. H., and Hoffmann, P. R. (2012). The role of selenium in inflammation and immunity: from molecular mechanisms to therapeutic opportunities. Antioxid Redox Signal 16, 705-743.
Husain, F. M., Ahmad, I., Asif, M., and Tahseen, Q. (2013). Influence of clove oil on certain quorum-sensing-regulated functions and biofilm of Pseudomonas aeruginosa and Aeromonas hydrophila. J Biosci 38, 835-844.
Inada, H., Ito, H., Satterlee, J., Sengupta, P., Matsumoto, K., and Mori, I. (2006). Identification of guanylyl cyclases that function in thermosensory neurons of Caenorhabditis elegans. Genetics 172, 2239-2252.
Inoue, H., Hisamoto, N., An, J. H., Oliveira, R. P., Nishida, E., Blackwell, T. K., and Matsumoto, K. (2005). The C. elegans p38 MAPK pathway regulates nuclear localization of the transcription factor SKN-1 in oxidative stress response. Genes Dev 19, 2278-2283.
Irons, R., Carlson, B. A., Hatfield, D. L., and Davis, C. D. (2006). Both selenoproteins and low molecular weight selenocompounds reduce colon cancer risk in mice with genetically impaired selenoprotein expression. J Nutr 136, 1311-1317.
Ishii, N., Fujii, M., Hartman, P. S., Tsuda, M., Yasuda, K., Senoo-Matsuda, N., Yanase, S., Ayusawa, D., and Suzuki, K. (1998). A mutation in succinate dehydrogenase cytochrome b causes oxidative stress and ageing in nematodes. Nature 394, 694-697.
Johnson, C. C., Fordyce, F. M., and Rayman, M. P. (2010). Symposium on 'Geographical and geological influences on nutrition': Factors controlling the distribution of selenium in the environment and their impact on health and nutrition. Proc Nutr Soc 69, 119-132.
Jomova, K., and Valko, M. (2011). Advances in metal-induced oxidative stress and human disease. Toxicology 283, 65-87.
Jomova, K., Vondrakova, D., Lawson, M., and Valko, M. (2010). Metals, oxidative stress and neurodegenerative disorders. Mol Cell Biochem 345, 91-104.
Kahn, N. W., Rea, S. L., Moyle, S., Kell, A., and Johnson, T. E. (2008). Proteasomal dysfunction activates the transcription factor SKN-1 and produces a selective oxidative-stress response in Caenorhabditis elegans. Biochem J 409, 205-213.
Kaletta, T., and Hengartner, M. O. (2006). Finding function in novel targets: C. elegans as a model organism. Nat Rev Drug Discov 5, 387-398.
Kamath, R. S., Fraser, A. G., Dong, Y., Poulin, G., Durbin, R., Gotta, M., Kanapin, A., Le Bot, N., Moreno, S., Sohrmann, M., Welchman, D. P., Zipperlen, P., and Ahringer, J. (2003). Systematic functional analysis of the Caenorhabditis elegans genome using RNAi. Nature 421, 231-237.
Kamath, R. S., Martinez-Campos, M., Zipperlen, P., Fraser, A. G., and Ahringer, J. (2001). Effectiveness of specific RNA-mediated interference through ingested double-stranded RNA in Caenorhabditis elegans. Genome Biol 2, RESEARCH0002.
Kampkotter, A., Nkwonkam, C. G., Zurawski, R. F., Timpel, C., Chovolou, Y., Watjen, W., and Kahl, R. (2007). Investigations of protective effects of the flavonoids quercetin and rutin on stress resistance in the model organism Caenorhabditis elegans. Toxicology 234, 113-123.
Kampkotter, A., Timpel, C., Zurawski, R. F., Ruhl, S., Chovolou, Y., Proksch, P., and Watjen, W. (2008). Increase of stress resistance and lifespan of Caenorhabditis elegans by quercetin. Comp Biochem Physiol B Biochem Mol Biol 149, 314-323.
Kandasamy, S., Khan, W., Evans, F., Critchley, A. T., and Prithiviraj, B. (2012). Tasco(R): a product of Ascophyllum nodosum enhances immune response of Caenorhabditis elegans against Pseudomonas aeruginosa infection. Mar Drugs 10, 84-105.
Kardinaal, A. F., Kok, F. J., Kohlmeier, L., Martin-Moreno, J. M., Ringstad, J., Gomez-Aracena, J., Mazaev, V. P., Thamm, M., Martin, B. C., Aro, A., Kark, J. D., Delgado-Rodriguez, M., Riemersma, R. A., van 't Veer, P., and Huttunen, J. K. (1997). Association between toenail selenium and risk of acute myocardial infarction in European men. The EURAMIC Study. European Antioxidant Myocardial Infarction and Breast Cancer. Am J Epidemiol 145, 373-379.
Keowkase, R., Aboukhatwa, M., and Luo, Y. (2010). Fluoxetine protects against amyloid-beta toxicity, in part via daf-16 mediated cell signaling pathway, in Caenorhabditis elegans. Neuropharmacology 59, 358-365.
Kim, Y. Y., and Mahan, D. C. (2001). Comparative effects of high dietary levels of organic and inorganic selenium on selenium toxicity of growing-finishing pigs. J Anim Sci 79, 942-948.
Komatsu, H., Mori, I., Rhee, J. S., Akaike, N., and Ohshima, Y. (1996). Mutations in a cyclic nucleotide-gated channel lead to abnormal thermosensation and chemosensation in C. elegans. Neuron 17, 707-718.
Kryukov, G. V., Castellano, S., Novoselov, S. V., Lobanov, A. V., Zehtab, O., Guigo, R., and Gladyshev, V. N. (2003). Characterization of mammalian selenoproteomes. Science 300, 1439-1443.
Kryukov, G. V., and Gladyshev, V. N. (2004). The prokaryotic selenoproteome. EMBO Rep 5, 538-543.
Kuningas, M., Magi, R., Westendorp, R. G., Slagboom, P. E., Remm, M., and van Heemst, D. (2007). Haplotypes in the human Foxo1a and Foxo3a genes; impact on disease and mortality at old age. Eur J Hum Genet 15, 294-301.
Lee, S. R., Bar-Noy, S., Kwon, J., Levine, R. L., Stadtman, T. C., and Rhee, S. G. (2000). Mammalian thioredoxin reductase: oxidation of the C-terminal cysteine/selenocysteine active site forms a thioselenide, and replacement of selenium with sulfur markedly reduces catalytic activity. Proc Natl Acad Sci U S A 97, 2521-2526.
Letavayova, L., Vlasakova, D., Spallholz, J. E., Brozmanova, J., and Chovanec, M. (2008). Toxicity and mutagenicity of selenium compounds in Saccharomyces cerevisiae. Mutat Res 638, 1-10.
Leung, M. C., Williams, P. L., Benedetto, A., Au, C., Helmcke, K. J., Aschner, M., and Meyer, J. N. (2008). Caenorhabditis elegans: an emerging model in biomedical and environmental toxicology. Toxicol Sci 106, 5-28.
Li, W., Bandyopadhyay, J., Hwaang, H. S., Park, B. J., Cho, J. H., Lee, J. I., Ahnn, J., and Lee, S. K. (2012). Two thioredoxin reductases, trxr-1 and trxr-2, have differential physiological roles in Caenorhabditis elegans. Molecules and cells 34, 209-218.
Li, W. H., Hsu, F. L., Liu, J. T., and Liao, V. H. (2011). The ameliorative and toxic effects of selenite on Caenorhabditis elegans. Food Chem Toxicol 49, 812-819.
Li, W. H., Ju, Y. R., Liao, C. M., and Liao, V. H. (2014a). Assessment of selenium toxicity on the life cycle of Caenorhabditis elegans. Ecotoxicology.
Li, W. H., Shi, Y. C., Chang, C. H., Huang, C. W., and Hsiu-Chuan Liao, V. (2014b). Selenite protects Caenorhabditis elegans from oxidative stress via DAF-16 and TRXR-1. Mol Nutr Food Res 58, 863-874.
Li, W. H., Shi, Y. C., Tseng, I. L., and Liao, V. H. (2013). Protective efficacy of selenite against lead-induced neurotoxicity in Caenorhabditis elegans. PLoS One 8, e62387.
Liao, V. H., Dong, J., and Freedman, J. H. (2002). Molecular characterization of a novel, cadmium-inducible gene from the nematode Caenorhabditis elegans. A new gene that contributes to the resistance to cadmium toxicity. J Biol Chem 277, 42049-42059.
Libina, N., Berman, J. R., and Kenyon, C. (2003). Tissue-specific activities of C. elegans DAF-16 in the regulation of lifespan. Cell 115, 489-502.
Link, C. D., Cypser, J. R., Johnson, C. J., and Johnson, T. E. (1999). Direct observation of stress response in Caenorhabditis elegans using a reporter transgene. Cell Stress Chaperones 4, 235-242.
Lithgow, G. J., White, T. M., Melov, S., and Johnson, T. E. (1995). Thermotolerance and extended life-span conferred by single-gene mutations and induced by thermal stress. Proc Natl Acad Sci U S A 92, 7540-7544.
Liu, J., Hafting, J., Critchley, A. T., Banskota, A. H., and Prithiviraj, B. (2013). Components of the cultivated red seaweed Chondrus crispus enhance the immune response of Caenorhabditis elegans to Pseudomonas aeruginosa through the pmk-1, daf-2/daf-16, and skn-1 pathways. Appl Environ Microbiol 79, 7343-7350.
Lobanov, A. V., Hatfield, D. L., and Gladyshev, V. N. (2009). Eukaryotic selenoproteins and selenoproteomes. Biochim Biophys Acta 1790, 1424-1428.
Lu, J., Berndt, C., and Holmgren, A. (2009). Metabolism of selenium compounds catalyzed by the mammalian selenoprotein thioredoxin reductase. Biochim Biophys Acta 1790, 1513-1519.
Lu, J., and Holmgren, A. (2009). Selenoproteins. J Biol Chem 284, 723-727.
Musken, M., Di Fiore, S., Romling, U., and Haussler, S. (2010). A 96-well-plate-based optical method for the quantitative and qualitative evaluation of Pseudomonas aeruginosa biofilm formation and its application to susceptibility testing. Nat Protoc 5, 1460-1469.
Mezes, M., and Balogh, K. (2011). Free Radicals and Antioxidants in Avian Diseases. Oxidative Stress in Applied Basic Research and Clinical Practice 5, 175-190.
Mallo, G. V., Kurz, C. L., Couillault, C., Pujol, N., Granjeaud, S., Kohara, Y., and Ewbank, J. J. (2002). Inducible antibacterial defense system in C. elegans. Curr Biol 12, 1209-1214.
Marcocci, L., Flohe, L., and Packer, L. (1997). Evidence for a functional relevance of the selenocysteine residue in mammalian thioredoxin reductase. Biofactors 6, 351-358.
McElwee, M. K., and Freedman, J. H. (2011). Comparative toxicology of mercurials in Caenorhabditis elegans. Environ Toxicol Chem 30, 2135-2141.
Michalke, B., Halbach, S., and Nischwitz, V. (2009). JEM spotlight: metal speciation related to neurotoxicity in humans. J Environ Monit 11, 939-954.
Miodovnik, A. (2011). Environmental neurotoxicants and developing brain. Mt Sinai J Med 78, 58-77.
Morgan, K. L., Estevez, A. O., Mueller, C. L., Cacho-Valadez, B., Miranda-Vizuete, A., Szewczyk, N. J., and Estevez, M. (2010). The glutaredoxin GLRX-21 functions to prevent selenium-induced oxidative stress in Caenorhabditis elegans. Toxicol Sci 118, 530-543.
Mori, I., and Ohshima, Y. (1995). Neural regulation of thermotaxis in Caenorhabditis elegans. Nature 376, 344-348.
Mukhopadhyay, A., Oh, S. W., and Tissenbaum, H. A. (2006). Worming pathways to and from DAF-16/FOXO. Experimental gerontology 41, 928-934.
Murphy, C. T. (2006). The search for DAF-16/FOXO transcriptional targets: approaches and discoveries. Experimental gerontology 41, 910-921.
Murphy, C. T., McCarroll, S. A., Bargmann, C. I., Fraser, A., Kamath, R. S., Ahringer, J., Li, H., and Kenyon, C. (2003). Genes that act downstream of DAF-16 to influence the lifespan of Caenorhabditis elegans. Nature 424, 277-283.
Mustacich, D., and Powis, G. (2000). Thioredoxin reductase. Biochem J 346 Pt 1, 1-8.
Nava-Ruiz, C., Mendez-Armenta, M., and Rios, C. (2012). Lead neurotoxicity: effects on brain nitric oxide synthase. J Mol Histol.
Nordberg, J., and Arner, E. S. (2001). Reactive oxygen species, antioxidants, and the mammalian thioredoxin system. Free Radic Biol Med 31, 1287-1312.
Nuttall, K. L. (2006). Evaluating selenium poisoning. Ann Clin Lab Sci 36, 409-420.
O'Toole, G. A. (2011). Microtiter dish biofilm formation assay. J Vis Exp, e2437.
Otero, L., Romanelli-Cedrez, L., Turanov, A. A., Gladyshev, V. N., Miranda-Vizuete, A., and Salinas, G. (2014). Adjustments, extinction, and remains of selenocysteine incorporation machinery in the nematode lineage. RNA 20, 1023-1034.
Othman, A. I., and El Missiry, M. A. (1998). Role of selenium against lead toxicity in male rats. J Biochem Mol Toxicol 12, 345-349.
Panter, K. E., Hartley, W. J., James, L. F., Mayland, H. F., Stegelmeier, B. L., and Kechele, P. O. (1996). Comparative toxicity of selenium from seleno-DL-methionine, sodium selenate, and Astragalus bisulcatus in pigs. Fundam Appl Toxicol 32, 217-223.
Papp, D., Csermely, P., and Soti, C. (2012). A role for SKN-1/Nrf in pathogen resistance and immunosenescence in Caenorhabditis elegans. PLoS Pathog 8, e1002673.
Pierce-Shimomura, J. T., Morse, T. M., and Lockery, S. R. (1999). The fundamental role of pirouettes in Caenorhabditis elegans chemotaxis. J Neurosci 19, 9557-9569.
Przybysz, A. J., Choe, K. P., Roberts, L. J., and Strange, K. (2009). Increased age reduces DAF-16 and SKN-1 signaling and the hormetic response of Caenorhabditis elegans to the xenobiotic juglone. Mech Ageing Dev 130, 357-369.
Rayman, M. P. (2000). The importance of selenium to human health. Lancet 356, 233-241.
Rayman, M. P. (2012). Selenium and human health. Lancet 379, 1256-1268.
Riddle, D. L., Blumenthal, T., Meyer, B. J., and Priess, J. R. (1997). Introduction to C. elegans. In C. elegans II (D. L. Riddle, T. Blumenthal, B. J. Meyer, and J. R. Priess, Eds.), pp. 1-22. Cold Spring Harbor Laboratory Press, New York.
Roos, P. M., Vesterberg, O., and Nordberg, M. (2006). Metals in motor neuron diseases. Exp Biol Med (Maywood) 231, 1481-1487.
Rotruck, J. T., Pope, A. L., Ganther, H. E., Swanson, A. B., Hafeman, D. G., and Hoekstra, W. G. (1973). Selenium: biochemical role as a component of glutathione peroxidase. Science 179, 588-590.
Rudrappa, T., and Bais, H. P. (2008). Curcumin, a known phenolic from Curcuma longa, attenuates the virulence of Pseudomonas aeruginosa PAO1 in whole plant and animal pathogenicity models. J Agric Food Chem 56, 1955-1962.
Ryan-Harshman, M., and Aldoori, W. (2005). The relevance of selenium to immunity, cancer, and infectious/inflammatory diseases. Can J Diet Pract Res 66, 98-102.
Sarabhai, S., Sharma, P., and Capalash, N. (2013). Ellagic acid derivatives from Terminalia chebula Retz. downregulate the expression of quorum sensing genes to attenuate Pseudomonas aeruginosa PAO1 virulence. PLoS One 8, e53441.
Satterlee, J. S., Sasakura, H., Kuhara, A., Berkeley, M., Mori, I., and Sengupta, P. (2001). Specification of thermosensory neuron fate in C. elegans requires ttx-1, a homolog of otd/Otx. Neuron 31, 943-956.
Saul, N., Pietsch, K., Menzel, R., Sturzenbaum, S. R., and Steinberg, C. E. (2009). Catechin induced longevity in C. elegans: from key regulator genes to disposable soma. Mech Ageing Dev 130, 477-486.
Shi, Y. C., Yu, C. W., Liao, V. H., and Pan, T. M. (2012). Monascus-fermented dioscorea enhances oxidative stress resistance via DAF-16/FOXO in Caenorhabditis elegans. PloS one 7, e39515.
Shiobara, Y., Yoshida, T., and Suzuki, K. T. (1998). Effects of dietary selenium species on Se concentrations in hair, blood, and urine. Toxicol Appl Pharmacol 152, 309-314.
Shrimali, R. K., Irons, R. D., Carlson, B. A., Sano, Y., Gladyshev, V. N., Park, J. M., and Hatfield, D. L. (2008). Selenoproteins mediate T cell immunity through an antioxidant mechanism. J Biol Chem 283, 20181-20185.
Smith, J. V., and Luo, Y. (2003). Elevation of oxidative free radicals in Alzheimer's disease models can be attenuated by Ginkgo biloba extract EGb 761. Journal of Alzheimer's disease : JAD 5, 287-300.
Spallholz, J. E., Boylan, L. M., and Larsen, H. S. (1990). Advances in understanding selenium's role in the immune system. Ann N Y Acad Sci 587, 123-139.
Stadtman, T. C. (1991). Biosynthesis and function of selenocysteine-containing enzymes. J Biol Chem 266, 16257-16260.
Steinbrenner, H., and Sies, H. (2009). Protection against reactive oxygen species by selenoproteins. Biochim Biophys Acta 1790, 1478-1485.
Stenvall, J., Fierro-Gonzalez, J. C., Swoboda, P., Saamarthy, K., Cheng, Q., Cacho-Valadez, B., Arner, E. S., Persson, O. P., Miranda-Vizuete, A., and Tuck, S. (2011). Selenoprotein TRXR-1 and GSR-1 are essential for removal of old cuticle during molting in Caenorhabditis elegans. Proceedings of the National Academy of Sciences of the United States of America 108, 1064-1069.
Strayer, A., Wu, Z., Christen, Y., Link, C. D., and Luo, Y. (2003). Expression of the small heat-shock protein Hsp16-2 in Caenorhabditis elegans is suppressed by Ginkgo biloba extract EGb 761. FASEB J 17, 2305-2307.
Sulston, J., and Hodgkin, J. (1998). Methods. In The Nematode Caenorhabditis elegans (W. B. Wood., Ed.), pp. 587-606. Cold Spring Harbor Laboratory Press, New York.
Tan, M. W., Mahajan-Miklos, S., and Ausubel, F. M. (1999a). Killing of Caenorhabditis elegans by Pseudomonas aeruginosa used to model mammalian bacterial pathogenesis. Proc Natl Acad Sci U S A 96, 715-720.
Tan, M. W., Rahme, L. G., Sternberg, J. A., Tompkins, R. G., and Ausubel, F. M. (1999b). Pseudomonas aeruginosa killing of Caenorhabditis elegans used to identify P. aeruginosa virulence factors. Proc Natl Acad Sci U S A 96, 2408-2413.
Taskov, K., Chapple, C., Kryukov, G. V., Castellano, S., Lobanov, A. V., Korotkov, K. V., Guigo, R., and Gladyshev, V. N. (2005). Nematode selenoproteome: the use of the selenocysteine insertion system to decode one codon in an animal genome? Nucleic Acids Res 33, 2227-2238.
Tawe, W. N., Eschbach, M. L., Walter, R. D., and Henkle-Duhrsen, K. (1998). Identification of stress-responsive genes in Caenorhabditis elegans using RT-PCR differential display. Nucleic Acids Res 26, 1621-1627.
Troemel, E. R., Chu, S. W., Reinke, V., Lee, S. S., Ausubel, F. M., and Kim, D. H. (2006). p38 MAPK regulates expression of immune response genes and contributes to longevity in C. elegans. PLoS Genet 2, e183.
Tsalik, E. L., and Hobert, O. (2003). Functional mapping of neurons that control locomotory behavior in Caenorhabditis elegans. J Neurobiol 56, 178-197.
Tullet, J. M., Hertweck, M., An, J. H., Baker, J., Hwang, J. Y., Liu, S., Oliveira, R. P., Baumeister, R., and Blackwell, T. K. (2008). Direct inhibition of the longevity-promoting factor SKN-1 by insulin-like signaling in C. elegans. Cell 132, 1025-1038.
Valdiglesias, V., Pasaro, E., Mendez, J., and Laffon, B. (2010). In vitro evaluation of selenium genotoxic, cytotoxic, and protective effects: a review. Arch Toxicol 84, 337-351.
Valko, M., Izakovic, M., Mazur, M., Rhodes, C. J., and Telser, J. (2004). Role of oxygen radicals in DNA damage and cancer incidence. Mol Cell Biochem 266, 37-56.
Vijg, J., and Campisi, J. (2008). Puzzles, promises and a cure for ageing. Nature 454, 1065-1071.
Vunta, H., Belda, B. J., Arner, R. J., Channa Reddy, C., Vanden Heuvel, J. P., and Sandeep Prabhu, K. (2008). Selenium attenuates pro-inflammatory gene expression in macrophages. Mol Nutr Food Res 52, 1316-1323.
Wallace, D. C., and Melov, S. (1998). Radicals r'aging. Nat Genet 19, 105-106.
Walter, P. L., Steinbrenner, H., Barthel, A., and Klotz, L. O. (2008). Stimulation of selenoprotein P promoter activity in hepatoma cells by FoxO1a transcription factor. Biochem Biophys Res Commun 365, 316-321.
Wojewoda, M., Duszynski, J., and Szczepanowska, J. (2010). Antioxidant defence systems and generation of reactive oxygen species in osteosarcoma cells with defective mitochondria: effect of selenium. Biochim Biophys Acta 1797, 890-896.
Wu, Q., Liu, P., Li, Y., Du, M., Xing, X., and Wang, D. (2012). Inhibition of ROS elevation and damage to mitochondrial function prevents lead-induced neurotoxic effects on structures and functions of AFD neurons in Caenorhabditis elegans. J Environ Sci (China) 24, 733-742.
Xing, X., Du, M., Xu, X., Rui, Q., and Wang, D. (2009). Exposure to metals induces morphological and functional alteration of AFD neurons in nematode Caenorhabditis elegans. Environ Toxicol Pharmacol 28, 104-110.
Ye, H. Y., Ye, B. P., and Wang, D. Y. (2008). Molecular control of memory in nematode Caenorhabditis elegans. Neurosci Bull 24, 49-55.
Yeo, J. E., and Kang, S. K. (2007). Selenium effectively inhibits ROS-mediated apoptotic neural precursor cell death in vitro and in vivo in traumatic brain injury. Biochim Biophys Acta 1772, 1199-1210.
Yeoman, M. S., and Faragher, R. G. (2001). Ageing and the nervous system: insights from studies on invertebrates. Biogerontology 2, 85-97.
Yousuf, S., Atif, F., Ahmad, M., Hoda, M. N., Khan, M. B., Ishrat, T., and Islam, F. (2007). Selenium plays a modulatory role against cerebral ischemia-induced neuronal damage in rat hippocampus. Brain Res 1147, 218-225.
Yu, M. W., Horng, I. S., Hsu, K. H., Chiang, Y. C., Liaw, Y. F., and Chen, C. J. (1999). Plasma selenium levels and risk of hepatocellular carcinoma among men with chronic hepatitis virus infection. Am J Epidemiol 150, 367-374.
Yu, S. Y., Zhu, Y. J., and Li, W. G. (1997). Protective role of selenium against hepatitis B virus and primary liver cancer in Qidong. Biol Trace Elem Res 56, 117-124.
Zhang, L., Jie, G., Zhang, J., and Zhao, B. (2009). Significant longevity-extending effects of EGCG on Caenorhabditis elegans under
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/18766-
dc.description.abstract作為一微量必需元素,硒參與許多重要之細胞反應,且在維持良好健康上極其重要。雖然硒之許多有益效應皆已被發現,其所參與之調控機制至今仍不明確。故本論文以Caenorhabditis elegans (C. elegans)作為模式生物,探討微量元素硒對生物體的有益效應及其調控機制,包括以下3個研究目標:(1) 微量無機四價硒的抗氧化活性及相關機制;(2) 微量無機四價硒對神經毒物(鉛)所誘導毒性之保護能力;及(3) 微量無機四價硒對人類致病菌(綠膿桿菌P. aerugonisa)所造成之免疫反應與相關調節機制。
根據研究目標1的研究結果顯示,微量無機四價硒(0.01 μM)暴露之C. elegans相較於未暴露之控制組,於氧化壓力與高溫壓力下具有較高之存活率。進一步的研究顯示,微量無機四價硒對C. elegans所造成之顯著壓力抗性可歸因於其自由基去除力。本研究亦發現此壓力抗性之現象於C. elegans之daf-16轉錄因子突變株中不存在。再者,無機四價硒可影響C. elegans細胞內DAF-16的分佈,並可提升超氧化物歧化酶(SOD-3)和熱擊蛋白(HSP-16.2)之mRNA表達。此外,0.01 μM硒亦可提升基因轉殖C. elegans中之SOD-3綠色螢光蛋白與HSP-16.2綠色螢光蛋白表達,但是此影響可透過於C. elegans中以daf-16 RNA干擾而消失。最後,不像野生株N2,無機四價硒所提供之氧化壓力抗性,無法發生於缺乏硒蛋白TRXR-1之C. elegans或trxr-1突變株,並佐以daf-16 RNA干擾之C. elegans中存在。此結果說明,微量無機四價硒於C. elegans之抗氧化效應,需透過DAF-16和TRXR-1蛋白進行調控。
研究目標2則探討無機四價硒在C. elegans中抵抗重金屬鉛所誘導神經毒性之保護潛力。結果顯示,微量無機四價硒(0.01 μM)的暴露,可以緩和高濃度鉛的毒害(100 μM)對於C. elegansn所造成之移動行為衰退(frequencies of body bends、head thrashes和reversal)。在鉛暴露前,以無機四價硒的補充可以顯著的降低C. elegans體內鉛所誘導之活性氧程度。最後,微量無機四價硒可以保護AFD感受神經元免於鉛誘導之毒性。本研究結果說明,微量無機四價硒透過其抗氧化特性而具有保護特性以對抗鉛誘導之神經毒性。
在研究目標3中,以C. elegans對於綠膿桿菌PA14之反應來探討微量無機四價硒於生物體之免疫效應。研究結果發現,在PA14感染情況下,相較於無暴露之控制組,微量硒暴露之C. elegans具有顯著增加的存活率。微量無機四價硒對於PA14之quorum sensing與其他致病因子並無影響,此結果說明硒於C. elegans之病原菌抗性並非來自於硒對綠膿桿菌之影響。研究結果更進一步顯示,微量無機四價硒可增強C. elegans自然免疫中關鍵基因的表達。此外,研究亦發現無機四價硒所引起之病原菌抵抗力不存在於skn-1突變株。再者,在PA14感染下,硒可以影響C. elegans細胞內SKN-1/Nrf轉錄因子之分佈,以及提升其下游目標基因(gst-4和gcs-1)之mRNA表達。本研究證明,微量無機四價硒可經由調控SKN-1訊息傳遞路徑和影響C. elegans之自然免疫,而使C. elegans可抵抗綠膿桿菌PA14之感染。
本研究論文結果顯示,微量的無機四價硒可以: (1) 透過DAF-16轉錄因子與TRXR-1硒蛋白,調節C. elegans之抗氧化反應以抵抗氧化壓力;(2) 透過抗氧化活性,使C. elegans得以抵抗鉛所誘導之神經毒性;及(3) 經由SKN-1轉錄因子與提升C. elegans之免疫抗性用,以抵抗綠膿桿菌之感染。由本論文的研究結果顯示,微量元素無機四價硒經由調控壓力相關或免疫相關基因的活化,提供C. elegans在抗氧化防禦系統、神經系統、與免疫系統之有益效應。
zh_TW
dc.description.abstractSelenium (Se), an essential trace element, is involved in many important cell processes and is vital for health. Although several beneficial effects of Se have been described, the associated regulatory mechanisms by Se remain further eluciared. The goal of this dissertion is to investigate the beneficial effects of Se and its associated regulatory mechanisms in Caenorhabditis elegans. There are 3 specific aims in this study: (1) the antioxidant activities of selenite (Se(IV)) and its related mechanisms; (2) the neuroprotective activities of (Se(IV)) against the neurotoxin (i.e., lead); and (3) the effects of (Se(IV)) on immune systems against human pathogen Pseudomonas aeruginosa PA14 and its related mechanisms.
For specific aim 1, trace amount of Se(IV)-treated (0.01 μM) C. elegans showed an increased survival under oxidative stress and thermal stress compared to untreated controls. Further studies demonstrated that the significant stress resistance of Se(IV) on C. elegans could be attributable to its in vivo free radical-scavenging ability. The oxidative and thermal stress resistance phenotypes by Se(IV) were also found to be absent from the forkhead transcription factor daf-16 mutant worms. Moreover, Se(IV) influenced the subcellular distribution of DAF-16 in C. elegans. Furthermore, Se(IV) increased mRNA levels of stress-resistance-related proteins, including superoxide dismutase-3 and heat shock protein-16.2. Additionally, Se(IV) (0.01 μM) upregulated expressions of transgenic C. elegans carrying sod-3::green fluorescent protein (GFP) and hsp-16.2::GFP, whereas this effect was abolished by feeding daf-16 RNA interference in C. elegans. Finally, unlike the wild-type N2 worms, the oxidative stress resistance phenotypes by Se(IV) were both absent from the C. elegans selenoprotein trxr-1 mutant worms and trxr-1 mutants feeding with daf-16 RNA interference. These findings suggest that the antioxidant effects of Se(IV) in C. elegans are mediated via DAF-16 and TRXR-1.
For specific aim 2, the study investigated the protective potential of selenite (IV) against lead (Pb(II))-induced neurotoxicity in C. elegans. The results showed that Se(IV) (0.01 μM) pretreatment ameliorated the decline of locomotion behaviors (frequencies of body bends, head thrashes, and reversal ) of C. elegans that are damaged by Pb(II) (100 μM) exposure. The intracellular ROS level of C. elegans induced by Pb(II) exposure was significantly lowered by Se(IV) supplementation prior to Pb exposure. Finally, Se(IV) protects AFD sensory neurons from Pb(II)-induced toxicity. Our study suggests that Se(IV) has protective activities against Pb(II)-induced neurotoxicity through its antioxidant property.
For specific aim 3, the immune effects of Se(IV) were investigated by examining the responses of C. elegans to P. aerugonisa PA14 strain. Se(IV)-treated C. elegans showed increased survival under PA14 infection compared with untreated controls. The significant pathogen resistance of Se(IV) on C. elegans might not be attributable to the effects of Se(IV) on PA14 as Se(IV) showed no effect on bacterial quorum-sensing and virulence factors of PA14. This study showed that Se(IV) enhanced the expression of a gene pivotal for the innate immunity in C. elegans. The study found that the pathogen-resistant phenotypes contributed by Se(IV) was absent from the skn-1 mutant worms. Moreover, Se(IV) influenced the subcellular distribution of SKN-1/Nrf in C. elegans upon PA14 infection. Furthermore, Se(IV) increased mRNA levels of SKN-1 target genes (gst-4 and gcs-1). This study found evidence of Se(IV) protecting C. elegans against P. aeruginosa PA14 infection by exerting effects on the innate immunity of C. elegans that is likely to be mediated via regulation of a SKN-1-dependent signaling pathway.
In conclusion, results in this dissertion showed that trace amount of Se(IV) can: (1) protect C. elegans from oxidative stress via DAF-16 and TRXR-1; (2) provide protection against lead-induced neurotoxicity in C. elegans; and (3) enhance immune responses against P. aeruginosa PA14 infection via SKN-1 in C. elegans. This dissertion demonstrates that (Se(IV)) modulates activation of stress-related or immune-related genes to offer beneficial effects on C. elegans in antioxidant defense systems, nerve systems, and immune systems.
en
dc.description.provenanceMade available in DSpace on 2021-06-08T01:24:38Z (GMT). No. of bitstreams: 1
ntu-103-D98622002-1.pdf: 5600794 bytes, checksum: d812b4b2a6aad1f78095e6e0da734006 (MD5)
Previous issue date: 2014
en
dc.description.tableofcontentsABSTRACT i
中文摘要 v
ACKNOWLEDGEMENT viii
TABLE OF CONTENTS x
LIST OF FIGURES xv
LIST OF TABLES xvii
ABBREVIATION xviii
Chapter 1. Research Background 1
1.1 Motivation of Study 1
1.2 Literature Review 2
1.2.1 General Introduction 2
1.2.2 Se and Oxidative Stress 4
1.2.3 Se and Neuromuscular System 5
1.2.4 Se and Immune system 7
1.2.5 Se and Caenorhabditis elegans 8
Chapter 2. Research Goal 11
2.1 Specific Aim 1:Dissecting genetic
requirements for Se(IV)- modulating
antioxidant action in C. elegans 11
2.2 Specific Aim 2:Determining whether
or not Se(IV) exerts neuroprotective
properties to C. elegans from
environmental neurotoxins 12
2.3 Specific Aim 3:Investigating the
potentially protective effects of
Se(IV) on the immunity of C. elegans
under pathogen challenge 13
Chapter 3. Materials and Methods 14
3.1 Chemicals, C. elegans strains,
and growth conditions 14
3.2 Stress resistance assays and
RNA interference 15
3.3 Measurement of intracellular
reactive oxygen species 16
3.4 DAF-16 and SKN-1 localization assays 19
3.5 Quantitative real-time RT-PCR analysis 20
3.6 Fluorescence analysis and RNAi 21
3.7 Locomotion behavior assays 22
3.8 C. elegans killing assay 24
3.9 Total protease assay 25
3.10 Microtiter plate biofilm assay 26
3.11 Data analysis 26
Chapter 4. Results 28
4.1 Selenite protects Caenorhabditis elegans
from oxidative stress via DAF-16 and TRXR-1 28
4.1.1 Se(IV) improves the stress resistance of
wild-type C. elegans 28
4.1.2 Se(IV) decreases the intracellular ROS
level in C. elegans 32
4.1.3 Se(IV) enhances oxidative stress
resistance and thermal tolerance in C. elegans
via DAF-16 36
4.1.4 Se(IV) induces the translocation of DAF-16
from cytoplasm to nucleus 38
4.1.5 Se(IV) enhances expressions of small
heat shock protein (HSP-16.2) and superoxide
dismutase (SOD-3) in C. elegans via DAF-16 42
4.1.6 Both TRXR-1 and DAF-16 contributed to
Se(IV)-enhanced oxidative stress resistance
in C. elegans 46
4.2 Protective efficacy of selenite against
lead-induced neurotoxicity in Caenorhabditis
elegans 50
4.2.1 Se(IV) ameliorated declines of locomotion
behavior in aged worms 50
4.2.2 Se(IV) protects the locomotion behaviors of
C. elegans against Pb(II)-induced toxicity 53
4.2.3 Se(IV) decreases the intracellular ROS level
in C. elegans. 57
4.2.4 Se(IV) protects AFD sensory neurons
from Pb(II)-induced toxicity. 60
4.2.5 Se(IV) enhances mRNA levels of TTX-1, TAX-2,
TAX-4, and CEH-14 upon Pb(II) exposure. 64
4.3 Selenite supplement enhances immune response
against Pseudomonas aeruginosa PA14 via SKN-1 in Caenorhabditis elegans 67
4.3.1 Se(IV) protects wild-type C. elegans against
P. aeruginosa PA14 infection 67
4.3.2 Se(IV) does not affect quorum-sensing and
virulence factors of PA14 69
4.3.3 Se(IV) enhances immune response gene
expression in C. elegans under PA14 infection 73
4.3.4 SKN-1 is essential for Se(IV)-induced
protection of C. elegans against PA14 infection 78
4.3.5 Se(IV) enhances expressions of glutathione-S-transferase (GST-4) and gamma-glutamine cysteine
synthetase (GCS-1) in C. elegans under PA14
infection 82
Chapter 5. Discussion 84
5.1 Selenite protects Caenorhabditis elegans from
oxidative stress via DAF-16 and TRXR-1 84
5.2 Protective efficacy of selenite against
lead-induced neurotoxicity in Caenorhabditis
elegans 92
5.3 Selenite supplement enhances immune response
against Pseudomonas aeruginosa PA14 via SKN-1 in Caenorhabditis elegans 98
Chapter 6. Conclusions and future research
suggestion 106
References 108
Appendix 133
Curriculum vitae 136
dc.language.isoen
dc.title秀麗隱桿線蟲中微量無機四價硒有益效應之調控分析zh_TW
dc.titleRegulatory analyses of the beneficial effects by trace amount of selenite in Caenorhabditis elegansen
dc.typeThesis
dc.date.schoolyear102-2
dc.description.degree博士
dc.contributor.oralexamcommittee廖中明,吳益群,羅時成,蕭光明,林嬪嬪
dc.subject.keyword硒,C. elegans,抗氧化,神經保護,免疫,DAF-16轉錄因子,TRXR-1硒蛋白,SKN-1轉錄因子,zh_TW
dc.subject.keywordSelenium,Caenorhabditis elegans,antioxidant,neuroprotective,immune,DAF-16,TRXR-1,SKN-1,en
dc.relation.page138
dc.rights.note未授權
dc.date.accepted2014-08-01
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept生物環境系統工程學研究所zh_TW
顯示於系所單位:生物環境系統工程學系

文件中的檔案:
檔案 大小格式 
ntu-103-1.pdf
  未授權公開取用
5.47 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved