Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 物理學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/18765
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor董成淵(Chen-Yuan Dong cydong@phys.ntu.edu.tw )
dc.contributor.authorXin-Yu Liaoen
dc.contributor.author廖信宇zh_TW
dc.date.accessioned2021-06-08T01:24:34Z-
dc.date.copyright2020-08-21
dc.date.issued2020
dc.date.submitted2020-08-11
dc.identifier.citationCECIL H. FOX. et al., “Formaldehyde Fixation”, The Journal of Histochemistry and Cytochemistry. 5R0344A (1985).
Musumeci, Giuseppe. 'Past, present and future: overview on histology and histopathology.' (2014): 5.
G. Rolls, “An Introduction to Specimen Processing.” Leica Biosystems
Bancroft, John D., and Marilyn Gamble, eds. Theory and practice of histological techniques. Elsevier Health Sciences, 2008.
Wang J et al. (2017) Journal of Hematology Oncology 10(1):34 DOI: 10.1186/s13045-017-0403-5
Agilent Dako. (2019.6.11). PD-L1 IHC 22C3 pharmDx Interpretation Manual – HNSCC.
Viktor H. Koelzer et al. “Precision immunoprofiling by image analysis and artificial intelligence” Virchows Archiv. 474:511–522 (2019)
Dr Michelle Peckham “The Histology Guide”
Abdel Halim. “Biomarkers, Diagnostics and Precision Medicine in the Drug Industry” (2019)
Joshua M. Bauml. “Immunotherapy for head and neck cancer: where are we now and where are we going?” Ann Transl Med. 2019 Jul; 7(Suppl 3): S75 \
NIKON Inverted Microscope Eclipse TE2000-U Instructions. M314E 04.7.CF.3(1/5)
PRIOR scientific. H117 Stage. PRIOR SCIENTIFIC INSTRUMENTS LTD,
Samuel W. Hasinoff. “Photon , Poisson noise” Google Inc
A C Ruifrok. “Quantification of Histochemical Staining by Color Deconvolution” Anal Quant Cytol Histol (2001)
Joseph Redmon et al. (2016.5.9). You Only Look Once: Unified, Real-Time Object Detection. arXiv:1506.02640 [cs.CV]
Xiangxin Zhu et al. (2012). Do We Need More Training Data or Better Models for Object Detection? BMVC
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/18765-
dc.description.abstractPD-L1表現率之腫瘤比例評分為現今評定免疫檢查點阻斷療法於癌症病患個案是否適宜之重要生物指標。以臺灣健保系統對免疫療法之給付規定為例,頭頸部鱗狀細胞癌及非小細胞肺癌患者需於該評分被評定高於50%,始能通過給付條件;然而現今腫瘤比例評分係由病理科醫師進行人工計數判定,以口腔癌為例,一個大於1公分的樣品平均包含100,000個以上細胞,故現行流程將十分費時,且人力計數方式將不甚精準。為改善該評分流程,以期符合精準醫學之方針,本研究中,我們以高解析度白光顯微鏡搭配精密樣品載物平台,並將影像訊號透過工業彩色相機擷取,藉LabVIEW編譯之系統控制軟體以實現自動化掃圖,並將子影像透過ImageJ輔助拼接出可供分析之全玻片影像。由全玻片影像提供之高通量資訊,我們透過深度學習演算法自動計算出患者之腫瘤比例評分,與臺大醫院病理科醫師估計值相差低於10%,可望於未來發展為數位病理輔助儀器以實現精準醫學;另外,本研究發現在同一塊腫瘤切片中,相隔僅3毫米之兩片切面薄片之評分竟可以從34% 驟增至62%,足以證明腫瘤比例評分亟需數位病理方法輔助以獲得更大數據之統計結論,而非繼續採現行之人工計數方式。由於全玻片影像之品質將大大影響腫瘤比例評分正確性,故本研究亦探討實驗中光學系統及亮度平坦度之校正及染劑分子濃度對彩色影像畫素組成之影響。最後,於實驗中所取得之全玻片影像資料將可供作為人工智慧判讀病人療效之訓練資料,展望更完整且精準的數位病理判讀研究。zh_TW
dc.description.abstractCurrently, Tumor Proportion Scores (TPS) of PD-L1 expression is the clinical bio-marker for immune checkpoint inhibitor therapy. For the health insurance system in Taiwan, only cases with TPS≧50% for head and neck cancer or NSCLC are covered; however, TPS is clinically determined by pathologists using manual counting to estimate the percentage of viable tumor cells with PD-L1 labeled membrane. In the case of a 10-mm sample, more than 100,000 cells can be present and it is time-consuming and lacks precision and accuracy from manual counting. To improve the scoring process, in this research, an auto-scanning instrument composed of a bright field microscope (TE2000-U), a high-resolution prior stage, and an CCD-camera was constructed through the use of LabVIEW based software, which enables whole-slide imaging capability of biopsy slices through ImageJ stitching function. A deep learning based algorithm was constructed to process high throughput WSI data from which we can automatically calculate patients’ TPSs. Our results are within 10% error to the scores evaluated by a pathologist in NTUH. Furthermore, we also find that the TPS of two adjacent tissue sections separated 3 mm apart can drastically increase from 34% to 62%. Therefore, current procedure for assessing TPS needs digital pathology analysis of large data sets to achieve more significant statistical results. Besides, the accuracy of TPS is greatly affected by the image quality; therefore, we would also probe into the calibration of optics systems and the flatness of intensity. Ultimately, the image data acquired in this research would be provided as the training data for building a more complete AI software to estimate the curative effect more precisely in the future.en
dc.description.provenanceMade available in DSpace on 2021-06-08T01:24:34Z (GMT). No. of bitstreams: 1
U0001-1108202003452500.pdf: 2369714 bytes, checksum: 04d3339178eeb2db23b717a48decd0af (MD5)
Previous issue date: 2020
en
dc.description.tableofcontents致謝 i
摘要 ii
Abstract iii
Contents iv
List of Figures vi
List of Tables vii
Chapter 1 Introduction 1
1.1 Histopathology - Gold Standard of Pathological Tissue Preparation for Cancer Diagnosis 1
1.1.1 Fixation 1
1.1.2 Paraffin Embedding 2
1.1.3 Tissue Sectioning with Microtome 2
1.1.4 Hematoxylin and Eosin Staining 2
1.2 Immune Checkpoint Inhibitor Therapy 3
1.3 Advances in Optical Microscopy and Artificial Intelligence 6
Chapter 2 Histology of Oral Tissue 8
2.1 Oral Mucosa 8
2.2 Lips 8
2.3 Esophagus 8
2.3.1 Esophageal Mucosa 8
2.3.2 Other Layers of the Esophagus 9
Chapter 3 Oral Cancer and Immunotherapy 10
3.1 Conventional Therapy 10
3.2 Immunotherapy in Oral Cancer 11
Chapter 4 Research Method 13
4.1 Whole Slide Auto-Scanning Instrument 13
4.1.1 Microscope Combined with CCD Camera 13
4.1.2 Stage with High Resolution Stepping-Motor 15
4.1.3 NI-LabVIEW Based Auto-Scanning Software 16
4.2 Image Processing 17
4.2.1 Image Calibration 18
4.2.2 Image Stitching 21
4.3 Spectral Deconvolution for Nucleus Quantities 22
4.4 Deep Learning Based PD-L1 Positive Cells Classification for TPS Figuration 25
4.4.1 Method 1- The Stochastic Gradient Decent for Image Classification 25
4.4.2 Method 2- One Stage Yolov3 Object Detection for PD-L1 27
Chapter 5 Result- TPS Variation with Location and TPS Figuration of 5 Images with Validation 29
Chapter 6 Conclusion and Discussion 31
References 33
dc.language.isoen
dc.title全玻片高通量影像顯微術以實現精準醫學:腫瘤比例評分之自動化演算
zh_TW
dc.titleWhole Slide Image and Deep Learning Based Technique for Determination of Tumor Proportion Scores
en
dc.typeThesis
dc.date.schoolyear108-2
dc.description.degree碩士
dc.contributor.oralexamcommittee陳永芳(Yang-Fang Chen),婁培人(Pei-Jen Lou),黃彥霖(Yen-Lin Huang),林玫君(Mei-Chun Lin)
dc.subject.keyword全玻片影像,免疫檢查點阻斷療法,腫瘤比例評分,數位病理學,精準醫學,zh_TW
dc.subject.keywordwhole slide imaging,immune checkpoint inhibitor therapy,Tumor Proportion Score,digital pathology,precision medicine,en
dc.relation.page34
dc.identifier.doi10.6342/NTU202002888
dc.rights.note未授權
dc.date.accepted2020-08-12
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept物理學研究所zh_TW
顯示於系所單位:物理學系

文件中的檔案:
檔案 大小格式 
U0001-1108202003452500.pdf
  未授權公開取用
2.31 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved