Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 化學工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/18752
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor王勝仕(Steven S.-S. Wang)
dc.contributor.authorWei-An Chenen
dc.contributor.author陳偉安zh_TW
dc.date.accessioned2021-06-08T01:23:44Z-
dc.date.copyright2014-08-14
dc.date.issued2014
dc.date.submitted2014-08-04
dc.identifier.citationReference
1. Bloemendal, H., et al., Ageing and vision: structure, stability and function of lens crystallins. Prog Biophys Mol Biol, 2004. 86(3): p. 407-85.
2. Congdon, N., et al., Prevalence of cataract and pseudophakia/aphakia among adults in the United States. Arch Ophthalmol, 2004. 122(4): p. 487-94.
3. Zigman, S., M. Datiles, and E. Torczynski, Sunlight and human cataracts. Invest Ophthalmol Vis Sci, 1979. 18(5): p. 462-7.
4. Wegener, A.R., In-Vivo Studies on the Effect of Uv-Radiation on the Eye Lens in Animals. Documenta Ophthalmologica, 1994. 88(3-4): p. 221-232.
5. Ayala, M.N., R. Michel, and P.G. Soderberg, In vivo cataract after repeated exposure to ultraviolet radiation. Experimental Eye Research, 2000. 70(4): p. 451-456.
6. Michael, R., P.G. Soderberg, and E.P. Chen, Long-term development of lens opacities after exposure to ultraviolet radiation at 300 nm. Ophthalmic Research, 1996. 28(4): p. 209-218.
7. Quillen, D.A., Common causes of vision loss in elderly patients. Am Fam Physician, 1999. 60(1): p. 99-108.
8. Resnikoff, S., et al., Global data on visual impairment in the year 2002. Bull World Health Organ, 2004. 82(11): p. 844-51.
9. Pascolini, D. and S.P. Mariotti, Global estimates of visual impairment: 2010. Br J Ophthalmol, 2012. 96(5): p. 614-8.
10. McCarty, C.A., J.E. Keeffe, and H.R. Taylor, The need for cataract surgery: projections based on lens opacity, visual acuity, and personal concern. British Journal of Ophthalmology, 1999. 83(1): p. 62-65.
11. West, S.K., et al., Sunlight exposure and risk of lens opacities in a population-based study - The Salisbury Eye Evaluation Project. Jama-Journal of the American Medical Association, 1998. 280(8): p. 714-718.
12. Brian, G. and H. Taylor, Cataract blindness - challenges for the 21st century. Bulletin of the World Health Organization, 2001. 79(3): p. 249-256.
13. Sumru Onal, T.B., AGING AND THE EYE. Marmara Med., 2005.
14. Reddy, M.A., et al., Molecular genetic basis of inherited cataract and associated phenotypes. Survey of Ophthalmology, 2004. 49(3): p. 300-315.
15. Beebe, D.C., N.M. Holekamp, and Y.B. Shui, Oxidative Damage and the Prevention of Age-Related Cataracts. Ophthalmic Research, 2010. 44(3): p. 155-165.
16. Fong, K.C.S., The ageing lens and classification of cataracts, R. Malhotra, Editor. 2008. p. 1-15.
17. Tan, A.C., et al., Lens Opacities Classification System III: Cataract grading variability between junior and senior staff at a Singapore hospital. Journal of Cataract and Refractive Surgery, 2008. 34(11): p. 1948-1952.
18. West, S.K., et al., Use of Photographic Techniques to Grade Nuclear Cataracts. Investigative Ophthalmology & Visual Science, 1988. 29(1): p. 73-77.
19. Galichanin, K., et al., Evolution of damage in the lens after in vivo close to threshold exposure to UV-B radiation: Cytomorphological study of apoptosis. Experimental Eye Research, 2010. 91(3): p. 369-377.
20. Courtney, P., The National Cataract Surgery Survey: I. Method and descriptive features. Eye (Lond), 1992. 6 ( Pt 5): p. 487-92.
21. Duker, J.S.M.Y.M.Y., Myron; Jay S. Duker MD Ophthalmology. 2009, Mosby/Elsevier: St. Louis, Mo.
22. Christen, W.G., et al., A Prospective-Study of Cigarette-Smoking and Risk of Cataract in Men. Jama-Journal of the American Medical Association, 1992. 268(8): p. 989-993.
23. Spencer, R.W. and S.Y. Andelman, Steroid Cataracts. Posterior Subcapsular Cataract Formation in Rheumatoid Arthritis Patients on Long Term Steroid Therapy. Arch Ophthalmol, 1965. 74: p. 38-41.
24. Santana, A. and M. Waiswo, The genetic and molecular basis of congenital cataract. Arq Bras Oftalmol, 2011. 74(2): p. 136-42.
25. Huang, B. and W. He, Molecular characteristics of inherited congenital cataracts. Eur J Med Genet, 2010. 53(6): p. 347-57.
26. Graw, J., Genetics of crystallins: cataract and beyond. Exp Eye Res, 2009. 88(2): p. 173-89.
27. Schafheimer, N., et al., Tyrosine/cysteine cluster sensitizing human gammaD-crystallin to ultraviolet radiation-induced photoaggregation in vitro. Biochemistry, 2014. 53(6): p. 979-90.
28. Bollinger, K.E. and R.H.S. Langston, What can patients expect from cataract surgery? Cleveland Clinic Journal of Medicine, 2008. 75(3): p. 193-+.
29. Harding, J.J., Viewing molecular mechanisms of ageing through a lens. Ageing Res Rev, 2002. 1(3): p. 465-79.
30. Li, J., R.C. Tripathi, and B.J. Tripathi, Drug-induced ocular disorders. Drug Saf, 2008. 31(2): p. 127-41.
31. Mills, I.A., et al., Folding and stability of the isolated Greek key domains of the long-lived human lens proteins gammaD-crystallin and gammaS-crystallin. Protein Sci, 2007. 16(11): p. 2427-44.
32. Flaugh, S.L., M.S. Kosinski-Collins, and J. King, Interdomain side-chain interactions in human gammaD crystallin influencing folding and stability. Protein Sci, 2005. 14(8): p. 2030-43.
33. Kosinski-Collins, M.S. and J. King, In vitro unfolding, refolding, and polymerization of human gammaD crystallin, a protein involved in cataract formation. Protein Sci, 2003. 12(3): p. 480-90.
34. The human eye: structure and function. Nat Med, 1999. 5(11): p. 1229.
35. Delaye, M. and A. Tardieu, Short-Range Order of Crystallin Proteins Accounts for Eye Lens Transparency. Nature, 1983. 302(5907): p. 415-417.
36. Duker, M.Y., Jay S., Ophthalmology. 2008, Edinburgh: Mosby. p. 382.
37. Sharma, K.K. and P. Santhoshkumar, Lens aging: Effects of crystallins. Biochimica Et Biophysica Acta-General Subjects, 2009. 1790(10): p. 1095-1108.
38. John Forrester, A.D., Paul McMenamin, William Lee, The Eye: Basic Sciences in Practice. 1996, W. B. Saunders Company Ltd: London. p. 28.
39. Mathias, R.T., T.W. White, and X.H. Gong, Lens Gap Junctions in Growth, Differentiation, and Homeostasis. Physiological Reviews, 2010. 90(1): p. 179-206.
40. Augusteyn, R.C., Growth of the lens: in vitro observations. Clinical and Experimental Optometry, 2008. 91(3): p. 226-239.
41. Jester, J.V., Corneal crystallins and the development of cellular transparency. Seminars in Cell & Developmental Biology, 2008. 19(2): p. 82-93.
42. Jaffe, N.H., J., Lens and Cataract, S.Y. Podos, M., Editor. 1991, Gower Med.: New York.
43. Bloemendal, H., The lens proteins, H. Bloemendal, Editor. 1981, John Willey & Sons: New York. p. 1-49.
44. Roy, D. and A. Spector, Absence of low-molecular-weight alpha crystallin in nuclear region of old human lenses. Proc Natl Acad Sci U S A, 1976. 73(10): p. 3484-7.
45. McFall-Ngai, M.J., et al., Spatial and temporal mapping of the age-related changes in human lens crystallins. Exp Eye Res, 1985. 41(6): p. 745-58.
46. Benedek, G.B., Cataract as a protein condensation disease: the Proctor Lecture. Invest Ophthalmol Vis Sci, 1997. 38(10): p. 1911-21.
47. Harrington, V., O.P. Srivastava, and M. Kirk, Proteomic analysis of water insoluble proteins from normal and cataractous human lenses. Mol Vis, 2007. 13: p. 1680-94.
48. Wilmarth, P.A., et al., Age-related changes in human crystallins determined from comparative analysis of post-translational modifications in young and aged lens: does deamidation contribute to crystallin insolubility? J Proteome Res, 2006. 5(10): p. 2554-66.
49. Hains, P.G. and R.J. Truscott, Post-translational modifications in the nuclear region of young, aged, and cataract human lenses. J Proteome Res, 2007. 6(10): p. 3935-43.
50. Bhat, S.P., Crystallins, genes and cataract. Prog Drug Res, 2003. 60: p. 205-62.
51. Jornvall, H., et al., Zeta-crystallin versus other members of the alcohol dehydrogenase super-family. Variability as a functional characteristic. FEBS Lett, 1993. 322(3): p. 240-4.
52. Rao, P.V., C.M. Krishna, and J.S. Zigler, Jr., Identification and characterization of the enzymatic activity of zeta-crystallin from guinea pig lens. A novel NADPH:quinone oxidoreductase. J Biol Chem, 1992. 267(1): p. 96-102.
53. Andley, U.P., Crystallins in the eye: Function and pathology. Prog Retin Eye Res, 2007. 26(1): p. 78-98.
54. Sharma, K.K. and P. Santhoshkumar, Lens aging: effects of crystallins. Biochim Biophys Acta, 2009. 1790(10): p. 1095-108.
55. Hawkins, J.W., et al., Confirmation of assignment of the human alpha 1-crystallin gene (CRYA1) to chromosome 21 with regional localization to q22.3. Hum Genet, 1987. 76(4): p. 375-80.
56. Ngo, J.T., et al., Assignment of the alpha B-crystallin gene to human chromosome 11. Genomics, 1989. 5(4): p. 665-9.
57. Carver, J.A. and R.A. Lindner, NMR spectroscopy of alpha-crystallin. Insights into the structure, interactions and chaperone action of small heat-shock proteins. Int J Biol Macromol, 1998. 22(3-4): p. 197-209.
58. Groenen, P.J., et al., Structure and modifications of the junior chaperone alpha-crystallin. From lens transparency to molecular pathology. Eur J Biochem, 1994. 225(1): p. 1-19.
59. Sun, T.X. and J.J. Liang, Intermolecular exchange and stabilization of recombinant human alphaA- and alphaB-crystallin. J Biol Chem, 1998. 273(1): p. 286-90.
60. Sreelakshmi, Y. and K.K. Sharma, Recognition sequence 2 (residues 60-71) plays a role in oligomerization and exchange dynamics of alphaB-crystallin. Biochemistry, 2005. 44(36): p. 12245-52.
61. Chaves, J.M., et al., Structural and functional roles of deamidation and/or truncation of N- or C-termini in human alpha A-crystallin. Biochemistry, 2008. 47(38): p. 10069-83.
62. Gupta, R. and O.P. Srivastava, Deamidation affects structural and functional properties of human alphaA-crystallin and its oligomerization with alphaB-crystallin. J Biol Chem, 2004. 279(43): p. 44258-69.
63. Gupta, R. and O.P. Srivastava, Effect of deamidation of asparagine 146 on functional and structural properties of human lens alphaB-crystallin. Invest Ophthalmol Vis Sci, 2004. 45(1): p. 206-14.
64. Aziz, A., et al., Cleavage of the C-terminal serine of human alphaA-crystallin produces alphaA1-172 with increased chaperone activity and oligomeric size. Biochemistry, 2007. 46(9): p. 2510-9.
65. Augusteyn, R.C., alpha-crystallin: a review of its structure and function. Clin Exp Optom, 2004. 87(6): p. 356-66.
66. Maulucci G, P.M., Arcovito G, De Spirito M, The Thermal Structural Transition of α-Crystallin Inhibits the Heat Induced Self-Aggregation. PLoS ONE, 2011.
67. Alge, C.S., et al., Retinal pigment epithelium is protected against apoptosis by alpha B-crystallin. Investigative Ophthalmology & Visual Science, 2002. 43(11): p. 3575-3582.
68. Kamradt, M.C., et al., The small heat shock protein alpha B-crystallin is a novel inhibitor of TRAIL-induced apoptosis that suppresses the activation of caspase-3. Journal of Biological Chemistry, 2005. 280(12): p. 11059-11066.
69. Wilhelmus, M.M.M., et al., Specific association of small heat shock proteins with the pathological hallmarks of Alzheimer's disease brains. Neuropathology and Applied Neurobiology, 2006. 32(2): p. 119-130.
70. Sinclair, C., et al., Up-regulation of osteopontin and alphaBeta-crystallin in the normal-appearing white matter of multiple sclerosis: an immunohistochemical study utilizing tissue microarrays. Neuropathol Appl Neurobiol, 2005. 31(3): p. 292-303.
71. Umeda, S., et al., Early-onset macular degeneration with drusen in a cynomolgus monkey (Macaca fascicularis) pedigree: exclusion of 13 candidate genes and loci. Invest Ophthalmol Vis Sci, 2005. 46(2): p. 683-91.
72. Raman, B., et al., alpha B-crystallin, a small heat-shock protein, prevents the amyloid fibril growth of an amyloid beta-peptide and beta 2-microglobulin. Biochemical Journal, 2005. 392: p. 573-581.
73. Muchowski, P.J. and J.L. Wacker, Modulation of neurodegeneration by molecular chaperones. Nature Reviews Neuroscience, 2005. 6(1): p. 11-22.
74. Laudanski, K. and D. Wyczechowska, The distinctive role of small heat shock proteins in oncogenesis. Archivum Immunologiae Et Therapiae Experimentalis, 2006. 54(2): p. 103-111.
75. Harding, J.J., Viewing molecular mechanisms of ageing through a lens. Ageing Research Reviews, 2002. 1(3): p. 465-479.
76. Braun, N., et al., Multiple molecular architectures of the eye lens chaperone alphaB-crystallin elucidated by a triple hybrid approach. Proc Natl Acad Sci U S A, 2011. 108(51): p. 20491-6.
77. Jehle, S., et al., Solid-state NMR and SAXS studies provide a structural basis for the activation of alphaB-crystallin oligomers. Nat Struct Mol Biol, 2010. 17(9): p. 1037-42.
78. Laganowsky, A., et al., Crystal structures of truncated alphaA and alphaB crystallins reveal structural mechanisms of polydispersity important for eye lens function. Protein Sci, 2010. 19(5): p. 1031-43.
79. Van Montfort, R.L., et al., Crystal structure of truncated human betaB1-crystallin. Protein Sci, 2003. 12(11): p. 2606-12.
80. Takata, T., L.G. Woodbury, and K.J. Lampi, Deamidation alters interactions of beta-crystallins in hetero-oligomers. Mol Vis, 2009. 15: p. 241-9.
81. Liu, B.F. and J.J.N. Liang, Protein-protein interactions among human lens acidic and basic beta-crystallins. Febs Letters, 2007. 581(21): p. 3936-3942.
82. Marin-Vinader, L., et al., In vivo heteromer formation. Expression of soluble betaA4-crystallin requires coexpression of a heteromeric partner. FEBS J, 2006. 273(14): p. 3172-82.
83. Bateman, O.A., et al., The stability of human acidic beta-crystallin oligomers and hetero-oligomers. Exp Eye Res, 2003. 77(4): p. 409-22.
84. Mohr, B.G., et al., Electrostatic origin of in vitro aggregation of human gamma-crystallin. J Chem Phys, 2013. 139(12): p. 121914.
85. Fatima, U., S. Sharma, and P. Guptasarma, Structures of differently aggregated and precipitated forms of gamma B crystallin: an FTIR spectroscopic and EM study. Protein Pept Lett, 2010. 17(9): p. 1155-62.
86. Moreau, K.L. and J.A. King, Cataract-causing defect of a mutant gamma-crystallin proceeds through an aggregation pathway which bypasses recognition by the alpha-crystallin chaperone. PLoS One, 2012. 7(5): p. e37256.
87. Vendra, V.P., S. Chandani, and D. Balasubramanian, The mutation V42M distorts the compact packing of the human gamma-S-crystallin molecule, resulting in congenital cataract. PLoS One, 2012. 7(12): p. e51401.
88. AlFadhli, S., et al., Novel crystallin gamma B mutations in a Kuwaiti family with autosomal dominant congenital cataracts reveal genetic and clinical heterogeneity. Mol Vis, 2012. 18: p. 2931-6.
89. Mehra, S., S. Kapur, and A.R. Vasavada, Polymorphisms of the gamma crystallin A and B genes among Indian patients with pediatric cataract. J Postgrad Med, 2011. 57(3): p. 201-5.
90. Kumar, M., et al., Mutation screening and genotype phenotype correlation of alpha-crystallin, gamma-crystallin and GJA8 gene in congenital cataract. Mol Vis, 2011. 17: p. 693-707.
91. Oyster, C.W., The Human Eye: Structure and Function. 1999: Sunderland,MA.
92. Basak, A., et al., High-resolution X-ray crystal structures of human gammaD crystallin (1.25 A) and the R58H mutant (1.15 A) associated with aculeiform cataract. J Mol Biol, 2003. 328(5): p. 1137-47.
93. Papanikolopoulou, K., et al., Formation of amyloid fibrils in vitro by human gammaD-crystallin and its isolated domains. Mol Vis, 2008. 14: p. 81-9.
94. Pande, A., et al., Molecular basis of a progressive juvenile-onset hereditary cataract. Proc Natl Acad Sci U S A, 2000. 97(5): p. 1993-8.
95. Johnson, A.C., et al., A mutation in the start codon of gamma-crystallin D leads to nuclear cataracts in the Dahl SS/Jr-Ctr strain. Mamm Genome, 2013. 24(3-4): p. 95-104.
96. Goulet, D.R., K.M. Knee, and J.A. King, Inhibition of unfolding and aggregation of lens protein human gamma D crystallin by sodium citrate. Exp Eye Res, 2011. 93(4): p. 371-81.
97. Flaugh, S.L., M.S. Kosinski-Collins, and J. King, Interdomain side-chain interactions in human gamma D crystallin influencing folding and stability. Protein Science, 2005. 14(8): p. 2030-2043.
98. Mills, I.A., et al., Folding and stability of the isolated Greek key domains of the long-lived human lens proteins gamma D-crystallin and gamma S-crystallin. Protein Science, 2007. 16(11): p. 2427-2444.
99. Lam, A.R., et al., Study of the gamma D-Crystallin Protein Using Two-Dimensional Infrared (2DIR) Spectroscopy: Experiment and Simulation. Journal of Physical Chemistry B, 2013. 117(49): p. 15436-15443.
100. Evans, P., et al., The P23T cataract mutation causes loss of solubility of folded gamma D-crystallin. Journal of Molecular Biology, 2004. 343(2): p. 435-444.
101. Kosinski-Collins, M.S., S.L. Flaugh, and J. King, Probing folding and fluorescence quenching in human gamma D crystallin Greek key domains using triple tryptophan mutant proteins. Protein Science, 2004. 13(8): p. 2223-2235.
102. Mackay, D.W., U.P. Andley, and A. Shiels, A missense mutation in the gamma D crystallin gene (CRYGD) associated with autosomal dominant 'coral-like' cataract linked to chromosome 2q. Molecular Vision, 2004. 10(21): p. 155-162.
103. Flaugh, S.L., M.S. Kosinski-Collins, and J. King, Contributions of hydrophobic domain interface interactions to the folding and stability of human gamma D-crystallin. Protein Science, 2005. 14(3): p. 571-581.
104. Pande, A., et al., Decrease in protein solubility and cataract formation caused by the Pro23 to Thr mutation in human gamma D-crystallin. Biochemistry, 2005. 44(7): p. 2491-2500.
105. Chen, J.J., et al., Mechanism of the highly efficient quenching of tryptophan fluorescence in human gamma D-crystallin. Biochemistry, 2006. 45(38): p. 11552-11563.
106. Flaugh, S.L., I.A. Mills, and J. King, Glutamine deamidation destabilizes human gamma D-crystallin and lowers the kinetic barrier to unfolding. Journal of Biological Chemistry, 2006. 281(41): p. 30782-30793.
107. Gu, F., et al., A missense mutation in the gamma D-crystallin gene GRYGD associated with autosomal dominant congenital cataract in a Chinese family. Molecular Vision, 2006. 12(2-3): p. 26-31.
108. McManus, J.J., et al., Altered phase diagram due to a single point mutation in human gamma D-crystallin. Proceedings of the National Academy of Sciences of the United States of America, 2007. 104(43): p. 16856-16861.
109. Wang, K., et al., gamma D-crystallin - Associated protein aggregation and lens fiber cell denucleation. Investigative Ophthalmology & Visual Science, 2007. 48(8): p. 3719-3728.
110. Jung, J., et al., The Structure of the Cataract-Causing P23T Mutant of Human gamma D-Crystallin Exhibits Distinctive Local Conformational and Dynamic Changes. Biochemistry, 2009. 48(12): p. 2597-2609.
111. Moreau, K.L. and J. King, Hydrophobic Core Mutations Associated with Cataract Development in Mice Destabilize Human gamma D-Crystallin. Journal of Biological Chemistry, 2009. 284(48): p. 33285-33295.
112. Pande, A., D. Gillot, and J. Pande, The Cataract-Associated R14C Mutant of Human gamma D-Crystallin Shows a Variety of Intermolecular Disulfide Cross-Links: A Raman Spectroscopic Study. Biochemistry, 2009. 48(22): p. 4937-4945.
113. Pande, A., et al., NMR study of the cataract-linked P23T mutant of human gamma D-crystallin shows minor changes in hydrophobic patches that reflect its retrograde solubility. Biochemical and Biophysical Research Communications, 2009. 382(1): p. 196-199.
114. Zhang, L.Y., et al., A novel gamma D-crystallin mutation causes mild changes in protein properties but leads to congenital coralliform cataract. Molecular Vision, 2009. 15(162): p. 1521-1529.
115. Das, P., J.A. King, and R.H. Zhou, beta-strand interactions at the domain interface critical for the stability of human lens gamma D-crystallin. Protein Science, 2010. 19(1): p. 131-140.
116. Pande, A., et al., Increase in Surface Hydrophobicity of the Cataract-Associated P23T Mutant of Human gamma D-Crystallin Is Responsible for Its Dramatically Lower, Retrograde Solubility. Biochemistry, 2010. 49(29): p. 6122-6129.
117. Vendra, V.P.R. and D. Balasubramanian, Structural and aggregation behavior of the human gamma D-crystallin mutant E107A, associated with congenital nuclear cataract. Molecular Vision, 2010. 16(301-02): p. 2822-2828.
118. Banerjee, P.R., et al., Structure, Dynamics and Surface Hydrophobicity of the Cataract-Associated Mutant, Pro23Thr of Human Gamma D-crystallin: Molecular Basis of Cataract Formation. Biophysical Journal, 2011. 100(3): p. 539-539.
119. Banerjee, P.R., et al., Cataract-associated mutant E107A of human gamma D-crystallin shows increased attraction to alpha-crystallin and enhanced light scattering. Proceedings of the National Academy of Sciences of the United States of America, 2011. 108(2): p. 574-579.
120. Sahin, E., et al., Computational Design and Biophysical Characterization of Aggregation-Resistant Point Mutations for gamma D Crystallin Illustrate a Balance of Conformational Stability and Intrinsic Aggregation Propensity. Biochemistry, 2011. 50(5): p. 628-639.
121. Wang, L., et al., A novel mutation in gamma D-crystallin associated with autosomal dominant congenital cataract in a Chinese family. Molecular Vision, 2011. 17(91-92): p. 804-809.
122. Zhang, W., et al., The Congenital Cataract-Linked G61C Mutation Destabilizes gamma D-Crystallin and Promotes Non-Native Aggregation. Plos One, 2011. 6(5).
123. Ji, F.L., J.W. Jung, and A.M. Gronenborn, Structural and Biochemical Characterization of the Childhood Cataract-Associated R76S Mutant of Human gamma D-Crystallin. Biochemistry, 2012. 51(12): p. 2588-2596.
124. Liu, Z.Z., et al., Enhancement of Ubiquitin Conjugation Activity Reduces Intracellular Aggregation of V76D Mutant gamma D-Crystallin. Investigative Ophthalmology & Visual Science, 2012. 53(10): p. 6655-6665.
125. Mishra, S., R.A. Stein, and H.S. Mchaourab, Cataract-linked gamma D-crystallin mutants have weak affinity to lens chaperones alpha-crystallins. Febs Letters, 2012. 586(4): p. 330-336.
126. Ji, F.L., et al., The Human W42R gamma D-Crystallin Mutant Structure Provides a Link between Congenital and Age-related Cataracts. Journal of Biological Chemistry, 2013. 288(1): p. 99-109.
127. Johnson, A.C., et al., A mutation in the start codon of gamma-crystallin D leads to nuclear cataracts in the Dahl SS/Jr-Ctr strain. Mammalian Genome, 2013. 24(3-4): p. 95-104.
128. Zhai, Y., et al., A Nonsense Mutation of gamma D-crystallin Associated with Congenital Nuclear and Posterior Polar Cataract in a Chinese Family. International Journal of Medical Sciences, 2014. 11(2): p. 158-163.
129. Krohne, T.U., S. Hunt, and F.G. Holz, Effect of 308 nm excimer laser irradiation on retinal pigment epithelium cell viability in vitro. Br J Ophthalmol, 2009. 93(1): p. 91-5.
130. Janig, E., et al., Clusterin associates with altered elastic fibers in human photoaged skin and prevents elastin from ultraviolet-induced aggregation in vitro. Am J Pathol, 2007. 171(5): p. 1474-82.
131. Schafheimer, N. and J. King, Tryptophan cluster protects human gammaD-crystallin from ultraviolet radiation-induced photoaggregation in vitro. Photochem Photobiol, 2013. 89(5): p. 1106-15.
132. Shang, F. and A. Taylor, Ubiquitin-proteasome pathway and cellular responses to oxidative stress. Free Radical Biology and Medicine, 2011. 51(1): p. 5-16.
133. Dudek, E.J., et al., Ubiquitin Proteasome Pathway-Mediated Degradation of Proteins: Effects Due to Site-Specific Substrate Deamidation. Investigative Ophthalmology & Visual Science, 2010. 51(8): p. 4164-4173.
134. Mafia, K., et al., UV-A-induced structural and functional changes in human lens deamidated alphaB-crystallin. Mol Vis, 2008. 14: p. 234-48.
135. Thakur, A.K. and M. Rao Ch, UV-light exposed prion protein fails to form amyloid fibrils. PLoS One, 2008. 3(7): p. e2688.
136. Redecke, L., et al., UV-light-induced conversion and aggregation of prion proteins. Free Radic Biol Med, 2009. 46(10): p. 1353-61.
137. Menter, J.M., et al., Effect of UV irradiation on type I collagen fibril formation in neutral collagen solutions. Photodermatol Photoimmunol Photomed, 2001. 17(3): p. 114-20.
138. Kehoe, J.J., et al., Tryptophan-mediated denaturation of beta-lactoglobulin A by UV irradiation. J Agric Food Chem, 2008. 56(12): p. 4720-5.
139. Abdelkawi, S., Lens crystallin response to whole body irradiation with single and fractionated doses of gamma radiation. Int J Radiat Biol, 2012. 88(8): p. 600-6.
140. Ruetsch, S.B., B. Yang, and Y.K. Kamath, Chemical and photo-oxidative hair damage studied by dye diffusion and electrophoresis. Journal of Cosmetic Science, 2003. 54(4): p. 379-394.
141. Wondrak, G.T., et al., 3-hydroxypyridine chromophores are endogenous sensitizers of photooxidative stress in human skin cells. Journal of Biological Chemistry, 2004. 279(29): p. 30009-30020.
142. Dalle-Donne, I., et al., Proteins as biomarkers of oxidative/nitrosative stress in diseases: The contribution of redox proteomics. Mass Spectrometry Reviews, 2005. 24(1): p. 55-99.
143. Fujii, N., H. Uchida, and T. Saito, The damaging effect of UV-C irradiation on lens alpha-crystallin. Molecular Vision, 2004. 10(97-98): p. 814-820.
144. Fujii, N., H. Uchida, and T. Saito, The damaging effect of UV-C irradiation on lens alpha-crystallin. Mol Vis, 2004. 10: p. 814-20.
145. Sergeev, Y.V., et al., Increased sensitivity of amino-arm truncated betaA3-crystallin to UV-light-induced photoaggregation. Invest Ophthalmol Vis Sci, 2005. 46(9): p. 3263-73.
146. Dalsgaard, T.K., et al., Changes in structures of milk proteins upon photo-oxidation. J Agric Food Chem, 2007. 55(26): p. 10968-76.
147. Dalsgaard, T.K., J.H. Nielsen, and M.J. Davies, Riboflavin-mediated Photo-oxidation of Tyrosine Residues in Milk Proteins Depends on the Protein Structure. Free Radical Biology and Medicine, 2010. 49: p. S164-S164.
148. Dalsgaard, T.K. and L.B. Larsen, Effect of photo-oxidation of major milk proteins on protein structure and hydrolysis by chymosin. International Dairy Journal, 2009. 19(6-7): p. 362-371.
149. Chan, H.L., et al., Proteomic analysis of UVC irradiation-induced damage of plasma proteins: Serum amyloid P component as a major target of photolysis. FEBS Lett, 2006. 580(13): p. 3229-36.
150. Uma, L., et al., Effect of UVB radiation on corneal aldehyde dehydrogenase. Curr Eye Res, 1996. 15(6): p. 685-90.
151. Azzam, N., D. Levanon, and A. Dovrat, Effects of UV-A irradiation on lens morphology and optics. Exp Gerontol, 2004. 39(1): p. 139-46.
152. Giblin, F.J., et al., A Class I UV-blocking (senofilcon A) soft contact lens prevents UVA-induced yellow fluorescence and NADH loss in the rabbit lens nucleus in vivo. Experimental Eye Research, 2012. 102: p. 17-27.
153. Manzer, R., et al., Ultraviolet radiation decreases expression and induces aggregation of corneal ALDH3A1. Chem Biol Interact, 2003. 143-144: p. 45-53.
154. Liao, J.H., J.S. Lee, and S.H. Chiou, Distinct roles of alphaA- and alphaB-crystallins under thermal and UV stresses. Biochem Biophys Res Commun, 2002. 295(4): p. 854-61.
155. Fujii, N., et al., Differential susceptibility of alpha A- and alpha B-crystallin to gamma-ray irradiation. Biochim Biophys Acta, 2007. 1774(3): p. 345-50.
156. Hott, J.L. and R.F. Borkman, Concentration dependence of transmission losses in UV-laser irradiated bovine alpha-, beta H-, beta L- and gamma-crystallin solutions. Photochem Photobiol, 1993. 57(2): p. 312-7.
157. Sugiyama, M., et al., Structural evolution of human recombinant alpha B-crystallin under UV irradiation. Biomacromolecules, 2008. 9(2): p. 431-4.
158. Lin, S.Y., C.J. Ho, and M.J. Li, UV-B-induced secondary conformational changes in lens alpha-crystallin. J Photochem Photobiol B, 1999. 49(1): p. 29-34.
159. Ostrovsky, M.A., et al., Comparison of ultraviolet induced photo-kinetics for lens-derived and recombinant beta-crystallins. Mol Vis, 2002. 8: p. 72-8.
160. Schauerte, J.A. and A. Gafni, Photodegradation of tryptophan residues and attenuation of molecular chaperone activity in alpha-crystallin are correlated. Biochem Biophys Res Commun, 1995. 212(3): p. 900-5.
161. Finley, E.L., et al., Radiolysis-induced oxidation of bovine alpha-crystallin. Photochem Photobiol, 1998. 68(1): p. 9-15.
162. Fujii, N., et al., Correlation between the loss of the chaperone-like activity and the oxidation, isomerization and racemization of gamma-irradiated alpha-crystallin. Photochem Photobiol, 2001. 74(3): p. 477-82.
163. Moran, S.D., et al., Amyloid fiber formation in human gammaD-Crystallin induced by UV-B photodamage. Biochemistry, 2013. 52(36): p. 6169-81.
164. Xu, J., et al., Femtosecond fluorescence spectra of tryptophan in human gamma-crystallin mutants: site-dependent ultrafast quenching. J Am Chem Soc, 2009. 131(46): p. 16751-7.
165. Serebryany, E., et al., Aggregation of Trp > Glu Mutants of the Human Gamma-D Crystallin: A Model for Hereditary or UV-Induced Cataract. Biophysical Journal, 2013. 104(2): p. 48a-48a.
166. Xia, Z., et al., UV-radiation induced disruption of dry-cavities in human gammaD-crystallin results in decreased stability and faster unfolding. Sci Rep, 2013. 3: p. 1560.
167. McNaught, A.D.W., Andrew, Flavonoids (isoflavonoids and neoflavonoids). IUPAC Compendium of Chemical Terminology 1997, Oxford: Blackwell Scientific Publications.
168. Seema Bhagwat, D.B.H., Joanne M. Holden, USDA Database for the Flavonoid Content of Selected Foods, U.S.D.o. Agriculture, Editor. 2011. p. 10-12.
169. Crystal Smith, K.A.L., Ellen B. Peffley, Weixin Liu, Genetic Analysis of Quercetin in Onion (Allium cepa L.) Lady Raider. Texas Journal of Agriculture & Natural Resources, 2003. 16(2003): p. 24.
170. Hakkinen, S.H., et al., Content of the flavonols quercetin, myricetin, and kaempferol in 25 edible berries. J Agric Food Chem, 1999. 47(6): p. 2274-9.
171. Mitchell, A.E., et al., Ten-year comparison of the influence of organic and conventional crop management practices on the content of flavonoids in tomatoes. J Agric Food Chem, 2007. 55(15): p. 6154-9.
172. Shaik, Y.B., et al., Role of quercetin (a natural herbal compound) in allergy and inflammation. Journal of Biological Regulators and Homeostatic Agents, 2006. 20(3-4): p. 47-52.
173. Quercetin, in Material Safety Data Sheet (MSDS).
174. Zbikowska, H.M., et al., A moderate protective effect of quercetin against gamma-irradiation- and storage-induced oxidative damage in red blood cells for transfusion. Int J Radiat Biol, 2014.
175. Jin, G.Z., Y. Yamagata, and K. Tomita, Structure of Quercetin Dihydrate. Acta Crystallographica Section C-Crystal Structure Communications, 1990. 46: p. 310-313.
176. Dong, J., et al., Quercetin reduces obesity-associated ATM infiltration and inflammation in mice: a mechanism including AMPK alpha 1/SIRT1. Journal of Lipid Research, 2014. 55(3): p. 363-374.
177. Huang, J.Q., et al., Therapeutic properties of quercetin on monosodium urate crystal-induced inflammation in rat. Journal of Pharmacy and Pharmacology, 2012. 64(8): p. 1119-1127.
178. Stewart, L.K., et al., Quercetin transiently increases energy expenditure but persistently decreases circulating markers of inflammation in C57BL/6J mice fed a high-fat diet. Metabolism, 2008. 57(7 Suppl 1): p. S39-46.
179. Pfeuffer, M., et al., Effect of quercetin on traits of the metabolic syndrome, endothelial function and inflammation in men with different APOE isoforms. Nutrition Metabolism and Cardiovascular Diseases, 2013. 23(5): p. 403-409.
180. Velazquez, K.T., et al., Quercetin Supplementation Attenuates the Progression of Cancer Cachexia in Mice. Journal of Nutrition, 2014. 144(6): p. 868-875.
181. Steiner, J., et al., Quercetin decreases tumorigenesis in a mouse model of breast cancer. Faseb Journal, 2013. 27.
182. Priya, E.S., et al., Anti-cancer activity of quercetin in neuroblastoma: an in vitro approach. Neurological Sciences, 2014. 35(2): p. 163-170.<
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/18752-
dc.description.abstract白內障(Cataract)是由於水晶體蛋白(crystallins)聚集(aggregation)或沉澱而導致水晶體混濁(opacification)的一種疾病,同時也是全球致使失明的首要因素。過去研究指出,紫外光(ultraviolet,UV)的曝曬是引起年老性白內障(age-onset/senile cataract)之主要成因。透過ThT螢光、遠紫外線圓二色光譜學、蛋白質自身螢光、動態光散射、和穿透式電子顯微鏡等分析方法,本研究旨在探討人類γD型水晶體蛋白(Human γD crystallin,HγDC)於UV-C照射下的聚集行為及槲皮素(quercetin)對其之抑制作用,其中人類γD型水晶體蛋白是水晶體中為數眾多的結構性(structural)蛋白質,而榭皮素(quercetin)為廣泛分布於自然界中可食之抗氧化劑(antioxidant)。本研究結果顯示,人類γD型水晶體蛋白的聚集會隨照射時間而增多,且過程中伴隨著蛋白質之部分結構展開,此外,榭皮素抑制了UV-C誘導生成之聚集體的總量及其粒徑大小,此抑制效果與環境中所含榭皮素之濃度有高度正相關。相信本研究之成果將對於治療年老性白內障具潛力的藥物之設計及發展上應有所貢獻。zh_TW
dc.description.abstractCataract, the opacification of the eye lens due to aggregation and precipitation of crystallin proteins, is the leading cause of blindness worldwide. Evidence shows that exposure to ultraviolet (UV) is one of the major factors causing age-onset cataract. With ThT binding assay, far-UV circular dichroism spectroscopy, intrinsic (tryptophan) fluorescence spectroscopy, dynamic light scattering, and transmission electron microscopy, this research aims at examining the effects of quercetin, an edible antioxidant widely distributed in nature on aggregation behavior of human γD crystallin (HγDC), an abundant structural protein in lens, under UV-C irradiation. Our results demonstrated that the aggregation of HγDC was observed to be augmented upon irradiation dose, accompanied by solvent exposure. In addition, quercetin exhibits a concentration-dependently inhibitory action toward UV-C induced aggregation of HγDC in terms of the amonnt and size of aggregated species. We believe the outcome from this study may contribute to the design and development of potential therapeutics for senile cataract.en
dc.description.provenanceMade available in DSpace on 2021-06-08T01:23:44Z (GMT). No. of bitstreams: 1
ntu-103-R01524106-1.pdf: 4765465 bytes, checksum: d6504f0e77e60d07ee0934bc214c8f19 (MD5)
Previous issue date: 2014
en
dc.description.tableofcontents誌謝 I
中文摘要 III
Abstract IV
目錄 V
圖目錄 VII
表目錄 IX
第一章 緒論 1
第二章 文獻回顧 2
2.1 白內障(Cataract) 2
2.2 人類水晶體(Lens) 6
2.3 水晶體蛋白(crystallin) 8
2.3.1 α型水晶體蛋白(α-crystallins) 10
2.3.2 βγ型水晶體蛋白(βγ-crystallins) 12
2.3.3 人類γD型水晶體蛋白(human γD-crystallin,HγDC) 15
2.4 紫外光(ultraviolet)對水晶體蛋白的影響 21
2.5 槲皮素(quercetin) 27
2.6 蛋白質的分析方法 33
2.6.1 蛋白質濃度之測量 33
2.6.2 蛋白質聚集之檢測 33
第三章 研究動機與目的 36
第四章 實驗儀器、藥品與步驟 38
4.1 實驗儀器 38
4.2 藥品 39
4.3 藥品配製 41
4.4 實驗步驟 44
4.4.1 滅菌 44
4.4.2 鎳親和性吸附層析管柱的製備(Nickel Affinity Column Chromatogrophy) 44
4.4.3 養菌 44
4.4.4 離心(centrifuge) 45
4.4.5 破菌 46
4.4.6 純化(purification) 46
4.4.7 透析(dialysis) 47
4.4.8 Bicinchoninic acid蛋白質濃度定量法(BCA assay) 47
4.4.9 Bradford蛋白質濃度定量法(Bradford assay) 47
4.4.10 UV-C照射方式 48
4.4.11 十二烷基硫酸鈉聚丙烯醯胺膠體電泳(sodium dodecyl sulfate polyacrylamide gel electrophoresis,SDS-PAGE) 48
4.4.12 圓二色(Circular Dichroism,CD)光譜量測 50
4.4.13 濁度(Turbidity)量測 50
4.4.14 自身螢光(Intrinsic Fluorescence)光譜量測 50
4.4.15 1-Anilinonaphthalene-8-sulfonic acid(ANS)螢光光譜量測 50
4.4.16 Thioflavin T(ThT)螢光光譜量測 51
4.4.17 剛果紅(Congo red)吸收光譜量測 51
4.4.18 穿透式電子顯微鏡(Transmission Electron Microscopy,TEM) 52
4.4.19 硫醇基(thiols group)濃度定量 52
第五章 實驗結果與討論 53
5.1 UV-C照射對HγDC聚集體生成分析 53
5.2 UV-C對HγDC二級結構的影響 55
5.3 UV-C對HγDC三級結構的影響 57
5.4 HγDC聚集體之粒徑與型態觀測 63
5.5 SDS-PAGE蛋白質電泳分析 65
5.6 半胱胺酸(cysteine)對HγDC聚集體形成的影響 68
第六章 結論 69
第七章 建議與未來展望 71
第八章 Reference 72
dc.language.isozh-TW
dc.title探討槲皮素對人類γD型水晶體蛋白在紫外光下
聚集行為之抑制作用
zh_TW
dc.titleExploring the Inhibiting Effect of Quercetin on the Aggregation Behavior of Human γD Crystallin under UV-C Irradiationen
dc.typeThesis
dc.date.schoolyear102-2
dc.description.degree碩士
dc.contributor.oralexamcommittee吳宛儒(Josephine W. Wu),王孟菊(Meng-Jiy Wang),林達顯(Ta-Hsien Lin),廖思婷
dc.subject.keyword白內障,人類γD型水晶體蛋白,紫外線,蛋白質聚集,榭皮素,zh_TW
dc.subject.keywordCataract,human γD crystallin(HγDC),protein aggregation,quercetin,UV-C,en
dc.relation.page92
dc.rights.note未授權
dc.date.accepted2014-08-04
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept化學工程學研究所zh_TW
顯示於系所單位:化學工程學系

文件中的檔案:
檔案 大小格式 
ntu-103-1.pdf
  目前未授權公開取用
4.65 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved