請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/18744完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 董致韡 | |
| dc.contributor.author | Chuan Lee | en |
| dc.contributor.author | 李銓 | zh_TW |
| dc.date.accessioned | 2021-06-08T01:23:12Z | - |
| dc.date.copyright | 2014-08-08 | |
| dc.date.issued | 2014 | |
| dc.date.submitted | 2014-08-05 | |
| dc.identifier.citation | 卓緯玄, 陳治官, 賴明信, 顏信沐, 曾東海, 顏宏真 (2008) 水稻秧苗期耐鹽性之篩選技術. 台灣農業研究 (J Taiwan Agric Res) 57:193-204
林彥蓉, 郭素真, 吳永培 (2011) 全球暖化下台灣耐逆境水稻之育種策略及發展. 因應氣候變遷作物育種及生產環境管理研討會專刊:65-78 郭素真, 郭介煒, 林彥蓉, 吳永培 (2013) 分子標幟輔助耐鹽水稻之選育. 台灣農業研究 (J Taiwan Agric Res) 62:137-156 Abramoff MD, Magalhaes PJ, Ram SJ (2004) Image processing with Image J. Biophotonics International 11:36-42 Adachi S, Tsuru Y, Nito N, Murata K, Yamamoto T, Ebitani T, Ookawa T, Hirasawa T (2011) Identification and characterization of genomic regions on chromosomes 4 and 8 that control the rate of photosynthesis in rice leaves. Journal of Experimental Botany 62:1927-1938 Bergmann DC, Sack FD (2007) Stomatal development. Annual Review of Plant Biology 58:163-181 Bonilla P, Dvorak J, Mackill D, Deal K, Gregorio G (2002) RFLP and SSLP mapping of salinity tolerance genes in chromosome 1 of rice (Oryza sativa L.) using recombinant inbred lines. PHILIPPINE AGRICULTURAL SCIENTIST 85:68-76 Bradbury PJ, Zhang Z, Kroon DE, Casstevens TM, Ramdoss Y, Buckler ES (2007) TASSEL: software for association mapping of complex traits in diverse samples. Bioinformatics 23:2633-2635 Broman KW, Wu H, Sen S, Churchill GA (2003) R/qtl: QTL mapping in experimental crosses. Bioinformatics 19:889-890 Demiral T, Turkan I (2005) Comparative lipid peroxidation, antioxidant defense systems and proline content in roots of two rice cultivars differing in salt tolerance. Environmental and Experimental Botany 53:247-257 Federer WT (1956) Augmented or hoonuiaku designs. Hawaii Plant Rec 55:191-208 Federer WT, Crossa J (2012) Screening experimental designs for quantitative trait loci, association mapping, genotype-by -environment interaction, and other investigations. Front Physiol 3:156 Gregorio G, Senadhira D, Mendoza RD, Manigbas NL, Roxas JP, Guerta CQ (2002) Progress in breeding for salinity tolerance and associated abiotic stresses in rice. Field Crops Research 76:91-101 Gregorio GB, Senadhira D, Mendoza RD (1997) Screeningrice for salinity tolerance. IRRl DISCUSSION PAPER SERIES NO 22 Horie T, Hauser F, Schroeder JI (2009) HKT transporter-mediated salinity resistance mechanisms in Arabidopsis and monocot crop plants. Trends in Plant Science 14:660-668 Huang X, Feng Q, Qian Q, Zhao Q, Wang L, Wang A, Guan J, Fan D, Weng Q, Huang T, Dong G, Sang T, Han B (2009) High-throughput genotyping by whole-genome resequencing. Genome Research 19:1068-1076 Huang Z, Yu T, Su L, Yu S-B, Zhang Z-H, Zhu Y-G (2004) Identification of Chromosome Regions Associated with Seedling Vigor in Rice. Acta Genetica Sinica 31:596-630 Hurley C (2012) gclus: Clustering Graphics. R package version 131 Ishimaru K, Shirota K, Higa M, Kawamitsu Y (2001a) Identification of quantitative trait loci for adaxial and abaxial stomatal frequencies in Oryza sativa. Plant Physiol Biochem 39:173-177 Ishimaru K, Yano M, N A, Ono K, Hirose T, Lin S-Y, Monna L, Sasaki T, Ohsugi R (2001b) Toward the mapping of physiological and agronomic characters on a rice function map: QTL analysis and comparison between QTLs and expressed sequence tags. Theor Appl Genet 120:793-800 Itoh J, Nonomura K, Ikeda K, Yamaki S, Inukai Y, Yamagishi H, Kitano H, Nagato Y (2005) Rice plant development: from zygote to spikelet. Plant & Cell Physiology 46:23-47 Jiang GH, He YQ, Xu CG, Li XH, Zhang Q (2004) The genetic basis of stay-green in rice analyzed in a population of doubled haploid lines derived from an indica by japonica cross. Theor Appl Genet 108:688-698 Kamiya N, Itoh J, Morikami A, Nagato Y, Matsuoka M (2003) The SCARECROW gene's role in asymmetric cell divitions in rice plants. The Plant Journal 36:45-54 Kang HM, Zaitlen NA, Wade CM, Kirby A, Heckerman D, Daly MJ, Eskin E (2008) Efficient control of population structure in model organism association mapping. Genetics 178:1709-1723 Kelly G, Moshelion M, David-Schwartz R, Halperin O, Wallach R, Attia Z, Belausov E, Granot D (2013) Hexokinase mediates stomatal closure. The Plant journal : for cell and molecular biology 75:977-988 Laza MRC, Kondo M, Ideta O, Barlaan E, Imbe T (2009) Quantitative trait loci for stomatal density and size in lowland rice. Euphytica 172:149-158 Li J-Z, He P, Zheng X-W, Lu R-L, Zhu L-H (1999) Identification and Interaction Analysis of Six Agronomic Trait Loci of Rice Based on a Recombinant Inbred Population. Acta Bot Sinica 41:1199-1203 Lin HX, Zhu MZ, Yano M, Gao JP, Liang ZW, Su WA, Hu XH, Ren ZH, Chao DY (2004) QTLs for Na+ and K+ uptake of the shoots and roots controlling rice salt tolerance. Theor Appl Genet 108:253-260 Lisa LA, Elias SM, Rahman MS, Shahid S, Iwasaki T, Hasan AKMM, Kosuge K, Fukami Y, Seraj ZI (2011) Physiology and gene expression of the rice landrace Horkuch under salt stress. Functional Plant Biology 38:282-292 Liu T, Ohashi-Ito K, Bergmann DC (2009) Orthologs of Arabidopsis thaliana stomatal bHLH genes and regulation of stomatal development in grasses. Development 136:2265-2276 Lu C-F, Shen L-H, Tan Z-B, Xu Y-B, He P, Chen Y, Zhu L-H (1997) Comparative mapping of QTLs for agronomic traits of rice across environments by using a doubled-haploid population. Theor Applied Genet 94:145-150 Luo L, Zhou W-Q, Liu P, Li C-X, Hou S-W (2012) The development of stomata and other epidermal cells on the rice leaves. BIOLOGIA PLANTARUM 56:521-527 MacAlister CA, Ohashi-Ito K, Bergmann DC (2007) Transcription factor control of asymmetric cell divisions that establish the stomatal lineage. Nature 445:537-540 Martinez-Atienza J, Jiang X, Garciadeblas B, Mendoza I, Zhu JK, Pardo JM, Quintero FJ (2006) Conservation of the Salt Overly Sensitive Pathway in Rice. Plant Physiology 143:1001-1012 Mei HW, Li ZK, Shu QY, Guo LB, Wang YP, Yu XQ, Ying CS, Luo LJ (2005) Gene actions of QTLs affecting several agronomic traits resolved in a recombinant inbred rice population and two backcross populations. Theor Applied Genet 110:649-659 Mei HW, Luo LJ, Ying CS, Wang YP, Yu XQ, Guo LB, Paterson AH, Li ZK (2003) Gene actions of QTLs affecting several agronomic traits resolved in a recombinant inbred rice population and two testcross populations. Theor Applied Genet 107:89-101 Munns R, Tester M (2008) Mechanisms of salinity tolerance. Annual Review of Plant Biology 59:651-681 Nadeau JA, Sack FD (2002) Control of stomatal distribution on the Arabidopsis leaf surface. Science 296:1697-1700 Nguyen TT, Klueva N, Chamareck V, Aarti A, Magpantay G, Millena AC, Pathan MS, Nguyen HT (2004) Saturation mapping of QTL regions and identification of putative candidate genes for drought tolerance in rice. Molecular Genetics and Genomics 272:35-46 Obara M, Kajiura M, Fukuta Y, Yano M, Hayashi M, Yamaya T, Sato T (2001) Mapping of QTLs associated with cytosolic glutamine synthetase and NADH-glutamate synthase in rice (Oryza sativa L.). Journal of Experimental Botany 52:1209-1217 Ohashi-Ito K, Bergmann DC (2006) Arabidopsis FAMA controls the final proliferation/differentiation switch during stomatal development. The Plant Cell 18:2493-2505 Orsini F, Alnayef M, Bona S, Maggio A, Gianquinto G (2012) Low stomatal density and reduced transpiration facilitate strawberry adaptation to salinity. Environmental and Experimental Botany 81:1-10 Ouyang SQ, Liu YF, Liu P, Lei G, He SJ, Ma B, Zhang WK, Zhang JS, Chen SY (2010) Receptor-like kinase OsSIK1 improves drought and salt stress tolerance in rice (Oryza sativa) plants. The Plant Journal 62:316-329 Pantin F, Simonneau T, Muller B (2012) Coming of leaf age: control of growth by hydraulics and metabolics during leaf ontogeny. The New Phytologist 196:349-366 Pillitteri LJ, Sloan DB, Bogenschutz NL, Torii KU (2007) Termination of asymmetric cell division and differentiation of stomata. Nature 445:501-505 Pillitteri LJ, Torii KU (2012) Mechanisms of stomatal development. Annual Review of Plant Biology 63:591-614 Price AH, Young EM, Tomos AD (1997) Quantitative trait loci associated with stomatal conductance, leaf rolling and heading date mapped in upland rice (Oryza sativa). The New Phytologist 137:83-91 R Core Team (2014) R: A language and environment for statistical computing. R Foundation for Statistical Computing Vienna, Austria Redona ED, Mackill DJ (1996) Mapping quantitative trait loci for seedling vigor in rice using RFLPs. Theor Appl Genet 92:395-402 Ren ZH, Gao JP, Li LG, Cai XL, Huang W, Chao DY, Zhu MZ, Wang ZY, Luan S, Lin HX (2005) A rice quantitative trait locus for salt tolerance encodes a sodium transporter. Nature Genetics 37:1141-1146 Roshandel P, Flowers T (2008) The ionic effects of NaCl on physiology and gene expression in rice genotypes differing in salt tolerance. Plant and Soil 315:135-147 Roy SJ, Negrao S, Tester M (2014) Salt resistant crop plants. Current Opinion in Biotechnology 26:115-124 Rozema J, Flowers T (2008) Crops for a salinized world. Nature 322:1478-1480 Serna L (2008) CAPRICE positively regulates stomatal formation in Arabidopsis hypocotyl. Plant Signaling & Behavior 3:1077-1082 Shavrukov Y (2012) Salt stress or salt shock which genes are we studying. Journal of Experimental Botany 64:119-127 Shi H, Lee BH, Wu SJ, Zhu JK (2003) Overexpression of a plasma membrane Na+/H+ antiporter gene improves salt tolerance in Arabidopsis thaliana. Nature Biotechnology 21:81-85 Shpak ED, McAbee JM, Pillitteri LJ, Torii KU (2005) Stomatal patterning and differentiation by synergistic interactions of receptor kinases. Science 309:290-293 Thomson MJ, Ocampo M, Egdane J, Rahman MA, Sajise AG, Adorada DL, Tumimbang-Raiz E, Blumwald E, Seraj ZI, Singh RK, Gregorio GB, Ismail AM (2010) Characterizing the Saltol Quantitative Trait Locus for Salinity Tolerance in Rice. Rice 3:148-160 Vaten A, Bergmann DC (2012) Mechanisms of stomatal development: an evolutionary view. EvoDevo 3:11 Warnes GR, Bolker B, Bonebakker L, Gentleman R, Liaw WHA, Lumley T, Maechler M, Magnusson A, Moeller S, Schwartz M, Venables B (2014) gplots: Various R programming tools for plotting data. R package version 2130 Wu S-J, Ding L, Zhu J-K (1996) SOS1, a Genetic Locus Essential for Salt Tolerance and Potassium Acquisition. The Plant Cell 8:617-627 Xu Y, Shen Z, Xu J, Zhu H, Chen Y, Zhu L (1995) Interval mapping of quantitative trait loci by molecular markers in rice (Oryza sativa L.). Science in China 38:422-428 Yang Q-H, Lu W, Hu M-L, Wang C-M, Zhang R-X, Yano M, Wan J-M (2003) QTL and epistatic interaction underlying leaf chlorophyll and H2O2 content variation in rice (Oryza sativa L.). Acta Genetica Sinica 30:245-250 Yu J, Pressoir G, Briggs WH, Vroh Bi I, Yamasaki M, Doebley JF, McMullen MD, Gaut BS, Nielsen DM, Holland JB, Kresovich S, Buckler ES (2006) A unified mixed-model method for association mapping that accounts for multiple levels of relatedness. Nature Genetics 38:203-208 Yu S-B, Li J-X, Xu C-G, Tan Y-F, Li X-H, Zhang Q (2002) Identification of quantitative trait loci and epistatic interactions for plant height and heading date in rice. Theor Applied Genet 140:619-625 Zeileis A, Grothendieck G (2005) zoo: S3 Infrastructure for Regular and Irregular Time Series. Journal of Statistical Software 14:1-27 Zhang H, Niu X, Liu J, Xiao F, Cao S, Liu Y (2013) RNAi-directed downregulation of vacuolar H+-ATPase subunit a results in enhanced stomatal aperture and density in rice. PloS One 8:e69046 Zhao K, Tung CW, Eizenga GC, Wright MH, Ali ML, Price AH, Norton GJ, Islam MR, Reynolds A, Mezey J, McClung AM, Bustamante CD, McCouch SR (2011) Genome-wide association mapping reveals a rich genetic architecture of complex traits in Oryza sativa. Nature Communications 2:467 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/18744 | - |
| dc.description.abstract | 鹽害是目前世界上主要的非生物逆境之一,鹽逆境會抑制作物生長並影響產量。水稻,作為餵養世界上大多數人口的重要糧食作物,是禾本科作物中最感鹽的,因此提升水稻的耐鹽性顯得非常重要。鹽害逆境可以分為兩個時期:第一為滲透壓的逆境 (osmotic stress),由於土壤中的鹽離子濃度升高,使得土壤的滲透勢 (osmotic potential) 低於植株體內的滲透勢造成植株無法順利汲取水分,並延遲植株的生長。第二為離子逆境 (ionic stress),是指鹽害後期當鈉離子累積到一定濃度後,造成老葉枯萎黃化。本研究中,我們使用兩組水稻自然種原,觀察其株高、葉面積、氣孔密度與鹽害指數在正常環境及鹽處理後的變化,並針對這些性狀進行關聯性座定位 (association mapping)。另外我們使用Nipponbare與IR64的重組自交系針對氣孔密度進行數量基因座定位,基因型資料經滑動視窗法處理定序錯誤所造成的緊密二次互換 (tight double crossing over),定位到染色體2號與6號有兩個明顯的尖峰,帶有Nipponbare對偶基因的品系通常具有較低的氣孔密度。我們預期氣孔密度較低的種原,其蒸散速率較慢,藉此減少鈉離子由蒸散流進入地上部,達到耐鹽的效果。結果顯示,氣孔密度與鹽害指數呈現低度的相關,但仍可以觀察到鹽害指數最高 (較感鹽) 者確實具有較大的氣孔密度,反之亦然。此外,株高與葉面積在鹽環境下生長受抑制的程度與氣孔密度呈中度相關,顯示氣孔密度對於滲透勢逆境可能有較大的影響。本研究結果使我們瞭解氣孔密度對水稻幼苗期耐鹽的貢獻,以及不同種原在鹽逆境下的耐鹽性程度,這些可以為耐鹽水稻育種提供新的方向。 | zh_TW |
| dc.description.abstract | Salinity is one of the major abiotic stresses that limited the growth of crops. Salinity stress can be divided into two phases: the osmotic stress happened rapidly when plant senses high level of salt in soil; the ionic stress usually occurs later when too much sodium ion is accumulated in the shoot. Rice is the most salt sensitive crop among cereals, we hope to identify QTLs that significantly contribute to salt tolerance in rice. In this study we used two sets of rice diversity accessions for association mapping and IR64/Nipponbare recombinanat inbred lines for linkage mapping. For phenotypic traits, we measured stomata density, seedling height, leaf area and injury score under normal and salt conditions, we expect the accessions with lower stomata density could help reducing the transpiration rate, therefore sodium uptake in leaves is further minimized. Our result indicates that stomata density has weak positive relationship with injury score, and has moderate correlation with relative seedling height change and the reduction of leaf area. This suggests that stomata density might be involved in osmotic tolerance rather than ionic tolerance. For linkage mapping study, we mapped the significant loci on chromosome 2 and 6 explained 6 and 12% of the phenotypic variation of stomata density, respectively; and in these regions, the accessions with Nipponbare allele tend to have lower stomata density. These results demonstrate the contribution of stomata density to salinity tolerance at rice seedling stage and identify the accessions with multiple tolerance mechanisms, which can be further used in genetic breeding of salt tolerant rice. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-08T01:23:12Z (GMT). No. of bitstreams: 1 ntu-103-R01621106-1.pdf: 7667818 bytes, checksum: 378fb7e0edfccc8eb619d5fc001277eb (MD5) Previous issue date: 2014 | en |
| dc.description.tableofcontents | 目錄
誌謝 i 中文摘要 ii Abstract iii 目錄 v 圖目錄 vii 表目錄 ix 附圖目錄 x 附件目錄 xi 縮寫對照表 xii 第一章、前言 1 第二章、前人研究 3 一、鹽害逆境 3 二、鹽害與鹽休克 3 三、鈉離子運輸 4 四、與鈉離子調控相關的基因 5 五、葉片生長機制 7 六、氣孔開闔機制 8 七、水稻氣孔的生長發育 8 八、氣孔密度的調控因子 10 九、氣孔在鹽害中扮演的角色 11 十、全基因組關聯性分析 12 第三章、材料與方法 15 一、試驗材料 15 二、基因型資料 15 三、水耕系統 16 四、水耕液配置方法 16 五、鹽處理實驗步驟 17 六、試驗設計 18 七、外表型鑑定 18 八、數量性狀基因座之定位 19 九、統計分析 22 第四章、結果 24 一、試驗資料收集與驗證 24 二、性狀之間的相關性 27 三、耐鹽數量性狀基因座之定位 28 第五章、討論 36 一、調查性狀在耐鹽上的意義 36 二、水稻族群結構 37 三、數量性狀基因座關聯性定位 (GWAS) 結果之討論 37 四、重組自交系以R/qtl定位與單一分子標幟定位結果之比較 39 五、滑動視窗法 (Sliding window approach) 39 六、滑動視窗法對原始資料造成的改變 41 七、育種上的應用 42 第六章、參考文獻 44 | |
| dc.language.iso | zh-TW | |
| dc.title | 水稻幼苗耐鹽相關數量性狀之基因座定位與分析 | zh_TW |
| dc.title | QTL mapping for traits related to salinity tolerance in rice | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 102-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 王淑珍,劉力瑜,陳凱儀 | |
| dc.subject.keyword | 水稻幼苗,鹽逆境,氣孔密度,鹽害指數,葉面積,株高,單一核?酸多型性,關聯性定位,連鎖定位,滑動視窗, | zh_TW |
| dc.subject.keyword | rice seedling,salinity stress,stomata density,injury score,leaf area,plant height,single nucleotide polymorphism (SNP),association mapping,linkage mapping,sliding window, | en |
| dc.relation.page | 122 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2014-08-05 | |
| dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
| dc.contributor.author-dept | 農藝學研究所 | zh_TW |
| 顯示於系所單位: | 農藝學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-103-1.pdf 未授權公開取用 | 7.49 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
