請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/18739完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 蔡懷楨(Huai-Jen Tsai) | |
| dc.contributor.author | Hung-Sin Chen | en |
| dc.contributor.author | 陳弘昕 | zh_TW |
| dc.date.accessioned | 2021-06-08T01:22:52Z | - |
| dc.date.copyright | 2014-08-21 | |
| dc.date.issued | 2014 | |
| dc.date.submitted | 2014-08-05 | |
| dc.identifier.citation | 陳彥達. (2006). 電穿孔法在豐年蝦之基因轉殖研究. 國立台灣大學漁業科學研究所碩士論文.
張世弘. (2008). 基因轉殖豐年蝦:穩定遺傳品系之建立與應用. 國立台灣大學分子與細胞生物學研究所碩士論文. 謝庭列. (2012). 基因轉殖豐年蝦表現外源重組蛋白. 國立台灣大學分子與細胞生物學研究所碩士論文. Anderson, R. C., and Yu, P. L. (2003). Isolation and characterisation of proline/arginine-rich cathelicidin peptides from ovine neutrophils. Biochemical and Biophysical Research Communications, 31: 1139-1146. Al-Shawi, R., Kinnaird, J., Burke, J. and Bishop, J.O. (1990). Expression of a foreign gene in a line of transgenic mice is modulated by a chromosomal position effect. Molecular and cells, 10(3):1192–1198. Azumi, K., De Santis, R., De Tomaso, A., Rigoutsos, I., Yoshizaki, F., and Pinto, M.R. 2003. Genomic analysis of immunity in a urochordate and the emergence of the vertebrate immune system: ‘‘waiting for Godot’’. Immunogenetics, 55: 570–81. Bartlett, T.C., Cuthbertson, B.J., Shepard, E.F., Chapman, R.W., Gross, P.S., and Warr, G.W. (2002). Crustins, homologues of an 11.5-kDa antibacterial peptide, from two species of penaeid shrimp, Litopenaeus vannamei and Litopenaeus setiferus. Marine Biotechnology, 4: 278–93. Benz, R. and Zimmermann, U. (1980). Relaxation studies on cell membranes and lipid bilayers in the high electric field range. Bioelectrochemistry and Bioenergetics. 7: 723–739. Berthelemy-Okazaki N.J. and Hedgecock D. (1987). Effect of environmental factors on cyst formation in the brine shrimp Artemia. In Artemia Research and its Applications, Vol. 3, edited by Sorgeloos P., Bengtson D.A., Decleir W., Jaspers E., Universa press, Wetteren, Belgium, pp. 167–182. Brogden, K. A., Ackermann, M., McCray, P. B. Jr., and Tack, B. F. (2003). Antimicrobial peptides in animals and their role in host defences. International Journal of Antimicrobial Adents. 22(5): 465-478. Chan, M.C., Karasawa, S., Mizuno, H., Bosanac, I., Ho, D., Prive, G.G., Miyawaki, A., and Ikura, M. (2006). Structural characterization of a blue chromoprotein and its yellow mutant from the sea anemone Cnidopus japonicus. Journal of Cell Biology, 281(49):37813-37819. Chang, S.H., Lee, B.C., Chen, Y.D., Lee Y.C., and Tsai, H.J. (2011). Development of transgenic zooplankton Artemia as a bioreactor to produce exogenous protein. Transgenic research, 20:1099-1111. Chiang, C. Y., Chen, Y. L., and Tsai, H. J. (2014). Different visible colors and green fluorescence were obtained from the mutated purple chromoprotein isolated from sea anemone. Marine Biotechnology, 16(4):436-446. Christensen, B., Fink, J., Merrifield, R. B., and Mauzerall, D. (1988). Channel-forming properties of cecropins and related model compounds incorporated into planar lipid membranes. Proceedings of the National Academy of Science USA, 85:5072-5079. Cole, A.M., Weis, P., and Diamond, G. (1996). Isolation and characterization of Pleurocidin, an antimicrobial peptide in the skin secretions of winter flounder. The Journal of Biological Chemistry, 272(18): 12008-12013. Cuthbertson, B.J., Shepard, E.F., Chapman, R.W., and Gross, P.S. Diversity of the penaeidin antimicrobial peptides in two shrimp species. (2002). Immunogenetics, 54:442–5. Delsuc, F., Brinkmann, H., Chourrout, D.,and Philippe, H. 2006. Tunicates and not cephalochordates are the closest living relatives of vertebrates. Nature, 439: 965–968. Dorner, A. J., Bole, D.G., and Kaufman, R.J. (1987). The relationship of N-linked glycosylation and heavy chain-binding protein association with the secretion of glycoproteins. Journal of Cell Biology, 105(1):2665–2674 Escoffre, J. M., Portet, T., Wasungu, L., Teissie, J., Dean, D., Rols, M. P. (2009). What is (still not) known of the mechanism by which electroporation mediates gene transfer and expression in cells and tissues. Molecular Biotechnology, 41(3): 286-295. Fedders, H., Michalek, M., Grotzinger, J., and Leippe M. (2008). An exceptional salt-tolerant antimicrobial peptide derived from a novel gene family of haemocytes of the marine invertebrate Ciona intestinalis. Biochemical Journal, 416: 65-75. Figueiredo, M.A., Lanes, C.F.C., Almeida, D.V., and Marins, L.F. (2007). Improving the production of transgenic fish germlines: in vivo evaluation of mosaicism in zebrafish (Danio rerio) using a green fluorescent protein (GFP) and growth hormone cDNA transgene co-injection strategy. Genetic and molecular biology, 30(1):31-36. Flyg, C., Dalhammar, G., Rasmuson, B., and Boman, H. G. (1987). Insect immunity:Inducible antibacterial activity in Drosophilla. Insect Biochemistry, 17: 153-160. Gendreaua, S., Larbans, V., Cadoret, J. P., and Mialhe, E. (1995). Trancient expression of a luciferase reporter gene after ballistic introduction into Artemia franciscana embryos. Aquaculture, 133: 199-205. Giuliani, A., Pirri, G., and Nicoletto, S. F. (2007). Antimicrobial peptides: an overview of a promising class of therapeutics. Central European Journal of Biology, 2: 1-33. Gifford, J. L., Hunter, H. N., and Vogel, H. J. (2005). Lactoferricin: a lactoferrin-derived peptide with antimicrobial, antiviral, antitumor and immunological properties. Cellular and Molecular Life Science, 62(22): 2588-2598. Haney, F. F., Nazmi, K., Lau, F., Bolscher, J. G., and Vogel, H. J. (2009). Novel lactoferrampin antimicrobial peptides derived from human lactoferrin. Biochemie, 91(1): 141-154. Hara, S., and Yamakawa, M. (1995). Moricin, a Novel Type of Antibacterial Peptide Isolated from the Silkworm, Bombyx mori. The Journal of Biological Chemistry, 270: 29923-29927. Harris, F., Dennison, S. R., and Phoenix, D. A. (2009). Anionic antimicrobial peptides from eukaryotic oganisms. Current Proteins and Peptide Science, 10: 585-606. Heller, R., Jaroszeski, M., Atkin, A., Moradpour, D., Gilbert, R., and Wands, J. (1996). In vivo gene electroinjection and expression in rat liver. Federation of European Biochemical Societies Letters, 389: 225–228. Holak, T. A., Engstrӧm, Ǻ., Kraulis, P. J., Lindeberg, G., Bennich, H., and Jones, T. A. (1988).The solution conformation of the antibacterial peptide cecropin A: a nuclear magnetic resonance and dynamical simulated annealing study. Biochemistry, 27: 7620-7629. Hu, H., Wang, C., Guo, X., Li, W., Wang, Y., and He, Q. (2013). Broad activity against porcine bacterial pathogens displayed by two insect antimicrobial peptides moricin and cecropin B. Molecular and Cells, 35: 106-114. Hultmark, D., Steiner, H., Rasmuson, T., and Boman, H. G. (1980). Insect immunity. Purification and properties of three inducible bactericidal proteins from hemolymph of immunized pupae of Hyalophora cecropia. European Journal of Biochemistry, 106: 7-16. Hultmark, D., Engstrӧm, Ǻ., Bennich, H., Kapur, R., and Boman, H. G. (1982). Insect immunity:Isolation and structure of cecropin D and four minor antibacterial components from cecropia pupae. European Journal of Biochemistry, 127: 207-217. Kim, J. E., Kim, H. J., Choi, J.M., Lee, K.H., Kim, T.Y., Cho, B.K., Jung, J.Y., Chung, K. Y., Cho, D., and Park, H. J. (2010). The antimicrobial peptide human cationic antimicrobial protein-18/cathelicidin LL-37 as a putative growth factor for malignant melanoma. British Journal of Dermatology, 163(5): 959-967. Koetsier, P.A.,Mangel, L., Schmitz, B., and Doerfler, W. (1996). Stability of transgene methylation patterns in mice: position effects, strain specificity and cellular mosaicism. Transgenic Research, 5(4):235-244. Leontiadou, H., Mark, A. E., and Marrink, S. J. (2006). Antimicrobial peptides in action. Journal of the America Chemical Society, 128(37): 12156-12161. Lee, I. H., Zhao, C., Cho, Y., Harwig, S.S., Cooper, EL, and Lehrer RI. (1997). Clavanins, alpha-helical antimicrobial peptides from tunicate hemocytes. FEBS Letters, 400 : 158–162. Lee, I. H., Cho, Y., and Lehrer, R.I. (1997). Styelins, broad-spectrum antimicrobial peptides from the solitary tunicate, Styela clava. Comparative Biochemistry and Physiology - Part B: Biochemistry & Molecular Biology, 118:515–521. Li, S.S., and Tsai, H.J. (2000). Transfer of foreign gene to giant freshwater prawn (Macrobrachium rosenbergii) by spermatophore-microinjection. Molecular Reproduction and Development, 56: 149-154. Lin, C.C., and Lin, J.H.-Y. (2007). An oral nervous necrosis virus vaccine that induces protective immunity in larvae of grouper (Epinephelus coioides). Aquaculture, 268:265-273. Moto, K., Abdel Salam, S.E., Sakurai, S., and Iwami, M. (1999). Gene transfer into insect brain and cell-specific expression of Bombyxin gene. Development Genes Evolution, 209:447-450. Munk, C., Wei, G., Yang, O. O., Waring, A. J., Wang, W., Hong, T., Lehrer, R. I., Landau, N. R., and Cole, A. M. (2003). The theta-defensin, retrocyclin, inhibits HIV-1 entry. AIDS Research and Human Retroviruses, 19 (10): 875–881. Nambu Z., Tanaka S., and Nambu F. (2004). Influence of Photoperiod and temperature on reproductive mode in the brine shrimp Artemia franciscana. Journal of Experimental Zoology, 301A:542-546. Navarro, J.C., Ireland, J., and Tytler, P. (1993). Effect of temperature on permeability and drinking rates of the metanauplii of the brine shrimp Artemia sp. Marine Biology, 116:247–250. Nicolas, P. (2009). Multifunctional host defense peptides: intracellular-targeting antimicrobial peptides. Federation of European Biochemical Societies, 276 (22) 6483-6896. Pan, C.Y., Chen, T.Y., Cheng, Y.S., Chen, C.Y., Ni, I.H., Sheen, J.F., Pan, Y.L., and Kuo, C.M. (2007). Gene expression and localization of the epinecidin-1 antimicrobial peptide in the grouper (Epinephelus coioides), and its role in protecting fish against pathogenic infection. DNA and Cell Biology, 26(6):403-413. Park, C. B., Yi, K. S., Matsuzaki, K., Kim, M. S., and Kim, S. C. (2000). Structure-activity analysis of buforin II, a histone H2A-derived antimicrobial peptide: the proline hinge is responsible for the cell-penetrating ability of buforin II. Proceedings of the National Academy of Science USA, 97(15): 8245-8250. Pavlopoulos, A., and Averof, M. (2005). Establishing genetic transformation for comparative developmental studies in the crustacean Parhyale hawaiensis. Proceedings of the National Academy of Science USA, 102(22):7888-7893. Ramamoorthy, A., Thennarasu, S., Tan, A., Gottipati, K., Sreekumar, S., Heyl, D. L., An, F. Y., and Shelburne, C. E. (2006). Deletion of all cysteines in tachyplesin I abolishes hemolytic activity and retains antimicrobial activity and lipopolysaccharide selective binding. Biochemistry, 45, 6529–6540. Rols, M. P., Coulet, D., and Teissie, J. (1992). Highly efficient transfection of mammalian cells by electric field pulses. Application to large volumes of cell culture by using a flow system. European Journal of Biochemistry, 206:115–121. Sarmasik, A., Warr, G., and Chen, T. T. (2002). Production of transgenic medaka with increased resistance to bacterial pathogens. Marine Biotechnology, 4: 310-322. Sato, H., and Feix, J. B. (2006). Peptide-membrane interactions and mechanisms of membrane destruction by amphipathic alpha-helical antimicrobial peptides. Biochimica et Biophysica Acta, 1758(9): 1245-1256. Shida, K., Terajima, D., Uchino, R., Ikawa, S., Ikeda, M., and Asano, K. (2003). Hemocytes of Ciona intestinalis express multiple genes involved in innate immune host defense. Biochemical and Biophysical Research Communications, 2003. 302: 207–218. Sorgeloos, P., Dhert, P., and Candreva, P. (2001). Use of the brine shrimp, Artemia spp., in marine fish larviculture. Aquaculture, 200:147-159. Steiner, H. (1982). Secondary structure of the cecropins: antibacterial peptides from the moth Hyalophora cecropia. FEBS Letters, 137:283-287. Steiner, H., Hulymark, D., Engstrӧm, Ǻ., Bennich, H., and Boman, H. G. (1981). Sequence and specificity of two antibacterial proteins involved in insect immunity. Nature, 292: 246-248. Thammasorn, T., Somchai, P., Laosutthipong, C., Jitrakorn, S., Wongtripop, S., Thitamadee, S., Withyachumnarnkul, B., and Saksmerprome, V. (2013). Therapeutic effect of Artemia enriched with Escherichia coli expressing double-stranded RNA in the black tiger shrimp Penaeus monodon. Antiviral Research, 100: 202-206. Twyman, R.M., and Whitelaw, B. (2013). Gene expression in recombinant animal cells and transgenic animals. In Encyclopedia of Industrial Biotechnology: Bioprocess, Bioseparation, and Cell Technology, edited by Flickinger, M.C. Wolf, H., Rols, M. P., Boldt, E., Neumann, E., and Teissie, J. (1994). Control by pulse parameters of electric field-mediated gene transfer in mammalian cells. Biophysical Journal, 66: 524–531. Xie, T. D., and Tsong, T. Y. (1992). Study of the mechanisms of electric field-induced DNA transfection III electric parameters and other conditions for effective transfection. Biophysical Journal, 63:28-34. Zasloff, M. (2002). Antimicrobial peptides of multicellular organisms. Nature, 415: 389-395. Zhelev, D.V., Dimitrov, D.S., and Doinov, P. (1998). Correlation between physical parameters in electrofusion and electroporation of protoplasts. Bioelectrochemistry and Bioenergetics, 20:155–167. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/18739 | - |
| dc.description.abstract | 中文摘要
餌料生物豐年蝦可作為外源蛋白載體,提供養殖魚類額外生長激素或抗菌胜肽。然而,目前所用豐年蝦休電穿孔轉殖條件所能達到孵化率及轉染效率(Transfection efficiency)較低,加上綠螢光蛋白(GFP)作為報導基因容易受豐年蝦內生性蝦紅素所產生紅螢光干擾,造成綠螢光訊號不易觀察,增加穩定遺傳品系建立之困難度及成本。因此,本實驗藉由調整電場強度及脈衝時間的方式,建立較不影響休眠卵孵化率之豐年蝦基因轉殖系統;同時,本實驗採用藍螢光蛋白(N158S)基因當報導基因,因為藍螢光蛋白有特殊的波長以及較高之量子產率(Quantum yield)性質。除轉殖系統改良外,本實驗也將藍螢光基因作為selective plasmid,與另一帶有海鞘抗菌胜肽(Ci-MAM-A)cDNA及天蠶素(Cecropin)cDNA之融合型抗菌胜肽質體pCMV-MB-Ci-Ce 作為target plasmid,同時轉殖入豐年蝦體內表現,藉藍螢光訊號觀察建立穩定遺傳雙基因之轉殖品系。利用改良轉殖條件進行休眠卵轉殖後,在八次電穿孔共同轉殖實驗中共得529隻體軸表現藍螢光之無節幼蟲,其表現率為21.45%(529/2466),進而取50隻體軸表現強藍螢光個體(F0)與野生型豐年蝦進行互配得到五組體軸表現強藍螢光訊號之F1子代。將五組F1世代與野生型豐年蝦進行互配後,得到四組體軸仍穩定表現藍螢光之F2子代,並針對F1及F2世代進行PCR檢測,篩出兩株穩定含有藍螢光基因與抗菌胜肽基因之遺傳品系CCNS 9及CCNS 10。選擇生長及繁殖情況較快速之CCNS 10的F2子代與野生型互配而得F3世代。利用western blotting 偵測轉殖品系蛋白質萃取液後,可在17 kD處偵測到Ci-MAM-A-Cecropin蛋白質條帶,表示轉殖品系的確表現外源重組抗菌蛋白。另外,透過外加胃蛋白酶(Pepsin)處理及抑菌環試驗,結果顯示CCNS 10遺傳品系之F3世代單隻成體豐年蝦所含的外源抗菌胜肽,其抑制大腸桿菌能力約等同於0.00233 μg之Ampicillin。因此,我們成功地建立可以穩定表達外來藍螢光基因與抗菌胜肽基因之豐年蝦轉殖品系,並以證實其具有抑制大腸桿菌之能力,未來可進一步檢測此品系對其他微生物之抑制效力,並可應用在水產養殖上以口服方式幫助養殖魚類抵抗外界病菌。 | zh_TW |
| dc.description.abstract | Abstract
Brine shrimp (Artemia sp.) is a potential suitable bioreactor for applying cultured finfish growth hormones or antimicrobial peptides to cultured finfish. However, low transformation efficiency and hard-to-distinguished GFP signal resulted in the establishment of Artemia transgenesis being difficult and time consuming. In this study, we developed a new electroporation condition by modifying the field strength and plus length to achieve a higher transformation efficiency. We also used a unique selective marker which has different absorption spectrum and higher quantum yield than those of green fluorescence protein for screening the transgenic nauplius of Artemia. After the Artemia cysts were decapsulated, they were then electroporated with two plasmids, a selective plasmid containing selective protein and a target plasmid containing antimicrobial peptides. The transient expression rate of selective plasmid was 21.45% (529 out of 2466 examined). We selected 50 F0 individuals to mate with the wide-type strain and generated F1 offspring. Among F1 generation, we selected 5 strains with highly expressed signal of selective protein to generate F2 offspring. Genomic DNA extracted from the F1 and F2 were checked by PCR detection and found that they were all positive. Furthermore, two stable transgenic lines of Artemia sp. were generated, named CCNS 9 and CCNS 10. We confirmed that the recombinant protein with molecular weight of 17 kD was produced by F3 offspring derived from transgenic Artemia CCNS 10 by Western blotting analysis. In addition, the agar diffusion test demonstrated that the antimicrobial activity of the recombinant proteins produced by CCNS 10 was equivalent to the potency generated by 0.002 μg of Ampicillin. In conclusion, this study showed that we successfully generated a stable line of transgenic Artemia which possessing antimicrobial activity to E. coli. This transgenic line may have the potential in aquaculture to provide the cultured finfish antimicrobial peptide by oral treatment. Using the new electroporation system and selective marker, we generated a transgenic Artemia line expressing recombinant antimicrobial peptides. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-08T01:22:52Z (GMT). No. of bitstreams: 1 ntu-103-R00b43030-1.pdf: 2086791 bytes, checksum: e3f6a844e5fd6bf72844c6ca0f920fd8 (MD5) Previous issue date: 2014 | en |
| dc.description.tableofcontents | 目錄
中文摘要 (Abstract in Chinese)..............................3 英文摘要 (Abstract in English)..............................4 文獻回顧 (Literature review)................................6 前言 (Introduction).......................................13 材料與方法 (Materials and methods).........................16 結果 (Results)............................................24 討論 (Discussion).........................................31 參考文獻(References).......................................38 圖與表 (Figures and tables)............................... 45 附錄 (Appendix)...........................................60 | |
| dc.language.iso | zh-TW | |
| dc.title | 利用動物性浮游生物作為生物反應器表現外源抗菌蛋白 | zh_TW |
| dc.title | Transgenic zooplankton as a bioreactor to produce recombinant anti-microbial proteins | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 102-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 李國誥(Kuo-Kau Lee),陳昭德(Jau-Der Chen) | |
| dc.subject.keyword | 豐年蝦,抗菌蛋白,生物反應器, | zh_TW |
| dc.subject.keyword | Artemia,antimicrobial peptides,bioreactor, | en |
| dc.relation.page | 60 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2014-08-05 | |
| dc.contributor.author-college | 生命科學院 | zh_TW |
| dc.contributor.author-dept | 分子與細胞生物學研究所 | zh_TW |
| 顯示於系所單位: | 分子與細胞生物學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-103-1.pdf 未授權公開取用 | 2.04 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
