Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 分子與細胞生物學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/18729
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor蔡懷楨(Huai-Jen Tsai)
dc.contributor.authorChi-Cheng Hsiehen
dc.contributor.author謝其呈zh_TW
dc.date.accessioned2021-06-08T01:22:14Z-
dc.date.copyright2014-09-04
dc.date.issued2014
dc.date.submitted2014-08-06
dc.identifier.citation黃薇臻. (2013). 利用有對熱逆境敏銳反應的腦細胞來探討轉譯抑制的機制. 國立臺灣大學生命科學院分子與細胞生物學研究所碩士論文。
Bollen, M., Peti, W., Ragusa, M.J., and Beullens, M. (2010). The extended PP1 toolkit: designed to create specificity. Trends in Biochemical Sciences 35, 450-458.
Calfon, M., Zeng, H., Urano, F., Till, J.H., Hubbard, S.R., Harding, H.P., Clark, S.G., and Ron, D. (2002). IRE1 couples endoplasmic reticulum load to secretory capacity by processing the XBP-1 mRNA. Nature 415, 92-96.
Chen, Y.J., Tan, B.C.M., Cheng, Y.Y., Chen, J.S., and Lee, S.C. (2010). Differential regulation of CHOP translation by phosphorylated eIF4E under stress conditions. Nucleic Acids Research 38, 764-777.
Cohen, P.T.W. (2002). Protein phosphatase 1 – targeted in many directions. Journal of Cell Science 115, 241-256.
Dohadwala, M., da Cruz e Silva, E.F., Hall, F.L., Williams, R.T., Carbonaro-Hall, D.A., Nairn, A.C., Greengard, P., and Berndt, N. (1994). Phosphorylation and inactivation of protein phosphatase 1 by cyclin-dependent kinases. Proceedings of the National Academy of Sciences of the United States of America 91, 6408-6412.
Dorner, A.J., Wasley, L.C., Raney, P., Haugejorden, S., Green, M., and Kaufman, R.J. (1990). The stress response in Chinese hamster ovary cells. Regulation of ERp72 and protein disulfide isomerase expression and secretion. The Journal of Biological Chemistry 265, 22029-22034.
Harding, H.P., Novoa, I., Zhang, Y., Zeng, H., Wek, R., Schapira, M., and Ron, D. (2000). Regulated translation initiation controls stress-induced gene expression in mammalian cells. Molecular Cell 6, 1099-1108.
Harding, H.P., Zhang, Y., and Ron, D. (1999). Protein translation and folding are coupled by an endoplasmic-reticulum-resident kinase. Nature 397, 271-274.
Heroes, E., Lesage, B., Gornemann, J., Beullens, M., Van Meervelt, L., and Bollen, M. (2013). The PP1 binding code: a molecular-lego strategy that governs specificity. FEBS Journal 280, 584-595.
Hinnebusch, A.G. (2005). Translational regulation of GCN4 and the general amino acid control of yeast. Annual Review of Microbiology 59, 407-450.
Iadecola, C., Zhang, F., Casey, R., Nagayama, M., and Ross, M.E. (1997). Delayed Reduction of Ischemic Brain Injury and Neurological Deficits in Mice Lacking the Inducible Nitric Oxide Synthase Gene. The Journal of Neuroscience 17, 9157-9164.
Jackson, R.J., Hellen, C.U., and Pestova, T.V. (2010). The mechanism of eukaryotic translation initiation and principles of its regulation. Nature Reviews Molecular Cell Biology 11, 113-127.
Jousse, C., Bruhat, A., Carraro, V., Urano, F., Ferrara, M., Ron, D., and Fafournoux, P. (2001). Inhibition of CHOP translation by a peptide encoded by an open reading frame localized in the chop 5′UTR. Nucleic Acids Research 29, 4341-4351.
Jousse, C., Oyadomari, S., Novoa, I., Lu, P., Zhang, Y., Harding, H.P., and Ron, D. (2003). Inhibition of a constitutive translation initiation factor 2alpha phosphatase, CReP, promotes survival of stressed cells. The Journal of Cell Biology 163, 767-775.
Lee, A.H., Iwakoshi, N.N., and Glimcher, L.H. (2003). XBP-1 regulates a subset of endoplasmic reticulum resident chaperone genes in the unfolded protein response. Molecular and Cellular Biology 23, 7448-7459.
Lee, A.S. (2001). The glucose-regulated proteins: stress induction and clinical applications. Trends in Biochemical Sciences 26, 504-510.
Lee, H.C., Chen, Y.J., Liu, Y.W., Lin, K.Y., Chen, S.W., Lin, C.Y., Lu, Y.C., Hsu, P.C., Lee, S.C., and Tsai, H.J. (2011). Transgenic zebrafish model to study translational control mediated by upstream open reading frame of human chop gene. Nucleic Acids Research 39, e139.
Lee, H.C., Lu, P.N., Huang, H.L., Chu, C., Li, H.P., and Tsai, H.J. (2014). Zebrafish Transgenic Line huORFZ Is an Effective Living Bioindicator for Detecting Environmental Toxicants. PLoS One 9, e90160.
Lei, K., and Davis, R.J. (2003). JNK phosphorylation of Bim-related members of the Bcl2 family induces Bax-dependent apoptosis. Proceedings of the National Academy of Sciences of the United States of America 100, 2432-2437.
Lewerenz, J., Sato, H., Albrecht, P., Henke, N., Noack, R., Methner, A., and Maher, P. (2012). Mutation of ATF4 mediates resistance of neuronal cell lines against oxidative stress by inducing xCT expression. Cell Death and Differentiation 19, 847-858.
Liu, Q.R., Gong, J.P., and Uhl, G.R. (2005). Families of Protein Phosphatase 1 Modulators Activated by Protein Kinases A and C: Focus on Brain. Progress in Nucleic Acid Research and Molecular Biology 79, 371-404.
Liu, Q.R., Zhang, P.W., Zhe, Q., Walther, D., Wang, X.B., and Uhl, G.R. (2002). KEPI, a PKC-dependent protein phosphatase 1 inhibitor regulated by morphine. The Journal of Biological Chemistry 277, 13312-13320.
Matsumoto, M., Minami, M., Takeda, K., Sakao, Y., and Akira, S. (1996). Ectopic expression of CHOP (GADD153) induces apoptosis in M1 myeloblastic leukemia cells. FEBS Letters 395, 143-147.
McCullough, K.D., Martindale, J.L., Klotz, L.O., Aw, T.Y., and Holbrook, N.J. (2001). Gadd153 sensitizes cells to endoplasmic reticulum stress by down-regulating Bcl2 and perturbing the cellular redox state. Molecular and Cellular Biology 21, 1249-1259.
Munton, R.P., Vizi, S., and Mansuy, I.M. (2004). The role of protein phosphatase-1 in the modulation of synaptic and structural plasticity. FEBS Letters 567, 121-128.
Novoa, I., Zeng, H., Harding, H.P., and Ron, D. (2001). Feedback inhibition of the unfolded protein response by GADD34-mediated dephosphorylation of eIF2alpha. The Journal of Cell Biology 153, 1011-1022.
Oyadomari, S., and Mori, M. (2004). Roles of CHOP/GADD153 in endoplasmic reticulum stress. Cell Death and Differentiation 11, 381-389.
Palam, L.R., Baird, T.D., and Wek, R.C. (2011). Phosphorylation of eIF2 facilitates ribosomal bypass of an inhibitory upstream ORF to enhance CHOP translation. The Journal of Biological Chemistry 286, 10939-10949.
Price, B.D., Mannheim-Rodman, L.A., and Calderwood, S.K. (1992). Brefeldin A, thapsigargin, and AIF4- stimulate the accumulation of GRP78 mRNA in a cycloheximide dependent manner, whilst induction by hypoxia is independent of protein synthesis. Journal of Cellular Physiology 152, 545-552.

Puthalakath, H., O'Reilly, L.A., Gunn, P., Lee, L., Kelly, P.N., Huntington, N.D., Hughes, P.D., Michalak, E.M., McKimm-Breschkin, J., Motoyama, N., Gotoh, T., Akira, S., Bouillet, P., and Strasser, A. (2007). ER stress triggers apoptosis by activating BH3-only protein Bim. Cell 129, 1337-1349.
Robu, M.E., Larson, J.D., Nasevicius, A., Beiraghi, S., Brenner, C., Farber, S.A., and Ekker, S.C. (2007). p53 Activation by Knockdown Technologies. PLoS Genetics 3, e78.
Ron, D., and Habener, J.F. (1992). CHOP, a novel developmentally regulated nuclear protein that dimerizes with transcription factors C/EBP and LAP and functions as a dominant-negative inhibitor of gene transcription. Genes & Development 6, 439-453.
Scheuner, D., Song, B., McEwen, E., Liu, C., Laybutt, R., Gillespie, P., Saunders, T., Bonner-Weir, S., and Kaufman, R.J. (2001). Translational control is required for the unfolded protein response and in vivo glucose homeostasis. Molecular Cell 7, 1165-1176.
Shen, J., Snapp, E.L., Lippincott-Schwartz, J., and Prywes, R. (2005). Stable binding of ATF6 to BiP in the endoplasmic reticulum stress response. Molecular and Cellular Biology 25, 921-932.
Sriburi, R., Jackowski, S., Mori, K., and Brewer, J.W. (2004). XBP1: a link between the unfolded protein response, lipid biosynthesis, and biogenesis of the endoplasmic reticulum. The Journal of Cell Biology 167, 35-41.
Thisse, C., and Thisse, B. (2008). High-resolution in situ hybridization to whole- mount zebrafish embryos. Nature Protocols 3, 59-69.
Ubeda, M., Vallejo, M., and Habener, J.F. (1999). CHOP enhancement of gene transcription by interactions with Jun/Fos AP-1 complex proteins. Molecular and Cellular Biology 19, 7589-7599.
Ubeda, M., Wang, X.Z., Zinszner, H., Wu, I., Habener, J.F., and Ron, D. (1996). Stress-induced binding of the transcriptional factor CHOP to a novel DNA control element. Molecular and Cellular Biology 16, 1479-1489.
Waskiewicz, A.J., Flynn, A., Proud, C.G., and Cooper, J.A. (1997). Mitogen‐activated protein kinases activate the serine/threonine kinases Mnk1 and Mnk2. EMBO Journal 16, 1909-1920.
Westerfield M. (2000). The zebrafish book: a guide for the laboratory use of zebrafish (Danio rerio). 4th edition. Institute of Neuroscience. University of Oregon.
Wenzel, K., Daskalow, K., Herse, F., Seitz, S., Zacharias, U., Schenk, J.A., Schulz, H., Hubner, N., Micheel, B., Schlag, P.M., Osterziel, K.J., Ozcelik, C., Scherneck, S., and Jandrig, B. (2007). Expression of the protein phosphatase 1 inhibitor KEPI is downregulated in breast cancer cell lines and tissues and involved in the regulation of the tumor suppressor EGR1 via the MEK-ERK pathway. Biological Chemistry 388, 489-495.
Yamaguchi, H., and Wang, H.G. (2004). CHOP is involved in endoplasmic reticulum stress-induced apoptosis by enhancing DR5 expression in human carcinoma cells. The Journal of Biological Chemistry 279, 45495-45502.
Yoshida, H. (2007). ER stress and diseases. FEBS Journal 274, 630-658.
Yoshida, H., Haze, K., Yanagi, H., Yura, T., and Mori, K. (1998). Identification of the cis-acting endoplasmic reticulum stress response element responsible for transcriptional induction of mammalian glucose-regulated proteins. Involvement of basic leucine zipper transcription factors. The Journal of Biological Chemistry 273, 33741-33749.
Zinszner, H., Kuroda, M., Wang, X., Batchvarova, N., Lightfoot, R.T., Remotti, H., Stevens, J.L., and Ron, D. (1998). CHOP is implicated in programmed cell death in response to impaired function of the endoplasmic reticulum. Genes & Development 12, 982-995.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/18729-
dc.description.abstractC/EBP homologous protein (chop) mRNA上的 5’UTR含有upstream open reading frame (uORFchop)具有抑制下游coding region轉譯的功能。但細胞一旦遭遇逆境時,uORFchop就會失去抑制轉譯的功能,而開啟下游基因的轉譯。之前我們建立含有人類uORFchop (huORFchop) 融合egfp螢光報導基因的斑馬魚品系huORFZ,發現若給予熱休克或缺氧的逆境都可誘導egfp的轉譯,且只表現在中樞神經系統。但是huORFchop在in vivo下如何調控下游基因轉譯的詳細機制,尚未完全明瞭。為了回答此問題,我們先進行下列兩種expression microarray的分析:(1)比較缺氧逆境下脊髓EGFP(+) cells的及未經逆境處理的脊髓GFAP(+) cells;和(2)比較熱休克逆境下腦部EGFP(+) cells及EGFP(-) cells。再從轉錄體變化中找出使huORFchop下游基因表現於中樞神經系統的基因。從這兩種microarray交集的結果,我們得知逆境處理時,魚胚胎內的kinase-enhanced PP1 inhibitor (KEPI)之表現量在EGFP(+) cells中會顯著下降。進一步地,以whole-mount in situ hybridization及qRT-PCR都證實kepi mRNA的表現量在逆境處理後會顯著下降,且得知kepi mRNA與chop於mRNA在表現分布上相似。若於huORFZ一細胞時期之胚胎注射kepi mRNA或DNA,然後在72 hpf時進行缺氧逆境處理2.5小時,並在96 hpf進行觀察,發現huORFZ的螢光表現率會下降,表示kepi會增強huORFchop的轉譯抑制的能力。相反地,若用morpholino (MO)去 knockdown KEPI後,發現即使在沒有逆境處理的huORFZ胚胎也會被誘導表現螢光。同時,我們也發現在缺氧處理後,胚胎內的protein phosphatase 1α(PPP1A)的蛋白質增加、磷酸化程度不變,使PPP1A活性增加,且與uORFchop轉譯抑制能力喪失的時間點一致。但當過量表現kepi時,可以在缺氧逆境處理後,透過PPP1A磷酸化的促進以及PPP1A蛋白質上升的減緩,來降低PPP1A的活性。綜合以上結果,我們總結KEPI參與huORFchop轉譯抑制的機制,而當缺氧逆境下KEPI減少,使PPP1A活性上升促使huORFchop下游基因轉譯。zh_TW
dc.description.abstractThe upstream open reading frame (uORF) of C/EBP homologous protein (uORFchop ) has been reported that it can direct translational inhibition. When cells encounter stress, uORFchop -mediated translational inhibition is repressed. We generated a transgenic line huORFZ, which harbors an eGFP reporter fused with human uORFchop . Using zebrafish embryos derived from line huORFZ, we found that embryos treated with either hypoxia or heat shock, GFP was exclusively expressed in the brain and spinal cord. However, the molecular mechanism of the uORFchop-mediated translational inhibition is still not completely understood. We performed two microarrays from huORFZ embryos. One microarray was based on that the expression levels of genes which were of the GFP-positive cells from spinal cord after hypoxia were compared with those of genes which were of the glial fibrillary acidic protein (GFAP)-positive cells from spinal cord without being stressed. Another microarray was based on that the expression levels of genes which were of the GFP-positive cells from brain after heat shock were compared with those of genes which were of GFP-negative cells from brain after heat shock. We screened putative genes whose expression levels were significantly decreased shown on both microarrays. Microarray results were farther confirmed by Whole-mount in situ hybridization (WISH), overexpression and knockdown the candidate gene mRNA, DNA or morpholino (MO) into huORFZ embryos. Among candidate genes, kinase-enhance PP1 inhibitor (KEPI) was selected for further study. Using whole-mount in situ hybridization of zebrafish embryos, we found that the expression pattern of the transcripts of kepi was co-localized with that of chop mRNA. Additionally, qRT-PCR results indicated that the mRNA level of kepi was greatly decreased in brain in the hypoxia-treated embryos. Furthermore, to confirm that kepi is involved in the translation inhibition of endogenous uORFchop, we microinjected the kepi mRNA and DNA into huORFZ embryos, and treated the injected embryos with deoxygenated water for 2 hr when embryos developed at 72 hpf. Results showed that the GFP signal was normally expressed in the brain and spinal cord of control embryos in which kepi was not overexpressive. However, unlike the control embryos, we found that the expression of GFP was suppressed in the kepi-overexpressive embryos when we observed embryos at 96 hpf. Moreover, kepi knockdown did induce the translation of uORFchop downstream GFP in brain and spinal cord without stress treatment. We found that the protein level of protein phosphatase 1α (PPP1A) increased at the same time period when GFP was expressed after hypoxia treatment. Moreover, kepi overexpressions suppressed the protein level of PPP1A and promote its phosphorylation. Based on these results, the role of KEPI on regulating the translational inhibition function of uORFchop is PPP1A dependent.en
dc.description.provenanceMade available in DSpace on 2021-06-08T01:22:14Z (GMT). No. of bitstreams: 1
ntu-103-R01b43011-1.pdf: 4144358 bytes, checksum: ebf5d4380fee515c7fbbbb6f4f43bc4d (MD5)
Previous issue date: 2014
en
dc.description.tableofcontents中文摘要…………………………………………………1
英文摘要………………………………………………2
文獻回顧…………………………………………………4
前言……………………………………………………12
材料與方法……………………………………………15
結果……………………………………………………22
討論……………………………………………………28
參考文獻………………………………………………33
圖表……………………………………………………41
補充資料………………………………………………50
dc.language.isozh-TW
dc.titleKEPI在chop基因的upstream open reading frame轉譯抑制機制中所扮演的角色zh_TW
dc.titleKEPI plays role in repressing the translation inhibition mediated by upstream open reading frame of chop geneen
dc.typeThesis
dc.date.schoolyear102-2
dc.description.degree碩士
dc.contributor.oralexamcommittee呂勝春(Sheng-Chung Lee),鄭子豪(Tzu-Hao Cheng),黃憲斌(Hsien-Bin Huang)
dc.subject.keyword斑馬魚,轉譯抑制,內質網逆境,zh_TW
dc.subject.keywordzebrafish,Danio rerio,translation inhibition,ER stress,CHOP,protein phosphatase 1,KEPI,en
dc.relation.page65
dc.rights.note未授權
dc.date.accepted2014-08-06
dc.contributor.author-college生命科學院zh_TW
dc.contributor.author-dept分子與細胞生物學研究所zh_TW
顯示於系所單位:分子與細胞生物學研究所

文件中的檔案:
檔案 大小格式 
ntu-103-1.pdf
  未授權公開取用
4.05 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved