Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 醫學檢驗暨生物技術學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/18688
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor方偉宏(Woei-Horng Fang)
dc.contributor.authorYi-Ling Lien
dc.contributor.author黎羿鈴zh_TW
dc.date.accessioned2021-06-08T01:19:30Z-
dc.date.copyright2014-10-09
dc.date.issued2014
dc.date.submitted2014-08-08
dc.identifier.citationBruning-Fann CS, Kaneene JB. (1993). The effects of nitrate, nitrite and N-nitroso compounds on human health: a review. Vet Hum Toxicol. 35(6):521-38.
Cao, W. (2013). Endonuclease V: an unusual enzyme for repair of DNA deamination. Cell Mol Life Sci, 70(17), 3145-3156.
Coulondre, C., Miller, J. H., Farabaugh, P. J., & Gilbert, W. (1978). Molecular basis of base substitution hotspots in Escherichia coli. Nature, 274(5673), 775-780.
Dohet, C., Wagner, R., & Radman, M. (1985). Repair of defined single base-pair mismatches in Escherichia coli. Proc Natl Acad Sci U S A, 82(2), 503-505.
Dubelman, S., & Shapiro, R. (1977). A method for the isolation of cross-linked nucleosides from DNA: application to cross-links induced by nitrous acid. Nucleic Acids Res, 4(6), 1815-1827.
Eichholzer M., Gutzwiller F. (1998). Dietary nitrates, nitrites, and N-nitroso compounds and cancer risk: a review of the epidemiologic evidence. Nutr Rev. 56(4 Pt 1):95-105.
Eritja, R., Horowitz, D. M., Walker, P. A., Ziehler-Martin, J. P., Boosalis, M. S., Goodman, M. F., Kaplan, B. E. (1986). Synthesis and properties of oligonucleotides containing 2'-deoxynebularine and 2'-deoxyxanthosine. Nucleic Acids Res, 14(20), 8135-8153.
Fersht, A. R., & Knill-Jones, J. W. (1981). DNA polymerase accuracy and spontaneous mutation rates: frequencies of purine.purine, purine.pyrimidine, and pyrimidine.pyrimidine mismatches during DNA replication. Proc Natl Acad Sci U S A, 78(7), 4251-4255.
Frederico, L. A., Kunkel, T. A., & Shaw, B. R. (1990). A sensitive genetic assay for the detection of cytosine deamination: determination of rate constants and the activation energy. Biochemistry, 29(10), 2532-2537.
Friedberg, E.C., Walker, G.C., Siede, W. (2006). DNA repair and Mutagenesis.(textbook)
Gros, L., Saparbaev, M. K., & Laval, J. (2002). Enzymology of the repair of free radicals-induced DNA damage. Oncogene, 21(58), 8905-8925.
Guo, G., & Weiss, B. (1998). Endonuclease V (nfi) mutant of Escherichia coli K-12. J Bacteriol, 180(1), 46-51.
Hartman, Z., Henrikson, E. N., Hartman, P. E., & Cebula, T. A. (1994). Molecular models that may account for nitrous acid mutagenesis in organisms containing double-stranded DNA. Environ Mol Mutagen, 24(3), 168-175.
Karran, P., & Lindahl, T. (1980). Hypoxanthine in deoxyribonucleic acid: generation by heat-induced hydrolysis of adenine residues and release in free form by a deoxyribonucleic acid glycosylase from calf thymus. Biochemistry, 19(26), 6005-6011.
Karran, P., Lindahl, T., Ofsteng, I., Evensen, G. B., & Seeberg, E. (1980). Escherichia coli mutants deficient in 3-methyladenine-DNA glycosylase. J Mol Biol, 140(1), 101-127.
Kawase, Y., Iwai, S., Inoue, H., Miura, K., & Ohtsuka, E. (1986). Studies on nucleic acid interactions. I. Stabilities of mini-duplexes (dG2A4XA4G2-dC2T4YT4C2) and self-complementary d(GGGAAXYTTCCC) containing deoxyinosine and other mismatched bases. Nucleic Acids Res, 14(19), 7727-7736.
Kramer, B., Kramer, W., & Fritz, H. J. (1984). Different base/base mismatches are corrected with different efficiencies by the methyl-directed DNA mismatch-repair system of E. coli. Cell, 38(3), 879-887.
Lee, C. C., Yang, Y. C., Goodman, S. D., Lin, C. J., Chen, Y. A., Wang, Y. T., Fang, W. H. (2013). The excision of 3' penultimate errors by DNA polymerase I and its role in endonuclease V-mediated DNA repair. DNA Repair, 12(11), 899-911.
Lee, C. C., Yang, Y. C., Goodman, S. D., Yu, Y. H., Lin, S. B., Kao, J. T., Fang, W. H. (2010). Endonuclease V-mediated deoxyinosine excision repair in vitro. DNA Repair, 9(10), 1073-1079.
Lindahl, T. (1993). Instability and decay of the primary structure of DNA. Nature, 362(6422), 709-715.
Lu, A. L., Clark, S., & Modrich, P. (1983). Methyl-directed repair of DNA base-pair mismatches in vitro. Proc Natl Acad Sci U S A, 80(15), 4639-4643.
Lucas, L. T. (1999). Efficient Nitroso Group Transfer from N-Nitrosoindoles to Nucleotides and 2'-Deoxyguanosine at Physiological pH. A NEW PATHWAY FOR N-NITROSOCOMPOUNDS TO EXERT GENOTOXICITY. Journal of Biological Chemistry, 274(26), 18319-18326.
Makiela-Dzbenska, K., Jaszczur, M., Banach-Orlowska, M., Jonczyk, P., Schaaper, R. M., & Fijalkowska, I. J. (2009). Role of Escherichia coli DNA polymerase I in chromosomal DNA replication fidelity. Mol Microbiol, 74(5), 1114-1127.
Martin, F. H., Castro, M. M., Aboul-ela, F., & Tinoco, I., Jr. (1985). Base pairing involving deoxyinosine: implications for probe design. Nucleic Acids Res, 13(24), 8927-8938.
Routledge, F. J. M., David A. Wink , Larry K. Keefer ,Anthony Dipple. (1994). Nitrite-induced mutations in a forward mutation assay: Influence of nitrite concentration and pH.
Moe, A., Ringvoll, J., Nordstrand, L. M., Eide, L., Bjoras, M., Seeberg, E., Klungland, A. (2003). Incision at hypoxanthine residues in DNA by a mammalian homologue of the Escherichia coli antimutator enzyme endonuclease V. Nucleic Acids Res, 31(14), 3893-3900.
Myrnes, B., Guddal, P. H., & Krokan, H. (1982). Metabolism of dITP in HeLa cell extracts, incorporation into DNA by isolated nuclei and release of hypoxanthine from DNA by a hypoxanthine-DNA glycosylase activity. Nucleic Acids Res, 10(12), 3693-3701.
Nguyen, T., Brunson, D., Crespi, C. L., Penman, B. W., Wishnok, J. S., & Tannenbaum, S. R. (1992). DNA damage and mutation in human cells exposed to nitric oxide in vitro. Proc Natl Acad Sci U S A, 89(7), 3030-3034.
Ponnamperuma, C., Lemmon, R. M., Bennett, E. L., & Calvin, M. (1961). Deamination of Adenine by Ionizing Radiation. Science, 134(3472), 113.
Saparbaev, M., Kleibl, K., & Laval, J. (1995). Escherichia coli, Saccharomyces cerevisiae, rat and human 3-methyladenine DNA glycosylases repair 1,N6-ethenoadenine when present in DNA. Nucleic Acids Res, 23(18), 3750-3755.
Saparbaev, M., Mani, J. C., & Laval, J. (2000). Interactions of the human, rat, Saccharomyces cerevisiae and Escherichia coli 3-methyladenine-DNA glycosylases with DNA containing dIMP residues. Nucleic Acids Res, 28(6), 1332-1339.
Schaaper, R. M. (1993). Base selection, proofreading, and mismatch repair during DNA replication in Escherichia coli. J Biol Chem, 268(32), 23762-23765.
Schouten, K. A., & Weiss, B. (1999). Endonuclease V protects Escherichia coli against specific mutations caused by nitrous acid. Mutat Res, 435(3), 245-254.
Shapiro, R., & Pohl, S. H. (1968). The reaction of ribonucleosides with nitrous acid. Side products and kinetics. Biochemistry, 7(1), 448-455.
Sharma, D., Cukras, A. R., Rogers, E. J., Southworth, D. R., & Green, R. (2007). Mutational analysis of S12 protein and implications for the accuracy of decoding by the ribosome. J Mol Biol, 374(4), 1065-1076.
Sidorkina, O., Saparbaev, M., & Laval, J. (1997). Targeted deletion of alkylpurine-DNA-N-glycosylase in mice eliminates repair of 1, N6-ethenoadenine and hypoxanthine but not of 3,N4-ethenocytosine or 8-oxoguanine Mutagenesis, 12(1), 23-28. 8
Simon, M., Giot, L., & Faye, G. (1991). The 3' to 5' exonuclease activity located in the DNA polymerase delta subunit of Saccharomyces cerevisiae is required for accurate replication. EMBO J, 10(8), 2165-2170.
Singh, B., & Mitchison, D. A. (1954). Bactericidal activity of streptomycin and isoniazid against tubercle bacilli. Br Med J, 1(4854), 130-132.
 
Timms, A. R., Steingrimsdottir, H., Lehmann, A. R., & Bridges, B. A. (1992). Mutant sequences in the rpsL gene of Escherichia coli B/r: mechanistic implications for spontaneous and ultraviolet light mutagenesis. Mol Gen Genet, 232(1), 89-96.
Watkins, N. E., Jr., & SantaLucia, J., Jr. (2005). Nearest-neighbor thermodynamics of deoxyinosine pairs in DNA duplexes. Nucleic Acids Res, 33(19), 6258-6267.
Yao, M., Hatahet, Z., Melamede, R. J., & Kow, Y. W. (1994). Purification and characterization of a novel deoxyinosine-specific enzyme, deoxyinosine 3' endonuclease, from Escherichia coli. J Biol Chem, 269(23), 16260-16268.
尤詠絮 (2009) 亞黃嘌呤核酸鹼基切除修復試管中測定系統之研發。
許博淳 (2013) DNA聚合酶I於引子不同位置配對錯誤鹼基校正活性分析。
吳佩蓉 (2014) 核酸內切酶第五型主導之修復系統於生物體內亞黃嘌呤核酸修復之分析。
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/18688-
dc.description.abstractDNA 的腺嘌呤 (adenosine) 經自發性水解或遭受紫外光、亞硝酸鹽等外源性傷害,會進行脫胺作用變成亞黃嘌呤 (deoxyinosine, dI)。若生物體內的亞黃嘌呤核酸未被修復,經過複製可能造成 A:T→ G:C 突變產生,具高致突變性。目前已知大腸桿菌的亞黃嘌呤核酸主要由第五型核酸內切酶 (Endonuclease V, Endo V) 起始修復。先前本實驗室利用噬菌體 M13mp18 衍生的異雙股核酸,以不同基因突變之大腸桿菌萃取液及純化蛋白系統探討試管中亞黃嘌呤核酸之修復反應,結果顯示僅需 Endo V、第一型去氧核醣核酸聚合酶 (DNA polymerase I, DNA Pol I) 以及連接酶 (DNA ligase) 即可完成修復,我們推論在 Endo V 產生缺口 (nick) 後,由 DNA Pol I 3’端往 5’端核酸外切酶 (3’-5’ exonuclease, 3’exo) 活性負責移除 dI,最後再由 DNA ligase 修補缺口完成修復。
為了印證細菌體中 Endo V 與 DNA Pol I 3’exo對於 dI 修復的必要性,我們以亞硝酸鈉致突變試驗進行測試,缺乏 Endo V 及 DNA Pol I 3’ exo 活性之菌株分別處理亞硝酸鈉,再利用抗生素鏈黴素 (streptomycin) 篩選 rpsL 基因突變產生的菌落數量,評估亞硝酸鈉引發高突變現象在 nfi 突變株及 polAexo突變株與其各別野生株的差異,結果顯示亞硝酸鈉引發的突變率, nfi 突變株是野生株的14倍; polA3’exo 缺失菌株突變的情形是野生株的 57倍,扣除自發性突變後仍為野生株的5倍左右,顯示 DNA Pol I 3’exo 活性及 Endo V 對於處理亞硝酸鈉傷害同樣具重要之生理意義。分別挑取 30 個生長於抗生素培養基的單一菌落,進一步分析亞硝酸鈉處理後 rpsL 基因突變情形,我們發現缺乏 Endo V 的突變菌株,在胺基酸序列43位置發生 A→C 突變比例上升 49%;而 DNA Pol I 中 3’ exo 功能缺失的菌株,序列位置 43 上 A→C 的突變比例增加了 33%,A→G 突變數量多了 43%,說明在亞硝酸鈉的壓力下除了引發 A→G 突變增加,且 Pol I 3’exo 產生 A→C 突變比例和 Endo V 有相同提升的趨勢。
細菌致突變試驗的結果顯示突變菌株和野生菌株的差異趨勢和實驗室先前試管中的結果一致,Endo V 和 DNA Pol I 3’ exo 活性對 dI 之修復角色具有生物學上之意義。
zh_TW
dc.description.abstractThe highly mutagenic lesion, deoxyinosine (dI) can be produced in DNA spontaneously, and the process is enhanced by exposing DNA to ionizing radiation, UV light or nitrous ion. In Escherichia coli, deoxyinosine is excised through repair pathway that is initiated by Endonuclease V. According to our previous studies, the purified protein system containing Endonuclease V, DNA polymerase I, and E. coli DNA ligase was sufficient to reconstitute the repair of G-dI, T-dI and A-dI substrate in vitro. In order to evaluate the biological significance of endonuclease V and DNA polymerase I in processing nitrous acid-induced deaminated lesions, we employed nitrous mutagenesis assay to E. coli nfi (endonuclease V deficient) and polAexo (DNA Pol I 3’exonuclease deficient) strains to further understand the importance of these gene products in mutation prevention of nitrous enhanced deamination. Cells were treated with NaNO2 and measured the frequency of streptomycin-resistant mutations in the rpsL gene. The nfi mutant demonstrated 14 times higher mutation frequency than its isogenic wild type. The average frequency of mutants was 57-fold higher in the polAexo strain (KA796 D424A) than that of the wild type strain under nitrous stress. The mutants from the nitrite treatment were collected, and the rpsL gene was sequenced. The most common point mutation after treatment was an A:T→ C:G transvertion. This type of mutation accounted for 97% of total mutation in nfi mutant strains and 60% of total mutation in polAexo mutant strains. The results of mutagenesis assay demonstrated that 3’-5’ exonuclease of Pol I is the integral part of Endo V pathway to protect E. coli against nitrous acid-induced mutagenesis.en
dc.description.provenanceMade available in DSpace on 2021-06-08T01:19:30Z (GMT). No. of bitstreams: 1
ntu-103-R01424017-1.pdf: 3098157 bytes, checksum: 345261b350f4c8d5f65155e847a262eb (MD5)
Previous issue date: 2014
en
dc.description.tableofcontents中文摘要 II
英文摘要 IV
表目次 VII
圖目次 VIII
縮寫表 X
第一章 前言 1
1.1 核酸的重要性 1
1.2 亞黃嘌呤受損核酸的產生 1
1.3 亞黃嘌呤核酸於細胞中的修復路徑 2
1.4 第五型核酸內切酶及其引導之修復系統 3
1.5 研究動機與目的 4
第二章 材料與方法 7
2.1 菌株、培養與保存 7
2.2 細菌敏感性測試及致突變試驗 8
2.3 菌落聚合連鎖反應 10
2.4 核酸定序 11
第三章 結果 12
3.1細菌敏感性測試 12
3.2 亞硝酸鈉致突變試驗 12
3.3 菌落聚合連鎖反應 14
3.4 RPSL基因突變熱點之分析 14
第四章 討論 16
4.1 亞硝酸鈉濃度對細菌毒性和致突變性之關係 16
4.2 基因突變熱點之分析 17
4.3 探討突變株自發性突變情形 18
圖表 20
參考文獻 35
附錄 39
dc.language.isozh-TW
dc.title第五型核酸內切酶及第一型核酸聚合酶校正外切酶處理亞硝酸傷害之生物學意義zh_TW
dc.titleBiological Significance of Endonuclease V and DNA Polymerase I Proofreading Exonuclease in Processing Nitrite-induced Damageen
dc.typeThesis
dc.date.schoolyear102-2
dc.description.degree碩士
dc.contributor.oralexamcommittee楊雅倩(Ya-Chien Yang),許濤(Todd Hsu),蔡芷季(Zhi-Ji Cai)
dc.subject.keyword亞黃嘌呤核酸,脫胺作用,核酸修復,第五型核酸內切?,第一型去氧核醣核酸?,致突變試驗,zh_TW
dc.subject.keywordDeoxyinosine,Hypoxanthine,Endonuclease V,DNA polymerase I,Sodium nitrite,Mutagenesis,en
dc.relation.page41
dc.rights.note未授權
dc.date.accepted2014-08-11
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept醫學檢驗暨生物技術學研究所zh_TW
顯示於系所單位:醫學檢驗暨生物技術學系

文件中的檔案:
檔案 大小格式 
ntu-103-1.pdf
  未授權公開取用
3.03 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved