請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/18685
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 張慶源(Ching-Yuan Chang) | |
dc.contributor.author | Chun Huang | en |
dc.contributor.author | 黃鈞 | zh_TW |
dc.date.accessioned | 2021-06-08T01:19:19Z | - |
dc.date.copyright | 2014-08-22 | |
dc.date.issued | 2014 | |
dc.date.submitted | 2014-08-11 | |
dc.identifier.citation | 1. Arias, B., C. Pevida, J. Fermoso, M. G. Plaza, F. Rubiera and J. J. Pis (2008). 'Influence of torrefaction on the grindability and reactivity of woody biomass.' Fuel Processing Technology 89(2): 169-175.
2. Azhakesan, M., K. D. Bartle, P. L. Murdoch, J. M. Taylor and A. Williams (1990). 'Rapid Pyrolysis as a Method of Characterizing Coals for Combustion.' Fuel 70(3): 322-328. 3. Balat, M., M. Balat, E. Kırtay and H. Balat (2009). 'Main routes for the thermo-conversion of biomass into fuels and chemicals. Part 1: Pyrolysis systems.' Energy Conversion and Management 50(12): 3147-3157. 4. Baxter, L. (2005). 'Biomass-coal co-combustion: opportunity for affordable renewable energy.' Fuel 84(10): 1295-1302. 5. Bergman, P. C. A., A. R. Boersma, R. W. R. Zwart and J. H. A. Kiel (2005). 'Torrefaction for Biomass Co-firing in Existing Coal-fired Power Stations.' BIOCOAL, Energy Research Centre of the Netherlands, ECN-C-05-013. 6. Bourgois, J. and R. Guyonnet (1988). 'Characterization and analysis of torrefied wood.' Wood Science and Technology 22(2): 143-155. 7. Bridgeman, T., J. Jones, A. Williams and D. Waldron (2010). 'An investigation of the grindability of two torrefied energy crops.' Fuel 89(12): 3911-3918. 8. Chen, W.-H. and J.-S. Wu (2009). 'An evaluation on rice husks and pulverized coal blends using a drop tube furnace and a thermogravimetric analyzer for application to a blast furnace.' Energy 34(10): 1458-1466. 9. Chen, W.-H., H.-C. Hsu, K.-M. Lu, W.-J. Lee and T.-C. Lin (2011). 'Thermal pretreatment of wood (Lauan) block by torrefaction and its influence on the properties of the biomass.' Energy 36(5): 3012-3021. 10. Deng, J., G.-J. Wang, J.-H. Kuang, Y.-L. Zhang and Y.-H. Luo (2009). 'Pretreatment of agricultural residues for co-gasification via torrefaction.' Journal of Analytical and Applied Pyrolysis 86(2): 331-337. 11. Elliott, D. C. (2007). 'Historical developments in hydroprocessing bio-oils.' Energy & Fuels 21(3): 1792-1815. 12. Felfli, F. F., C. Luengo, P. Beaton and A. Suarez (1999). Efficiency test for bench unit torrefaction and characterization of torrefied biomass. 4th Biomas Conference of Americas, Oakland, California. 13. Ferro, D. T., V. Vigouroux, A. Grimm and R. Zanzi (2004). 'Torrefaction of agricultural and forest residues.' Cubasolar April: 12-16. 14. Hernandez-Atonal, F. D., C. Ryu, V. N. Sharifi and J. Swithenbank (2007). 'Combustion of refuse-derived fuel in a fluidised bed.' Chemical Engineering Science 62(1): 627-635. 15. Kleinschmidt, C. (2011). Overview of international developments in torrefaction. Central European Biomass Conference 2011, Graz, Austria. 16. Kurose, R., M. Ikeda, H. Makino, M. Kimoto and T. Miyazaki (2004). 'Pulverized coal combustion characteristics of high-fuel-ratio coals.' Fuel 83(13): 1777-1785. 17. Maciejewska, A., H. Veringa, J. Sanders and S. D. Peteves (2006). 'Co-firing of Biomass with Coal: Constraints and Role of Biomass Pre-treatment.' Petten, The Netherlands: Institute for Energy. 18. Mohan, D., C. U. Pittman and P. H. Steele (2006). 'Pyrolysis of wood/biomass for bio-oil: a critical review.' Energy & Fuels 20(3): 848-889. 19. Oasmaa, A. and S. Czernik (1999). 'Fuel oil quality of biomass pyrolysis oils state of the art for the end users.' Energy & Fuels 13(4): 914-921. 20. Pentananunt, R., A. N. M. M. Rahman and S. C. Bhattacharya (1990). 'Upgrading of Biomass by Means of Torrefaction.' Energy 15(12): 1175-1179. 21. Phanphanich, M. and S. Mani (2011). 'Impact of torrefaction on the grindability and fuel characteristics of forest biomass.' Bioresour Technol 102(2): 1246-1253. 22. Pimchuai, A., A. Dutta and P. Basu (2010). 'Torrefaction of Agriculture Residue To Enhance Combustible Properties†.' Energy & Fuels 24(9): 4638-4645. 23. Saiz-Jimenez, C. and J. De Leeuw (1986). 'Lignin pyrolysis products: their structures and their significance as biomarkers.' Organic Geochemistry 10(4): 869-876. 24. Sadaka, S. and S. Negi (2009). 'Improvements of biomass physical and thermochemical characteristics via torrefaction process.' Environmental Progress & Sustainable Energy 28(3): 427-434. 25. Sanders, J., E. Scott, R. Weusthuis and H. Mooibroek (2007). 'Bio‐Refinery as the Bio‐Inspired Process to Bulk Chemicals.' Macromolecular bioscience 7(2): 105-117. 26. Şensoz, S. (2003). 'Slow pyrolysis of wood barks from< i> Pinus brutia</i> Ten. and product compositions.' Bioresource technology 89(3): 307-311. 27. Sondreal, E. A., S. A. Benson, J. P. Hurley, M. D. Mann, J. H. Pavlish, M. L. Swanson, G. F. Weber and C. J. Zygarlicke (2001). 'Review of advances in combustion technology and biomass cofiring.' Fuel Processing Technology 71(1): 7-38. 28. Strezov, V. and T. J. Evans (2009). 'Thermal processing of paper sludge and characterisation of its pyrolysis products.' Waste Management 29(5): 1644-1648. 29. Tumuluru, J. S., S. Sokhansanj, J. R. Hess, C. T. Wright and R. D. Boardman (2011). 'A Review on Biomass Torrefaction Process and Product Properties for Energy Applications.' Industrial Biotechnology 7(5): 384-401. 30. Van der Stelt, M., H. Gerhauser, J. Kiel and K. Ptasinski (2011). 'Biomass upgrading by torrefaction for the production of biofuels: a review.' Biomass and Bioenergy 35(9): 3748-3762. 31. Wanzl, W. (1988). 'Chemical Reactions in Thermal Decomposition of Coal.' Fuel Processing Technology 20(88): 317-336. 32. Yaman, S. (2004). 'Pyrolysis of biomass to produce fuels and chemical feedstocks.' Energy conversion and management 45(5): 651-671. 33. Zhang, S., Y. Yan, T. Li and Z. Ren (2005). 'Upgrading of liquid fuel from the pyrolysis of biomass.' Bioresource Technology 96(5): 545-550. 34. 呂錫民,「氣化技術」,科學發展,453期,62-66 (2007)。 35. 張瑋仁 (2013). “生質燃料與燃煤混燒應用於實廠鍋爐之可行性.” 臺灣大學環境工程學研究所碩士論文(2013 年). 36. 楊子儀 (2012). “焙燒稻稈與生質纖維研究.” 臺灣大學環境工程學研究所碩士論文(2012 年). 37. 經濟部能源局,「氣化技術」,《2007年能源科技發展白皮書》,經濟部能源局出版,342-358 (2007)。 38. 經濟部能源局 (2014). “中華民國101年能源統計手冊.” 39. 環檢所(環境檢驗所),「生質燃料應評估與示範」,環檢所,台灣桃園 (2013)。 40. 簡金龍與俞梅貞,「民國九十九年印尼地區煤礦實地查證報告」,台灣電力股份有限公司 (2010)。 | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/18685 | - |
dc.description.abstract | 臺灣紙漿工廠每年產生大量的廢水處理衍生有機污泥及廢棄木材。這些生質廢棄物通常被轉製為有機肥料或土壤改質劑供農業使用。此生質廢棄物也可以用其他再利用的方式來彌補能源短缺。本研究探討將紙漿工廠有機廢棄物之紙漿污泥利用焙燒程序轉製為固態生質燃料之可行性。研究中的案例紙漿污泥來源為原生紙漿廠的木屑廢棄物及二級污泥的混合物(wood with pulp sludge, WPS),包含兩個批次,分別為WPS1(乾基可燃分約為95 wt.%)與WPS2(乾基可燃分約為80 wt.%)。
這些生質廢棄物含有高百分比的有機成分,且其乾基熱值(high heating value in dry basis, HHVD)可達3,757至4,374 kcal/kg,適合做為固態生質燃料之原料,然而其水分(高於百分之五十)及揮發分甚高。實驗結果顯示,WPS1經300 °C,20 min焙燒處理後,其HHVD可提升至6,570 kcal/kg以上並有較佳的燃燒表現。WPS2經320 °C,20 min焙燒處理後,HHVD可提升至4,718 kcal/kg。故WPS經焙燒程序後,固態生質燃料的能量緻密比可達原始生質物之1.26至1.50倍。再者,本研究也檢測焙燒過程中氣體的排放情形。氣態副產物可以經由冷凝成有機酸液(木醋酸液)具有高的經濟價值,其中WPS1所得有機酸液含有短碳鏈之酯類及醯胺類,而WPS2所得則含有高碳數烷類及醇類,純化後亦可做為液態燃料。由研究中可知不同時期的紙漿污泥因操作及收集處理過程不同會有不同的性質差異,故於混合初期時應對其特性進行分析,決定紙漿污泥與木屑的混合比例。焙燒後的固態生質燃料其性質類似於煤炭,可直接應用於發電廠使用並減少化石燃料的使用。 | zh_TW |
dc.description.abstract | The pulp industry in Taiwan produce tons of organic wastewater sludge and wood waste per year. These biowastes were then converted to organic fertilizers for agriculture uses or soil conditioners. The biowaste can also be used in different ways to mitigate the energy shortage. This study investigates a biowaste-to-energy (BTE) method to convert pulp industry waste into solid biofuel via torrefaction. The pulp waste examined is the mixture of wood waste and secondary sludge obtained from a virgin pulp factory in eastern Taiwan (denoted as wood with pulp sludge, WPS).Two batches of WPS were received and tested, namely, WPS1 and WPS2, which contain about 95 and 80 wt.% combustibles in dry basis.
The biowaste WPS has a high content of organic compounds with the dry basis high heating value of 3,757 to 4,374 kcal/kg and can be used as raw materials for producing primary solid biofuel. However, the wet WPS bears high water (>50 wt.%) and volatiles contents and needs de-watering, drying and upgrading. The results of this study show that after 20 min torrefaction at 300 °C, the HHVD of WPS1 can be promoted to 6,570 kcal/kg, while after 20 min torrefaction at 320 °C, the HHVD of WPS2 increases to 4,718 kcal/kg. Both cases also have better combustion performance. The results also indicate that the energy densification of torrefied solid biofuel can rise to 1.26-1.50 time than the raw biowaste. The condensable gaseous by-products portions of were condensed and collected as liquid products which is essentially an organic acid liquid (wood vinegar) having highly economic value. Both condensable liquid and non-condensable gaseous by-products were analyzed. The liquid product of case WPS1 include some esters and amides, while those of case WPS2 consist of some alkanes and alcohols. The carbon numbers of alkanes in liquid of case WPS2 are above 10, which indicate that the liquid products can use for liquid fuels after purification. From this study, WPS1 and WPS have different characteristics due to different operation, collection and handling conditions when producing pulp sludge at different times. Therefore, some characteristics analysis should be conducted before mixing the pulp sludge and wood waste in order to provide information for choosing better torrefaction conditions. Moreover, because the combustion performance of torrefied WPS is similar to that coal, the torrefied solid biofuel can be mixed with coal and used in power plant directly. This thus reduces the usage of fossil fuels. | en |
dc.description.provenance | Made available in DSpace on 2021-06-08T01:19:19Z (GMT). No. of bitstreams: 1 ntu-103-R01541105-1.pdf: 4002857 bytes, checksum: 472821284a399e0e481c38e2859655a7 (MD5) Previous issue date: 2014 | en |
dc.description.tableofcontents | 中文摘要 i
ABSTRACT ii 目錄 iv 圖目錄 vii 表目錄 ix 符號說明 xi 第一章 前言 1 1.1 研究背景 1 1.2 研究目的 2 1.3 研究架構及預期效益 3 第二章 文獻探討 5 2.1 生質能的發展與應用 5 2.1-1 生質物的種類與來源 6 2.1-2 生質物轉製生質燃料之熱處理技術 12 2.1-3 固態生質燃料應用 13 2.2 生質物焙燒 19 2.2-1 焙燒技術原理與機制 19 2.2-2 焙燒技術之相關研究與發展 20 2.3 造紙業廢棄物再利用 25 2.3-1 紙漿廠製漿製程與廢棄物種類 25 2.3-2 國內紙漿污泥再利用情形 25 第三章 材料研究方法 28 3.1 研究流程 28 3.2 實驗材料與設備 28 3.3 實驗方法與步驟 32 3.3-1 TGA熱重分析及模擬焙燒試驗 32 3.3-2 管狀高溫爐焙燒 34 3.4 分析項目及方法 35 3.4-1 固體特性分析 35 3.4-2 連續氣體排放分析 39 3.4-3 氣體及液體成分分析 42 第四章 結果與討論 47 4.1 紙漿廢棄物基本特性 47 4.1-1 基本特性分析 47 4.1-2 熱重分析 48 4.2 紙漿廢棄物之TGA模擬焙燒 55 4.3 高溫爐焙燒 57 4.3-1 溫度與時間對生質物之剩餘質量變化 57 4.3-2 溫度與時間對生質物之熱值變化 60 4.3-3 能量產率、質量產率及能量緻密比之變化 61 4.4 固體產物分析 67 4.5 氣體產物分析 73 4.5-1 CO之排放 73 4.5-2 NOx之排放 75 4.5-3 SO2之排放 75 4.5-4 O2及CO2之排放 78 4.5-5 HCs之排放 81 4.6 液體產物分析 86 4.6-1 WPS1焙燒後之液體產物 86 4.6-2 WPS2焙燒後之液體產物 88 第五章 結論與建議 96 5.1 結論 96 5.2 建議 98 參考文獻 99 附錄A焙燒前後能量產率與質量產率原始數據 103 | |
dc.language.iso | zh-TW | |
dc.title | 利用焙燒程序將紙漿污泥轉製固態生質燃料之研究 | zh_TW |
dc.title | The Torrefaction of Pulp Industry Waste to Manufacture Solid Biofuel | en |
dc.type | Thesis | |
dc.date.schoolyear | 102-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 李公哲(Kung-Cheh Li),柯淳涵(Chun-Han Ko) | |
dc.subject.keyword | 生質物,紙漿廢棄物,固態生質燃料,焙燒,木醋酸液, | zh_TW |
dc.subject.keyword | biomass,pulp industry waste,solid biofuel,torrefaction,wood vinegar, | en |
dc.relation.page | 106 | |
dc.rights.note | 未授權 | |
dc.date.accepted | 2014-08-11 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 環境工程學研究所 | zh_TW |
顯示於系所單位: | 環境工程學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-103-1.pdf 目前未授權公開取用 | 3.91 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。